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A

 

BSTRACT

 

: Epidemiologic data is increasingly being used for dose-response
analysis in risk assessment. The Environmental Protection Agency (EPA) and
other U.S. agencies have expressed a preference for using epidemiologic data
rather than toxicologic data when possible. However, there are a number of
important sources of uncertainty in using epidemiologic data for this purpose
that need to be clearly recognized and, when possible, quantified. This paper
presents a critical review of the major sources of uncertainty in the use of epi-
demiologic data for cancer risk assessment. These may include: (1) study de-
sign issues such as potential confounding and other biases, inadequate sample
size, and followup, (2) the choice of the data set, (3) specification of the dose-
response model, (4) estimation of exposure and dose, and (5) unrecognized
variability in susceptibility. Examples from risk assessments for cadmium,
asbestos, and diesel exhaust are used to illustrate the potential magnitude of
some of these sources of uncertainty. It is shown that the overall uncertainty
from these various sources combined may often result in highly uncertain risk
estimates from dose-response modeling of epidemiologic data. For this reason,
we believe it is best to present a range of possible risk estimates, which, to the
extent possible, reflects the variability and uncertainty inherent in the dose-
response evaluation of epidemiologic data.

 

INTRODUCTION

 

Most regulatory agencies in the United States have expressed a clear preference
for using human data, when available, instead of toxicologic data from animal stud-
ies, to quantify the risks associated with environmental and occupational carcino-
genic hazards. However, most quantitative risk assessments that have been
performed to date have been based on dose-response modeling of animal bioassay
data. This situation appears to be changing as data from epidemiologic studies
become an increasingly important source of information for dose-response modeling
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in the quantitative assessment of human health risks. This change is probably related
to the increasing criticism of animal models for predicting human risks;
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 and to
improvements in the quality of the available epidemiologic database.

There are several major potential sources of uncertainty that may arise in using
epidemiologic data for dose-response assessments. These sources of uncertainty
need to be considered, and when possible quantified, in any risk assessment that uses
dose-response data from epidemiologic studies. This paper presents a review of the
major sources of uncertainty, with examples from risk analyses that have been con-
ducted by the authors.

 

STUDY DESIGN

 

The lack of adequate exposure information is probably the most frequently cited
limitation of epidemiologic data for risk assessment purposes. Although this certain-
ly is an important factor, which we discuss below, there are several other major lim-
itations on epidemiologic study design that may be as important. Epidemiologic
studies, by definition, are observational in nature and, consequently, it is generally
impossible to randomize the assignment of exposures. Thus, serious questions often
arise about the potential for confounding, selection bias, and other sources of bias.
The frequent use of general population rates as the referent group for occupational
cohorts often introduces a form of selection bias due to the well known 

 

healthy work-
er effect

 

.
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 The impact of this potential bias may be mitigated in many occupational
studies, simply by restricting the dose-response analysis to the exposed and non-
exposed (if available) subjects within the cohort. However, workers must generally
remain healthy to stay employed, a phenomenon that has been termed the healthy
worker survivor effect (HWSE),
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 a fact that may exert a strong influence on the dose-
response relationship. Steenland 

 

et al.
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 have shown that a negative bias in exposure-
response relationships, attributable to the HWSE, may often be observed in occupa-
tional cohort studies. 

In addition to potential biases, one has to consider other potential problems aris-
ing from limitations in the design of the study. An important question is whether or
not the period of observation (follow-up) of the cohort was adequate? Many occupa-
tional and environmental cancers have an average latency period of approximately
15 to 20 years, and thus the cohort should be followed for at least this long in order
to observe an excess from these health outcomes. One also needs to consider whether
the methods for case ascertainment are adequately sensitive. For example, studies
based on mortality data may be inadequately sensitive for cancers that are treatable
and have long survival times, such as leukemia.

