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Many exposure assessment strategies rely on the occupational group as the unit of analysis
in which workers are classified on the basis of job title, location, or on other characteristics
related to the workplace or the job. Although statistical methods that combine exposure data
collected on workers from different occupational groups are more efficient, the underlying
assumption that the degree of variation over time and among workers is the same for all
groups has yet to be fully investigated. Given the utility of different modeling approaches
when assessing exposures, we investigated assumptions of homogeneity of variance within
and between workers using both random- and mixed-effects models. In our study of four
groups of workers exposed to inorganic mercury (Hg) at a chloralkali plant, there was no
evidence of significant heterogeneity in the levels of variation over time or between workers
for air Hg levels. For the biological monitoring data, however, our findings indicate that
groups did not share common levels of variability and that it was not appropriate to pool
the data and obtain single estimates of the within- and between-worker variance components.
Classification of job group as a random or fixed effect had no effect on the results and yielded
the same conclusions when the models were compared. To illustrate effects related to the
proper specification of a model, the likelihood of exceeding certain levels (which is a function
of the parameters of the underlying distribution of the natural log-transformed exposures)
was evaluated using the results obtained from the different models. Although the probability
that workers’ mean exposures exceeded occupational exposure limits for air, urine and blood
Hg was generally low &10%) for all groups except maintenance workers, the estimated
values sometimes varied depending upon the particular model that was applied. Given the
growing use of random- and mixed-effects models that combine data across occupational
groups, additional studies are warranted to evaluate whether it is reasonable to assume com-
mon variances and covariances among measurements collected on workers from different
groups. 0 2001 British Occupational Hygiene Society. Published by Elsevier Science Ltd. All
rights reserved
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the bias can be expressed as a function of the magni-
tude of the within- and between-worker sources of
variation and the number of repeated measurements
collected on each individual. Suitable data have been
available to examine likely effects on regression
results for workers exposed to styrene in the
reinforced plastics industry (Rappaport et al., 1995z;
Symanski et al., 2001a), mercury in the chloralkali
industry (Symanski et al., 2000), dust in the carbon
black manufacturing industry (van Tongeren et al.,
1997) and a variety of different contaminants arising
in various industries (Tielemans et al., 1998).

In the more common situation where measurements
are not collected on the entire workforce, the occu-
pational group becomes the unit of analysis in which
workers are classified on the basis of job title,
location, or other characteristics related to the work-
place or job function. Relying on representative
measurements that are collected on some, but not
necessarily al, individuass, the average exposure for
the group is estimated and assigned to all members
(Heederik et al., 1996; Seixas and Sheppard, 1996;
Tielemans et al., 1998). Numerous studies have relied
on the one-way random-effects model to evaluate
variability in exposure from day-to-day and between
workers who comprise an occupationa group
(Kromhout et al., 1987, 1993, 1995; Spear et al.,
1987; Heederik et al., 1991; Kromhout and Heederik,
1995; Nieuwenhuijsen et al., 1995; Kumaga et al.,
1996; Milton et al., 1996; Houba et al., 1997; Lagorio
et al., 1997). In these applications, it is assumed that
workers selected for monitoring represent random
samples from a larger population of workers and that
the days of sampling are representative of the period
over which inferences are to be drawn. In addition to
obtaining estimates of the group’s average exposure,
information about the magnitude of the variance
components can be used to assess homogeneity in
exposure levels (Rappaport et al., 1993), determine
the probabilities of overexposure relative to exposure
limits (Rappaport et al., 1995b, 1999; Lyles et al.,
1997; Tornero-Velez et al., 1997; van Tongeren et al.,
2000), and evaluate the utility of different exposure
measures (Rappaport et al.; 1995a; Symanski et al.,
2000, 20014).

Investigators have also expanded their examination
of exposure variability to investigate variation among
different occupational groups of workers. Most com-
monly, a two-way random-effects model has been
applied (Kromhout and Heederik, 1995; Nieuwenhu-
ijsen et al., 1995; Kromhout et al., 1996; Houba et
al., 1997; van Tongeren et al., 1997; van Wijngaarden
et al., 1999), in which occupational groups are
assumed to have come from a population and thus
account for another source of random variation
(between-group variability) in the exposure data. The
two-way random-effects model has been used to
evaluate the utility of grouping workers using differ-
ent classification schemes by relying on relationships
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that depend upon the relative magnitude of the
between-group, between-worker, and within-worker
variances (Kromhout et al., 1995, 1996; Tielemans et
al., 1998). In addition, mixed-effects models have
been applied that evaluate the occupational group to
which the worker belongs as a fixed (rather than
random) effect (Rappaport et al., 1999; Symanski et
al., 2001a). While random effects associated with the
variation between and within workers are il
included in the model, inferences are focused in these
applications on differences in the mean values for
those (and only those) groups represented in the data.

