

97. Identification Of Individuals Using Voluntary Cough Characteristics

J.B. DAY¹, W.T. GOLDSMITH¹, J.A. BARKLEY¹, J.W. DAY¹, A.A. AFSHARI¹, D.G. FRAZER¹ AND W.L. COOLEY²

¹National Institute for Occupational Safety and Health, Morgantown, WV; ²West Virginia University, Morgantown, WV
Currently, there is a great deal of interest in identifying persons by their speech characteristics. The purpose of this study was to determine if the sound and airflow patterns during a cough have potential for identifying individuals. In a preliminary study, 14 volunteers (13 men and 1 woman) were asked to perform three voluntary coughs over a 2 month period using the system and procedure previously described (Goldsmit et al., Proc. 3rd Int. W. of Biosig. Interp. 1999). Between 6 and 110 coughs were recorded for each subject. A series of 60 cough sound pressure wave and airflow parameters were calculated for each cough. Three percent of the coughs exhibited deviations greater than two standard deviations from the mean and were discarded from the study. A principal component analysis of the data was performed, and the 20 most significant components were selected as inputs to a quasi-Newton back propagation neural network classification system. The neural network was trained with half the coughs from all subjects. The remaining individual coughs of each subject were identified based on the training set. Results were used to construct Receiver Operating Characteristic (ROC) curves to evaluate the ability of cough parameter analyses techniques to identify individuals. The sensitivity and specificity of the identification procedure were equal at 0.997 and the test discrimination or area under the ROC curve was 0.999. Cough parameter analysis appears to have great potential for identifying individuals.

Biomedical Engineering: New Challenges for the Future

**2004 Annual Fall Meeting
of the**

Biomedical Engineering Society

**October 13-16, 2004
Wyndham Philadelphia at Franklin Plaza
Philadelphia, Pennsylvania**

**Hosted by
University of Pennsylvania
and Drexel University**

Meeting Co-Chairs

Daniel A. Hammer, University of Pennsylvania
Banu Onaral, Drexel University

Program Co-Chairs

David F. Meaney, University of Pennsylvania
Peter I. Lelkes, Drexel University

Annual Meeting Sponsors

Annual Reviews
BioAdvance
Cleveland Medical Devices
Entelos, Inc.
Exponent, Inc.
Greater Philadelphia Bioinformatics Alliance
Innovation Philadelphia
Medtronic, Inc.
Merck & Company, Inc.
Nanotechnology Institute
The Whitaker Foundation
Unilever

University of Pennsylvania Department of Bioengineering
Drexel University School of Biomedical Engineering, Science & Health Systems