Finally, the size of the study is an extremely important consideration. Sample size
estimates for different levels of excess risk are presented in T

 

ABLE

 

 1 for a hypothet-
ical study of lung cancer in an occupational cohort. It should be noted that similar
results would be obtained for case-control studies nested within a cohort. These sam-
ple size estimates are based on a 5% false-positive rate (alpha) and 80% sensitivity
(power) for detecting different levels of excess risk. Most cohort mortality studies
have at least 1,000 workers and very few have more than 100,000 workers. As this
table illustrates, these studies would generally be incapable of detecting an excess
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risk of less than 1 per 1,000 workers. It should also be noted that an excess risk of 1
per 1,000 corresponds to relative risk of 1.02, which most epidemiologists would be
highly reluctant to consider meaningful even if it were statistically significant. The
U.S. Occupational Safety and Health Administration (OSHA) generally considers a
risk of greater than 1 per 1,000 to be significant, and the Environmental Protection
Agency (EPA) generally considers a risk of 1 per 1,000,000 to be significant.
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 Thus
epidemiologic studies generally have low power for detecting the levels of risk that
are of regulatory concern in the United States. Conversely, epidemiologic studies
that demonstrate a statistically significant excess are likely to identify risks that are
of regulatory concern.

 

IS THERE A CAUSAL RELATIONSHIP?

 

Because of the design issues discussed above, it is often difficult, if not impossi-
ble, to draw firm conclusions about whether or not a causal association exists be-
tween an exposure and disease based on a single or even several epidemiologic
studies. Hertz-Picciotto
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 has suggested that epidemiologic data should only be used
for extrapolation in risk assessments (that is, for dose-response modeling) if: (1) a
moderate to strong positive association exists, (2) strong biases can be ruled out, (3)
confounding is well-controlled or limited, and (4) exposures have been well-charac-
terized quantitatively. However, we believe that these criteria, particularly the first,
are too restrictive. It may be informative to conduct dose-response analyses using ep-
idemiologic data even if the study is negative or shows only a weak association (i.e.,
Criterion 1). This type of analysis may at least inform decision makers on what an
upper bound estimate or best estimate of risk might be. Similarly a risk analysis
based on epidemiologic data may also be informative, even if confounding or other

 

TABLE 1. Sample size estimates for detecting varying levels of excess lung cancer
risk in a hypothetical retrospective cohort mortality study

 

Excess 

risk

Relative risk 

(SMR)

 

a

 

a

 

Relative risks calculated using a background risk (cumulative probability) of 0.06 for devel-
oping lung cancer for males over age 15, based upon the proportion of deaths from lung cancer
among U.S. males over age 15 in 1982.

 

b

 

Expected number of deaths calculated assuming 80% power (1 – 

 

β

 

), 

 

α

 

 level of 0.05 (single
tail) and the calculated relative risk.

 

c

 

Person years calculated by dividing the expected number of deaths by the lung cancer rate
(7.8 

 

×

 

 10

 

–4

 

) among males between the ages of 45–54 based upon U.S. mortality rates from 1982
(NCHS 1986) which is approximately the average of the hypothetical population.

 

d

 

Number of workers calculated by assuming each worker contributed 50 person-years to the
study.

 

Expected 

deaths

 

b

 

Person 

years

 

c

 

Number of 

workers

 

d
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1.20 170 217,161 4,343

10

 

–3

 

1.02 15,605 2.0 

 

×

 

 10
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399,605

10
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1.002 1.5 

 

×

 

 10
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2.0 

 

×

 

 10
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39.6 

 

×

 

 10
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10
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1.0002 1.5 

 

×

 

 10
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×

 

 10
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39.6 

 

×
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biases cannot be completely ruled out. For example, such analyses could be used to
assess the credibility of other analyses based on animal data or other epidemiologic
studies.

 

CHOICE OF DATA

 

There is frequently more than one epidemiologic data set that may be used for a
dose-response analysis. Not surprisingly, given the issues of study design discussed
above, there may be a great deal of heterogeneity in the results from dose-response
analyses from different epidemiologic studies. For example, in F

 

IGURE

 

 1 the results
from an exposure-response analysis that we performed for chrysotile asbestos and
lung cancer, based on a study of textile workers,

 