Specification of ‘occupational group’ as either a
fixed or random-effect will depend partly on the man-
ner of data collection, the structure of the data, and
on the nature of the inferences to be drawn (Symanski
et al., 2001b). However, both types of variance
component models typically assume common
between- and within-worker variances across groups.
It is important to check whether this assumption is
correct since the mean exposures for workers within
a given group (which are viewed as random variables
in both types of models) may well differ in variability
from those in other groups. Likewise, the degree to
which shift-long exposures vary for each worker may
differ across groups as well. With the exception of
one study that compared models with different vari-
ance structures when evaluating aerosol exposures
among four groups of construction workers
(Rappaport et al., 1999), little attention has focused
on the validity of the assumption that the variances
and covariances of measurements are the same for all
occupationa groups. Thus, we undertook this study to
explicitly evaluate whether the within- and between-
worker sources of variation were common among
groups of workers exposed to inorganic mercury at a
chloralkali plant. Given the utility of different mode-
ling approaches when assessing exposures, analyses
are presented that evaluated job group as either aran-
dom or afixed effect in separate models. To illustrate
effects related to the proper specification of a model,
a secondary objective was to evaluate the prob-
abilities of exceeding occupational exposure limits
using the results obtained from the mixed models that
make different assumptions about the variance-
covariance structure of measurements across occu-
pational groups.

MATERIALS AND METHODS

As part of a previous investigation (Symanski et
al., 2000), air and biological monitoring data that had
been collected routinely at a chloralkali plant in
Sweden were compiled from laboratory records.
Nearly the entire workforce participated in the
biomonitoring program with each worker typicaly
providing one blood sample and two urine samples
each year. The sampling campaign was normally con-
ducted in late winter and spring (February through
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April) and then again later in the year during the
months of July through November. Whereas approxi-
mately equal numbers of urine samples were collected
during both campaigns, a greater number of blood
samples was generally collected in the spring than in
the autumn period.

Blood was collected by venipuncture in metal-free
heparinized vacutainers at the health-care center of
the plant. First-morning urine samples were collected
a home in metal-free polyethylene bottles. Determi-
nations of mercury in biological samples were made
using cold vapor atomic absorption spectrophotome-
try (Einarsson et al., 1984) and reported in units of
nanomoles per liter (nmol/l). The limit of detection
for urinary and blood mercury was 10 nmol/l through
1992 and 5 nmol/l thereafter. From 1988 onwards,
urinary creatinine was analyzed with a modified kin-
etic Jaffé method and used to express mercury con-
centration in units of pg Hg/g creatinine.

Unlike the biological monitoring program in which
amost al workers provided urine and blood samples,
only one-half of the workforce had been selected for
personal sampling over the study period. Although
persona monitoring had been conducted periodically
throughout each year, measurements on the same
worker were typically collected during two- or three-
day campaigns. To evaluate personal exposures in the
breathing zone of the workers, active sampling on
Hydrar tubes was conducted during the full work shift
and the samples analyzed using standard methods
(NIOSH, 1989). The detection limit for airborne mer-
cury was 0.5 pg/m? throughout the entire study per-
iod.

Since urinary creatinine was analyzed from 1988
onwards, the database for this investigation was
restricted to the period 19881997 to facilitate com-
parisons among al exposure measures. Biological
measurements on workers exposed to mercury vapor
for less than one year were excluded since their
exposure regimen was not sufficiently long enough
to reasonably assume steady-state conditions. Urine
samples that were either too dilute (<05 g
creatinine/l) or too concentrated (>3 g creatinine/l)
were also omitted (Alessio et al., 1985). A standard
procedure was adopted for air, blood, and urinary
mercury levels below the limit of detection (Hornung
and Reed, 1990) — such measurements were
assigned a level of two-thirds the value of the
reported detection limit.

The job titles of the workers were assigned to four
broad occupational categories: (1) shift workers, (2)
cell hall maintenance workers, (3) cell hall production
workers and (4) non-cell hall workers. The cell hall
production workers and the cell hall maintenance
workers perform the majority of their tasks in the cell
hall whereas the non-cell hall workerstypically spend
less than 10% of their time in the cell hall. The shift
workers run the process for 24 h, which requires that
they perform numerous tasks in the control room, salt
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solution hall, and cell hall. Additional details about
the study population and the exposure-monitoring
database have been previously reported (Symanski et
al., 2000), but we note that the database analyzed in
the present study extends over a dlightly longer inter-
val (1988-1997) than that presented earlier (1990—
1997).

