

95. Correlation Between Cough Sound Characteristics And Specific Airway Resistance In Guinea Pigs

J.W. DAY¹, J.S. REYNOLDS¹, D.G. FRAZER¹, J.B. DAY¹ AND W.L. COOLEY²

¹National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV; ²West Virginia University, Morgantown, WV

Human studies have shown that cough sound analysis may be useful for diagnosing pulmonary abnormalities. The purpose of this study was to evaluate an animal model for cough sound analysis. A system was designed to expose guinea pigs to aerosols of citric acid (0.39M) and record resulting coughs at different stages of chemically induced specific airway resistance (SRaw). SRaw changes were determined by comparing the phase differences in the nasal and thorax flows during breathing cycles using dual chamber plethysmography. Coughs were divided into three categories (low SRaw, n = 114; moderate SRaw, n = 164; high SRaw, n = 75). 122 cough sound parameters were derived from the analysis of the sound pressure waves recorded during the cough. The signal analysis included filter octave analysis, frequency power analysis, and time dependent spectral analysis. Unacceptable coughs were defined as those having 10% or more parameters exceeding two standard deviations from the mean and were eliminated from each group. A principal component analysis was performed on all of the data, and components describing 99% of the variability in the parameters were chosen to train a single neuron feed-forward back propagation neural network with a bipolar sigmoid output transfer function. The classification system was able to correctly discriminate between members of the high and low airway constriction groups with an accuracy of 0.936 and a sensitivity and specificity of 0.893.

Biomedical Engineering: New Challenges for the Future

**2004 Annual Fall Meeting
of the**

Biomedical Engineering Society

**October 13-16, 2004
Wyndham Philadelphia at Franklin Plaza
Philadelphia, Pennsylvania**

**Hosted by
University of Pennsylvania
and Drexel University**

Meeting Co-Chairs

Daniel A. Hammer, University of Pennsylvania
Banu Onaral, Drexel University

Program Co-Chairs

David F. Meaney, University of Pennsylvania
Peter I. Lelkes, Drexel University

Annual Meeting Sponsors

Annual Reviews

BioAdvance

Cleveland Medical Devices

Entelos, Inc.

Exponent, Inc.

Greater Philadelphia Bioinformatics Alliance

Innovation Philadelphia

Medtronic, Inc.

Merck & Company, Inc.

Nanotechnology Institute

The Whitaker Foundation

Unilever

University of Pennsylvania Department of Bioengineering
Drexel University School of Biomedical Engineering, Science & Health Systems