7

 

 are contrasted with estimates of
risk based on another study of chrysotile miners from Quebec.
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 The slopes from
these two studies differ by more than one order of magnitude. It is very difficult for
risk assessors and risk managers to deal with this kind of difference, since it is fre-
quently impossible to identify a single study as providing the “best” data for the risk
analysis. An example of an approach that has been used is the OSHA final rule for
asbestos, where they chose to use the geometric mean of slopes from several stud-
ies.
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 An attractive alternative to this problem would be to conduct a meta-analysis or
to pool the results from all of the studies available and conduct dose-response anal-

FIGURE 1. Comparison of lung cancer excess risk estimates and chrysotile asbestos
exposure based on NIOSH Stayner et al. (1997) study of textile workers, McDonald et al.
(1980) study of Quebec miners and millers, and the OSHA asbestos risk assessment.
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yses based on the combined data set. We are currently attempting to perform such a
pooled analysis for silica and lung cancer risk in collaboration with scientists at the
International Agency for Research on Cancer (IARC).

 

CHOICE OF THE DOSE-RESPONSE MODEL FORM

 

Choosing an appropriate dose-response model is a critical step and another major
source of uncertainty. In the past, many risk assessments simply assumed a linear re-
lationship between relative risk and cumulative exposure.
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 In part, the justification
for this assumption seems to have been based on the multistage theory of carcino-
genesis,
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 which suggests that the carcinogenic effects of chemicals would be low-
dose linear. However, this model is not truly consistent with an Armitage-Doll mod-
el, except when the model has two stages. These models essentially assume the fol-
lowing relationship:

where 

 

RR

 

 is the relative risk, 

 

β

 

 is the slope, and 

 

X

 

 is the cumulative exposure. How-
ever, restricting attention to such simple models no longer seems justifiable when
modern methods and computing easily permit examination of alternative models
with different functional forms.

 

12

 

 In addition, current theories of carcinogenesis
suggest chemicals may act on cell growth and differentiation as well as mutational

RR 1 β X( )+=

FIGURE 2. Comparison between excess risk estimates derived from various models
fitted to lung cancer data from the NIOSH study of cadmium exposed workers. (Adapted
from Stayner et al. Ref. 12.)
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events.
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 Hence a chemical may exert an effect on any number of several available
pathways, and the resulting exposure-response relationship may not always be low-
dose linear.

The choice of a dose-response model may have a dramatic effect on the resulting
estimates of risk, particularly at exposure levels that are well below the levels expe-
rienced by subjects of the epidemiologic study. Poisson regression or Cox propor-
tionate hazard models using alternative parametric forms (i.e., log-linear, additive
relative risk, and power), as well as biologic models (i.e., multistage or two-stage
clonal expansion) may be fitted to the data. In F

 

IGURE

 

 2, estimates of risk are pre-
sented for several alternative dose-response models from an analysis performed by
Stayner 

 

et al.
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 of occupational cadmium exposure and lung cancer risk. It can be
seen from this figure that the estimates of risk vary by nearly an order of magnitude
depending on the dose-response model used.

Splines
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 and other data smoothers offer an attractive new and flexible method for
evaluating the shape of the dose-response by making few, if any, parametric assump-
tions. This method is illustrated in F

 

IGURE

 

 3 from an analysis of chrysotile asbestos
and lung cancer risk that we performed.
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 The restricted cubic spline model yielded
a very similar fit to the data as that obtained from the additive relative rate model.
This result added confidence to our choice of the additive relative rate model as the
best parametric form for our risk analysis. Alternatively, one could use the spline
model itself for the risk analysis, which in this example would have yielded essen-

FIGURE 3. Lung cancer mortality rates as a function of cumulative chrysotile asbestos
exposure predicted by alternative models for white males, age 50 in 1940–1969. (Adapted
from: Stayner et al. Ref. 7.)
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tially the same result. However, there could be instances where a spline or other
smoothers might yield dose-response models with questionable fitted values, since
they can be so flexible that they are sensitive to local random variations leading to
over fitting the data.