In preliminary analyses, scatter plots of the annual
mean levels of the natural logarithms of the data were
inspected. While no trends were apparent in the air
monitoring data, there was a downward shift in uri-
nary and blood mercury levels in 1994 (and
thereafter) that was likely due to a change in labora-
tory for the biological samples that occurred in June
of 1994 (Symanski et al., 2000). Because this down-
ward shift in biological levels made it difficult to dis-
cern whether trends were present over the entire
monitoring period, time trends were formally evalu-
ated in the mixed-models that were applied. In these
analyses, the year the measurement was collected
(1988-1997) was re-scaled from 0 to 9.

Secification of job group as a fixed effect in a mixed-
effects linear model

To evaluate fixed effects on exposure related to job
group, a mixed-effects linear model was applied and
is specified as follows:

Yi = IN(Xid = piy + 8t + o + By + & (1)

fori =1, ..., 4job groups,

j =12, ..., b workers,

k = 1,...,n;; measurements of the jth worker in the
ith job, group collected in year t,

and where
Xijk the kth measurement of the exposure con-
centration for the jth worker in the ith job
group,
Yiik the natura logarithm of the exposure con-
centration,
Uy the overall mean of Y, at time=0,
o the slope for the annual time trend,
Q; the fixed effect due to the ith job group,
Bioy the random effect of the jth worker in the
ith job group, and
Eijk the random error of the kth measurement
collected on the jth worker in the ith job
group.
It is assumed under model (1) that

Biy~N(0,03)), &;~N(0,0%,,) and that B;)'s and &;’s
are statistically independent. Thus, o3; and o%,; rep-
resent the between- and within-worker components of
variance for the ith job group. It directly follows that
Yi~N(uy + ot + o;,0%) where 6%, = 03; + o%,;
and that cov(Yj.Yix) = og; for i =i, j=j, and
k#k'. For the untransformed exposure concentration
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(X which is assumed to follow a lognormal distri-
bution, the mean (uy;) and variance (0%;) can be
expressed as functions of the mean and variance of
the normally-distributed log-transformed exposures,
i.e, Ux; = exp(iy + 6t + o; + 0.50%)) and
0% = uzilexp(o?;)-1]. As noted above, a systematic
change in urinary and blood mercury levels was
detected in mid-1994 arising from a change in labora-
tory for the biological samples (Symanski et al.,
2000). Thus, a fixed (period) effect was added to
model 1 when the biomonitoring data were analyzed
(period 1: 1988-June 1994 and period 2: July
1994-1997).

Secification of job group as a random effect in a
mixed-effects linear model

To evaluate random effects related to job group,
a two-way random-effects model was applied and is
specified as follows:

Yik = In(Xid = py + 6t + o + By + & (2)

Mode (2) differs from model (1) in its specification
of job group (o) as a random effect; thus, wy rep-
resents a common mean for all job groups. All other
terms are defined as for model (1). Here, it is assumed
that o, By and & are independent normal random
variables with zero means and variances 63, 63, and
o%, respectively, which represent the between-

group, between-worker, and within-worker
variance components. It directly follows that
cov(YiYijw) = 0% +o03; for i =i, j=j’, and k#k'
and that cov(Y;;,Yij) = 04 for i =i, j#j’, and k#K'.

As in model (1), a period (fixed) effect was added
to the model when evaluating the urinary and blood
mercury data.

Under models (1) and (2), three different sets of
assumptions were evaluated regarding the variances
and covariances of measurements within each occu-
pational group: (a) o3; and o%,; were the same for all
job groups [hereafter referred to as model 1.1 or 2.1],
(b) 03, was different for all job groups and 3,; was
the same for al job groups [model 1.2 or 2.2], and
(c) o3, and o3, were different for al job groups
[model 1.3 or 2.3]. Thus, model 1.1 or 2.1 represents
the most parsimonious model and model 1.3 or 2.3
the most complex model. In the current investigation,
we assume a common covariance for al pairs of
measurements collected on the same worker irrespec-
tive of the time interval separating them (this struc-
tureis referred to as compound symmetry). To evalu-
ate whether it was appropriate to pool the variance
components across groups in model (1) or model (2),
likelihood ratio tests and the Akaike's Information
Criterion (AIC) were used to compare the following
sets of models:

1. The model with different between-worker vari-
ances, but a common within-worker variance
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across groups was compared to the model with a
common between and within-worker variance
across groups. This comparison tests the hypoth-
esis that Hy:03, = ... = 63, and compares model
1.2 to 1.1 (or model 2.2 to 2.1).

2. The model with distinct between and within-
worker variances was compared to the model with
different between-worker variances, but acommon
within-worker variance. This comparison tests the
hypothesis that Hy:6%,, = ... = 0%+ and compares
model 1.3 to 1.2 (or model 2.3 to 2.2).