Finally, a critical concern in a risk analysis is whether or not there is a threshold
below which the exposure has no effect on the disease risk. The assumption that
there is no threshold for carcinogens is increasingly being questioned. Some epide-
miologists have argued that there is a threshold at cut points in their data where they
no longer see a significant excess risk. This is clearly inappropriate, since there will
generally be a level of exposure in an epidemiologic study where one no longer sees
an excess risk simply due to a lack of sufficient sample size and associated study
power limitations. Furthermore, if exposures are categorized, it may be easily shown
that the choice of cut-points (which is generally arbitrary in epidemiologic studies)
can influence the determination of the no-adverse-effect level.
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Ulm
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 has suggested a formal statistical method for estimating a threshold pa-
rameter from epidemiologic data that has continuous exposure information. This is
a useful method, although what it yields should probably not be called a “threshold”,
but rather a point in the data below which there is no evidence of an excess risk. This
is because the parameter estimate is influenced by the study design (for example,
sample sizes and exposure data) and should not thus be viewed as a true biologic
threshold. We applied this method in our analysis of lung cancer risk and exposure
to chrysotile asbestos,

 

7

 

 and we found that the maximum likelihood estimate for this
parameter was zero. This may often be the case with epidemiologic data, or the con-
fidence intervals on this parameter may be extremely broad. Even if a true threshold
exists, the reality is that epidemiologic studies will seldom be able to detect it. Thus,
unless there is other biologic evidence for a threshold, it would be ill-advised to use
a threshold model for human health risk assessments. Furthermore, even if there
were evidence of a threshold, a single number would not apply to all individuals, and
it is more plausible to think in terms of a distribution of thresholds among the pop-
ulation.

 

ERRORS IN EXPOSURE ESTIMATES

 

The fact that epidemiologic studies of cancer require information on exposures
from 20 or more years prior to the end of the study makes the reconstruction of ex-
posures an extremely difficult exercise, one that is generally fraught with potential
errors. Despite this well-recognized fact, most epidemiologic studies and risk assess-
ments based on these studies, treat the exposures as if they were known and without
error. It is also commonly assumed in epidemiology that errors in exposure estimates
that are non-differential with respect to disease will lead to an underestimate of the
true dose-response slope. However, this is not always the case, and errors in expo-
sure may in fact either inflate or deflate the slope of the dose-response relationship
depending on the structure of the error.
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We are currently working on an analysis of the effects of errors in exposure esti-
mates on the dose-response relationships in a study of railroad workers exposed to
diesel exhaust particles.
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 This study has several potential sources of error that may
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have contributed to a distortion of the dose-response relationship, including errors
that effect estimation of both the duration and intensity of exposure. We are explor-
ing the use of Monte Carlo methods to evaluate the potential uncertainty introduced
by these exposure estimation errors on quantifying the dose-response relationship.
Preliminary results from the Monte Carlo simulation of errors affecting the estimates
of duration of exposure are illustrated in F

 

IGURE

 

 4. This figure shows that the slope
of the linear relative rate regression model varied by a factor of approximately four
(minimum versus maximum) with 95% of the results lying within a factor of two.
This range reflects only a part of the overall uncertainty, which is likely to increase
as we consider the other sources of uncertainty in the exposure estimates used in this
analysis.

 

ERRORS IN USING EXPOSURE RATHER THAN DOSE

 

At best, epidemiologic studies of cancer risk rely on estimates of external expo-
sure from personal breathing zone samples and work history information for estimat-
ing exposure. The delivered dose, or the actual dose that reaches the target tissue, is
rarely available in epidemiologic studies of chronic diseases like cancer. If exposure
is proportional to dose, then external exposure would be a reasonable surrogate for

FIGURE 4. Histogram of parameter estimates from 1,000 Monte Carlo simulations of
duration of diesel exposure using a linear relative risk model based on data from Garshick
et al. (1986).
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tissue dose, which would differ by some constant factor. However, if exposure is not
proportional to dose (for example, when saturation occurs in capacity-limited pro-
cesses such as uptake, metabolism, or clearance), then external exposure measures
would not necessarily represent dose over the entire distribution of exposures. Sim-
ilarly, if there are systematic differences among individuals in the exposure-dose
relationship (for example, genetic polymorphisms resulting in metabolic differenc-
es, such as fast or slow acetylators; or pre-existing conditions such as bronchitis,
which can alter deposition and clearance in the lungs), then exposure might not be a
good representation of dose.