To apply the likelihood ratio test, a test statistic
was computed as the difference in the —2 log likeli-
hood values between the two models. This statistic is
approximately distributed as a chi-squared variate
with degrees of freedom specified by the difference
in the number of parameters estimated between the
two models and was evaluated at a significance level
of 0.05. The AIC, which is defined as the maximized
(restricted) log likelihood minus the number of para-
meters in the covariance matrix, was also used to
compare models. In making comparisons using the
AIC, selection was based on the model with the
smallest value. All model parameters were estimated
using the method of restricted maximum likelihood
(REML) implemented with the PROC MIXED pro-
cedure from the SAS System Software (Version 8.01,
Cary, NC, USA).

Evaluation of exposures relative to occupational
exposure limits

Given that exposures vary both within and between
workers in an occupational group, the ‘exceedance’
[i.e, the probability that a single measurement
obtained from a randomly-selected worker in the ith
group on a randomly-selected day exceeds an occu-
pational exposure limit (OEL)] can be expressed as a
function of the mean and variance components of the
underlying distribution of the natural log-transformed
exposures for the ith job group (Rappaport et al.,
1999). In our application, the exceedance probability
[7(®)] can be represented as follows:

'n(OELHt(t)} &)

¥(®) = P{X;>OEL} = 1—<I>{ N ——

In Eq. (3), X« represents the kth measurement ran-
domly collected on the jth worker from the ith job
group at time t, uy;(t) represents the mean value of
the logged exposures for the ith job group at time t
(i.e. uyi(t) = uy + 6t + o) and o3; and o%,; rep-
resent the between- and within-worker variance
components of the logged-exposures for the ith job
group, respectively. ®{z} denotes the probability that
a standard normal variate falls below the value of z

To ensure mathematical correctness, we define
‘overexposure’ as the probability that the conditional
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mean exposure for a randomly selected worker
exceeds an occupational exposure limit. Our defi-
nition presents a different probability statement than
what has been published previously (Rappaport et al.,
1999), but the computational formula remains the
same. Using our definition, the probability of ‘ overex-
posure’ [6;(t)] can be represented as follows:

oi(t) = P{ E()?j(i)lﬁj(i))>OE|—}
= P{E(XlB;a)>OEL} 4)
= P{exp(uy,(t) + Bjs + 0.50%,;)>O0EL}
B {In(OEL)—uY‘i(t)—O.SO'\ZNYi}
Og,i

In Eq. (4), X represents a method of moments esti-
mator for the mean exposure of the jth worker in the
ith job group at time t and X, ttvi(t), Biq) 03, and
0%y, are defined as before. Here, we note that E(X,|X;)
represents the conditional expectation of X; given X,,
and is a function of the random variable X,. In our
application, we focus on the expectation of aworker’s
mean conditional on the random effect associated
with a particular individual who belongs to the ith
group (i.e. E[X»|Bii]). The 3rd equality in Eq. (4)
arises from E[XBs] = exp(uy,(t) + B + 0.50%,)
since XlBjg is lognormally distributed with para-
meters uy;(t) + B and od,;. We are ultimately inter-
ested in the probability that this conditional expec-
tation (a random variable) exceeds an occupational
exposure limit.

Using the invariance principle for restricted
maximum likelihood (see, for example, Bartoszynski
and Niewiadomska-Bugaj, 1996), the probabilities of
exceedance and overexposure relative to an occu-
pational exposure limit were estimated based on
[yi(t), 68, and 6%,; obtained from models 1.1, 1.2,
or 1.3. Threshold limit values and biological exposure
indices (ACGIH, 1999) of 25 pg/m3, 75 nmol/l and
35 pg/g creatinine were chosen as the exposure limits
for air, blood, and urinary mercury, respectively.

RESULTS

Table 1 provides a breakdown of the air and bio-
logical monitoring data that were evaluated. In total,
there were 325 airborne mercury measurements, 847
blood mercury measurements and 1165 urinary mer-
cury measurements. Most workers participated in
shift work or were involved in maintenance activities.
Over 80% of workers in al job groups contributed
more than one measurement. Taken together, there
were few blood (<7%) and no urinary or air (0%)
measurements below the limit of detection.

Results from the analyses of the air, blood, and uri-
nary mercury data that applied models (1) and (2)
with different variance structures appear in Tables 2
and 3, respectively. In comparing the model with
common variances (1.1 or 2.1) to the model with dis-
tinct variances (1.3 or 2.3), we observed a greater
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range across job groups in the point estimates of the
between-worker variance compared to the within-
worker variance for all three exposure measures. For
example, model 1.1 generated estimates of the
between- and within-worker variance components of
0.168 and 0.701 for air mercury. In comparison, the
point estimate of the between-worker variance from
the model with distinct variance components (model
1.3) varied from 0.098 for maintenance workers to
0.470 for non-cell hall workers. In contrast, the esti-
mates of the within-worker variance ranged from
0.349 for cell hall production workers to 0.785 for
cell hall maintenance workers. Although the underly-
ing construct of the models that evaluate job group
as a fixed (model 1) or random (model 2) effect are
quite different, the point estimates of the between-
and within-worker variance components were nearly
the same in both sets of models that were applied.

Table 4 summarizes the results for the evaluation
of trends in the air and biological monitoring data.
While trends in exposure were not detected in either
the air or blood Hg data, urinary mercury levels
declined dlightly (P<<0.05) at a rate of approximately
3% per year. In evaluating effects related to a change
in laboratory for the biological monitoring data, there
was a significant shift towards lower levels for both
the urinary and blood Hg data in all models that were
applied (P<<0.05, results not shown).

Table 5 summarizes the comparisons between
models that were made using either Akaike's Infor-
mation Criterion (AIC) or the likelihood ratio test
(LRT) statistic. Similar conclusions are reached irres-
pective of the classification of job group as a fixed
or random effect. Based on both indices, our results
suggest that there was no advantage in assuming het-
erogeneity in the between- or within-worker variances
across groups for the airborne mercury data. For
blood mercury, the AIC selects the model with dis-
tinct between- and within-worker variances whereas
the likelihood ratio test selects the model with a com-
mon within-worker variance but distinct between-
worker variances. For urinary mercury, the model
with distinct between- and within-worker variances
appears to offer the best fit based upon both selec-
tion criteria.

The estimated probabilities of exceedance [¥(t)] for
1988 (t = 0), which rely on parameter estimates that
were generated under models 1.1, 1.2, and 1.3 for air,
blood, and urinary mercury, appear in Table 6. The
likelihood that a single randomly-collected air
measurement would exceed 25 pg/m® ranged con-
siderably across the four groups with the highest
values observed for maintenance workers (~40%)
who are involved in activities that give rise to
extremely variable exposures. For this same group of
workers, two- and four-fold differences in the
exceedance probabilitites for blood and urinary Hg,
respectively, were observed across models. Table 6
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Table 1. Breakdown of the database of airborne, blood, and urinary mercury data collected on workers at a Swedish
chloralkali plant

N& b? Median number of % of workers % of measurements
measurements per with >1 < LOD
worker measurement
Airborne Hg (ug/m?)
Shift workers 62 20 3 20 0
Cell hal production workers 26 6 4 100 0
Cedll hall maintenance workers 205 18 9 100 0
Non-cell hall workers 32 8 3 88 0
Blood Hg (nmol/l)
Shift workers 248 44 6 20 7
Cell hal production workers 98 7 11 100 3
Cédll hall maintenance workers 214 20 7 85 4
Non-cell hall workers 287 34 7 91 9
Urinary Hg (ug/g creatinine)
Shift workers 585 47 14 94 0
Cell hall production workers 63 7 7 86 0
Cédll hall maintenance workers 155 19 5 84 0
Non-cell hall workers 362 33 10 94 0

aN: number of measurements; b: number of workers.

Table 2. Results from the mixed-effects models with a fixed effect due to occupational group under different assumptions
regarding homogeneity in the between- and within-worker variance components (03, and 0%,;) anong groups of workers
exposed to inorganic mercury at a chloralkali plant

Modd 1.12 Model 1.2 Model 1.32

O8i  Owi M I 68 Ohs  iw®  ix®  OBi Oni M [x®

Airborne Hg (ug/m?)
Shift workers 0.168 0.701 234 16.1 0.087 0702 233 153 0118 0615 239 15.7

Production 0.168 0701 233 159 0279 0702 235 172 0437 0349 243 168
workers
Maintenance 0.168 0701 294 293 0112 0702 298 297 0.098 0785 3.03 322
workers

Non-cell hall 0.168 0701 154 721 0455 0702 156 845 0470 0521 163 839
workers

Blood Hg (nmol/l)

Shift workers 0.190 0223 300 247 0055 0224 300 232 0056 0223 300 230

Production 0.190 0223 328 326 0126 0224 330 323 04127 0171 329 312
workers
Maintenance 0.190 0223 348 400 0201 0224 347 399 0204 0203 346 391
workers

Non-cell hall 0190 0223 311 275 0351 0224 309 293 0344 0261 308 296
workers

Urinary Hg (ug/g creatinine)

Shift workers 0161 0159 223 109 0059 0160 221 101 0.062 0.141 221 101

Production 0.161 0159 259 156 0 0.160 255 139 0 0.113 258 139
workers
Maintenance 0.161 0159 310 260 0151 0160 316 275 0451 0158 316 275
workers

Non-cell hall 0.161 04159 209 951 0319 0160 204 980 0312 0201 205 100
workers

Model 1.1: Common o3; and o%,;; Model 1.2: Common o3, different o3;; Model 1.3: Different og; and o3,