Dose information may be available from autopsy or clinical studies, particularly
if the substance is biopersistent. For example, a strong association has been observed
in most case-control studies of mesothelioma and dose (lung burdens) of amphibole
asbestos, but not of chrysotile asbestos. This may be explained by the fact that
chrysotile asbestos has a relatively short half-life in the lung; whereas, amphiboles
have a long half-life.
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Dosimetric models have been developed for a relatively few occupational and en-
vironmental epidemiologic studies.
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 Kuempel
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 recently developed a human dosi-
metric lung model of the long-term retention of particulates, using autopsy data of
U.S. coal miners, information on job-specific duration and intensity of exposure to
respirable coal mine dust, and other human data on breathing rates, particle deposi-
tion in the lungs, and initial clearance rates. She found that measured lung dust bur-
den was a stronger predictor of the probability for developing pulmonary fibrosis
than was cumulative exposure, and that the model-predicted lung burdens also
showed statistically significant dose-response, with similar coefficients to those for
measured lung dust burdens. Furthermore, she found a different pattern of exposure-
dose in humans than that observed in animal studies with chronic exposures to par-
ticles. This illustrates the potential usefulness of dosimetric models in risk assess-
ment, which can represent biologic processes that affect dose.

Clearly our inability to use biologic markers for dose and our reliance on using
measures of external exposure introduces uncertainty into the use of epidemiologic
data in the risk assessment process. It is difficult at this time to judge the extent of
this uncertainty, but it may be large in some cases, particularly when individual char-
acteristics are known to modify the absorption, metabolism and delivery of the ex-
posure to the target tissue.

 

HUMAN VARIABILITY IN SUSCEPTIBILITY

 

The effects of human variability in susceptibility to exposure on the results from
risk analyses from epidemiologic studies have largely been neglected to date. We
generally fit our models to epidemiologic data by assuming all of the individuals in
the study are from the same population, and then extrapolate our findings to other
populations who may have quite different characteristics that effect susceptibility.
The reason we have done so is simply because of our near total ignorance of what
these factors are, and how they are distributed in our study population. We are be-
coming increasingly aware of how bad this assumption is, and of the existence of
subpopulations in our studies with genetic polymorphisms that influence their risk.
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In fact, it may often be the case that the individuals at the greatest risk are those that
have some combination of different genetic polymorphisms. For example, in a recent
case-control study of lung cancer, Hirvonen
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 evaluated interactions between asbes-
tos exposure, GSTM1 genotype, and N-acetyltransferase slow acetylator genotype
(NAT-2). Being either 

 

GSTM1

 

null

 

 or a slow acetylator (

 

NAT-2

 

*slow

 

) was associated
with an approximately twofold increased risk of lung cancer. Having both 

 

at-risk

 

genotypes (

 

GSTM1

 

null

 

 and 

 

NAT-2

 

*slow

 

) was associated with an approximately four-
fold increase in risk. Having both 

 

at-risk

 

 genotypes and being highly exposed to as-
bestos was associated with an approximately eightfold increase in risk. Hence the
results from this study suggest a multiplicative relationship between 

 

GSTM1, NAT-2

 

and high asbestos exposure. This example illustrates how large the differences in risk
may be for subpopulations in our studies, and in the populations for which we are
trying to estimate risk. Our failure to recognize these difference may lead to large
errors in our risk estimates particularly for certain members of the population.

 

CONCLUSION

 

In this paper we have attempted to briefly discuss and illustrate some of the major
sources of uncertainty in using epidemiologic data for dose-response analyses. Sev-
eral of these sources have the potential to result in relatively large errors in the esti-
mation of risk. Our cadmium example illustrates that just varying the statistical
model may result in risk estimates that span an order of magnitude. Other sources of
uncertainty reviewed in this paper may also easily result in errors in predicted risks
that are as large. The overall uncertainty from these various sources combined may
often result in risk estimates from dose-response modeling of epidemiologic data
that are highly uncertain. For this reason, we believe that it is best to present a range
of possible risk estimates, which, to the extent possible, reflects the variability and
uncertainty inherent in the dose-response evaluation of epidemiologic data.
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