Blly; represents an estimate of the mean exposure of the logged data for the ith job at the start of the monitoring period
in 1988; [iy; represents the estimated mean exposure of the untransformed data for the ith job in 1988; (ix; =
exp[;uY,l + 05(0-8,| + O-W,I)])

also reports the values of éi(t) for 1988 estimated DI SCUSSION

under the three mixed-effects models. As with the

exceedance probabilities, there were differences (in The application of random- and mixed-effects
some cases) when comparing the results obtained models to evaluate sources of variation in exposure
from different models. to workplace contaminants is growing in the occu-
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Table 3. Results from the two-way mixed-effect models with a random effect due to occupational group under different
assumptions regarding homogeneity in the within- and between-worker variance components among groups of workers
exposed to inorganic mercury at a chloralkali plant

Model 2.12 Moded 2.22 Model 2.32

0% O, O, 0% O, O, 0% O3, O,
Airborne Hg (ug/m?)
Shift workers 0.297 0.167 0.701 0.285 0.086 0.702 0.278 0.119 0.610
Production workers 0.297 0.167 0.701 0.285 0.263 0.702 0.278 0.418 0.348
Maintenance workers 0.297 0.167 0.701 0.285 0.111 0.702 0.278 0.097 0.787
Non-cell hall workers 0.297 0.167 0.701 0.285 0.466 0.702 0.278 0.479 0.522
Blood Hg (nmol/l)
Shift workers 0.041 0.190 0.223 0.038 0.055 0.224 0.037 0.056 0.223
Production workers 0.041 0.190 0.223 0.038 0.122 0.224 0.037 0.123 0.171
Maintenance workers 0.041 0.190 0.223 0.038 0.208 0.224 0.037 0.211 0.202
Non-cell hall workers 0.041 0.190 0.223 0.038 0.349 0.224 0.037 0.342 0.261
Urinary Hg (ug/g creatinine)
Shift workers 0.198 0.161 0.160 0.231 0.059 0.160 0.232 0.062 0.141
Production workers 0.198 0.161 0.160 0.231 0 0.160 0.232 0 0.113
Maintenance workers 0.198 0.161 0.160 0.231 0.153 0.160 0.232 0.154 0.158
Non-cell hall workers 0.198 0.161 0.160 0.231 0.318 0.160 0.232 0.312 0.201

3Model 2.1: Common o3; and 63,; Model 2.2: Common o%,;, different 03;; Model 2.3: Different 03; and o%;.

Table 4. Estimates of the annua linear trends in the log-transformed air and biological monitoring data [3‘ (SE)] among
a series of mixed models with different covariance structures that specify job group as either a fixed (model 1) or random
(model 2) effect

5 (SE)
Model? Airborne Hg (ug/m°) Blood Hg (nmol/l) Urinary Hg (ug/g creatinine)
11 —0.016 (0.022) —0.009 (0.01) —0.030 (0.008)
12 —0.019 (0.022) —0.011 (0.01) —0.029 (0.008)
13 —0.029 (0.022) —0.009 (0.01) —0.030 (0.007)
21 —0.019 (0.022) —0.009 (0.01) —0.030 (0.008)
22 —0.022 (0.021) —0.011 (0.01) —0.029 (0.008)
23 —0.033 (0.022) —0.009 (0.01) —0.030 (0.007)

@Model 1.1 or 2.1: Common o3; and o%,;; Model 1.2 or 2.2: Common o%,;, different 0;; Model 1.3 or 2.3: Different

oa; and oy

pational arena. One of the distinctive characteristics
of random-effects models is that they accommodate
the correlation among measurements collected on the
same individual or in the same location (Symanski et
al., 2001b). Mixed-effects models provide an
additional advantage because they can be used to
evauate determinants of exposure (e.g., effects due
to type of work, ventilation controls, or changesin the
process), while incorporating the covariation among
certain measurements. Since the occupational group
to which a worker belongs may distinguish workers
on the basis of what work is performed and in which
location tasks are carried out, it serves as a surrogate
for the combined effects of various determinants of
exposure and can easily be evaluated as a fixed effect
to detect differences in exposure levels among groups
of workers (Rappaport et al., 1999; Symanski et al.,
20014). Of course, significant between-worker varia-
bility within an occupational group has been well
documented (Kromhout et al., 1993; Rappaport et al.,

1993) and it is clear that work practices and other
factors vary within an occupational category and con-
tribute to the variation in exposure levels among
workers who share the same job title.

In the application of random- or mixed-effects
models to data collected on workers from several
occupational groups, it is statistically advantageous to
pool information across groups because more precise
estimates of the variance components are obtained,
which in turn lead to smaller standard errors associa-
ted with the fixed effects (Sullivan et al., 1999).
Decisions to pool data should be based, in part, upon
whether it is reasonable to expect that the degree of
variation among measurements is similar across
groups. While qualitative evaluations regarding likely
differences in the magnitude of variability between
and within workers across groups represent a useful
first step, the statistical methods applied herein pro-
vide a more rigorous approach in making such an
evaluation. For the biological exposure indices, our
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Table5. Comparisons among models applied to the airborne, blood, and urinary mercury (Hg) data with different variance
structures using Akaike's Information Criterion (AIC) and the Likelihood Ratio Test Statistic (LRT)

Model® No. of parameters AlIC —2 log likelihood LRT P>y3
Airborne Hg (ug/m?)
11 2 858.9 854.9
12 5 862.6 852.6 23 0.5135
13 8 862.4 846.4 6.2 0.1023
21 2 867.5 861.5
22 5 871.2 859.2 23 0.5125
23 8 871.0 853.0 6.2 0.1023
Blood Hg (nmol/l)
11 2 1339.7 1335.7
12 5 1334.9 1324.9 10.8 0.0129
13 8 1334.0 1318.0 6.9 0.0752
21 2 1342.3 1336.3
22 5 1337.7 1325.7 10.6 0.0141
23 8 1336.7 1318.7 7.0 0.0719
Urinary Hg (ug/g creatinine)
11 2 1417.9 14139
12 5 1399.1 1391.2 22.7 <0.0001
13 8 1389.1 13731 18.1 0.0004
21 2 1427.9 1421.9
22 5 1406.8 1396.8 251 <0.0001
23 8 1396.7 1378.7 18.1 0.0004

aModel 1.1: Common og; and o%,;; Model 1.2: Common o3, different o3;; Model 1.3: Different 03; and ¢%,;. Two-
way random-effects models: Model 2.1: Common o3; and ¢3,; Model 2.2: Common o4, different 03;; Model 2.3:

Different 03; and 6%;.

Table 6. Probabilities of exceedance (%) and over-exposure (éi) estimated for 1988 under a mixed-effects model with
different assumptions regarding homogeneity in the within- and between-worker variance components (Models 1.1, 1.2,

and 1.3)2

Job group Exceedance probability (%) Overexposure probability (6;)

11 12 13 11 12 13
Airborne Hg (ug/m?)
Shift workers 0.173 0.160 0.166 0.010 0.035 0.063
Production workers 0.171 0.191 0.186 0.010 0.165 0.175
Maintenance workers 0.384 0.398 0.421 0.573 0.636 0.745
Non-cell hall workers 0.036 0.061 0.055 <0.001 0.026 0.026
Blood Hg (nmol/l)
Shift workers 0.020 0.006 0.006 0.003 <0.001 <0.001
Production workers 0.053 0.043 0.030 0.017 0.005 0.004
Maintenance workers 0.097 0.098 0.090 0.048 0.052 0.048
Non-cell hall workers 0.030 0.053 0.056 0.006 0.030 0.030
Urinary Hg (ug/g creatinine)
Shift workers 0.010 0.002 0.001 <0.001 <0.001 <0.001
Production workers 0.044 0.006 0.002 0.013 -+ b
Maintenance workers 0.209 0.238 0.239 0.173 0.207 0.208
Non-cell hall workers 0.005 0.014 0.018 <0.001 0.006 0.006

aModel 1.1: Common o3; and 03,; Model 1.2: Common o3, different 03;; Model 1.3: Different 03; and 63,;.

®0; is undefined because 63; = 0.

findings indicate that groups did not share common
levels of variability. Thus, it would not be appropriate
to pool the urinary or blood mercury data to generate
single estimates of the within- and between-worker
variances. On the other hand, we found that there was
no evidence of significant heterogeneity in the degree
of variation within or between workers for air mer-
cury levels. The inability to detect significant hetero-
geneity in the degree of variation in airborne mercury

among the four groups of chlorakali plant workers
may be due to insufficient sample size although a pre-
vious study detected differences in the between-
worker variance among workers exposed to manga-
nese and total particulates with far fewer data
(Rappaport et al., 1999). Another possible expla-
nation for our equivocal findings relatesto differences
in the sampling strategy employed for collection of
the airborne and biological monitoring data. In the
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former case, only a portion of the workforce was
selected for monitoring and repeated measurements
were commonly collected within a few days. In con-
trast, nearly al workers contributed at least one blood
and two urine samples each year. Thus, for airborne
Hg, we may have underestimated the extent of vari-
ation from day-to-day because the sampling strategy
was not conducted over the full range of exposures
experienced by workers within each group, thereby
making the within-worker variances appear more
homogenous than they actually were.

According to company personnel, there were no
major changes in the workplace during the period
over which the monitoring data had been collected
and inspection of the records for the amount of mer-
cury emitted to the air from the cell room (kg/yr) sug-
gested that levels remained relatively constant from
1988 through 1997. Nonetheless, it is possible that
exposures declined as evidenced by our result for uri-
nary Hg and that our inconsistent trend results may
be due to the greater number of measurements that
was available for the urine samples (N = 1165) com-
pared to either the blood (N = 847) or air (N =
325) samples. Given our findings of a highly insig-
nificant trend in both the air and blood Hg levels, we
applied mixed models without a trend component to
the data and observed (as expected) little differences
when comparisons in the estimated variance compo-
nents were made (results not shown).

There was little variation in the estimates of the
mean values of the logged exposures that were
obtained from the different models for each job
group, which suggests that improperly specifying the
variance structure does not affect the estimation of
the fixed effects portion of the model. On the other
hand, estimates of the groups arithmetic mean
exposures, which are functions of the estimated
values of the variance components, may vary con-
siderably depending on which model is applied
(Rappaport et al., 1999). However, such differences
appeared to be small in the current investigation (see
Table 2).

Valuable information is contained in the variance
components, which can be used to evaluate the utility
of different grouping schemes, assess the bias in mea-
sures of effect in health effects studies, and estimate
probabilities that exposures exceed occupational
exposure limits. However, important errors can be
made when assumptions regarding homogeneity in
the degree of variation within and between workers
across groups are not met. To illustrate effects related
to the particular specification of the variance—covari-
ance structure in a mixed-model, we calculated the
probabilities that workers were exposed at levels
exceeding occupational exposure limits using the
results obtained from models that assumed common
or distinct within- and between-worker variances.
While exposures are generally below acceptable lev-
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elsfor al groups except for maintenance workers, we
detected moderate to large differences in the
exceedance and overexposure probabilities across
models in some cases. Such differences are of little
consequence when the probabilities are low («5%),
but could become more important when values begin
to fall within the range of unacceptable levels. For
airborne mercury, it is interesting to note that the esti-
mated probabilities of overexposure [6;(t)] compared
to the probabilities of exceedance [¥%(t)] were lower
for shift workers, production workers, and non-cell
hall workers, but considerably higher for maintenance
workers. These results confirm previous findings that
the probability that a randomly-collected measure-
ment exceeds an exposure limit compared to the prob-
ability that the mean exposure for a randomly-selec-
ted worker exceeds that same limit may not be equal,
and that the exceedance probability is not necessarily
higher than the probability of overexposure (Tornero-
Velez et al., 1997).

Focusing again on maintenance workers, important
questions are raised regarding the equivocal con-
clusions that would be drawn based on the three
exposure indices. For air mercury, the probabilities of
exceedance (which ranged from 38 to 42% depending
on the model that was applied) and overexposure
(which ranged from 57 to 75%) were considerably
higher than the corresponding values for blood or
urine mercury. Given that air measurements were
commonly collected in 2- or 3-day campaigns, it is
possible that worst-case exposures were targeted and
that the air-monitoring data are not representative of
the full-range of exposures experienced by workers.
The possible lack of representative data point, once
again, to the limited utility of biased data in making
meaningful statements about exposure (Symanski et
al., 1998). In comparison to the air-monitoring pro-
gram, however, the blood and urinary samples were
collected routinely on nearly the entire workforce
over the 10-yr period. Yet, the exceedance and over-
exposure probabilities in maintenance workers were
two to four times greater for urine mercury than blood
mercury. These differences could be partly explained
by the fact that the average ratio between urine mer-
cury and blood mercury in redlity is higher (see Table
2) than the ratio between limit values given by the
ACGIH (1999) (35 pg/g creatinine and 75 nmol/l,
respectively). In establishing the biological exposure
indices (BEI) for inorganic mercury in urine and
blood, the ACGIH BEI committee stated that the rec-
ommended level for urinary mercury did not include
a safety factor and that no significant health effects
had been observed at a level of 75 nmol/I for blood
mercury (BEI Committee, 1990). Moreover, they
noted that urine to blood mercury ratios varied con-
siderably across studies. Nevertheless, our results
open the question as to which measure might be more
suitable to evaluate whether exposure levels fall
within an acceptable range. Owing to kinetic differ-
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ences, peak airborne exposures are dampened in uri-
nary mercury but more easily detected using blood
mercury. A comparatively higher ‘limit of exceed-
ance’ for blood mercury versus urine mercury could
therefore be interpreted in light of the emphasis
placed on average rather than peak exposures, in line
with differences between shift-long and short-term
exposure limits for air contaminants.

As noted earlier, acharacteristic feature of random-
and mixed-effects modelsis that they account for cor-
relation among the data. However, there are many
covariance patterns available and choosing the most
appropriate one is not always straightforward. In the
present study, we assumed that a compound sym-
metry (CS) structure, in which the correlation
between measurements collected on the same worker
is the same irrespective of the interval separating
them, adequately fit the data. There is, however, a
wide range of covariance structures that could be
modeled to account for a more complex pattern of
repeated measurements. For example, in the most
general ‘unstructured’ pattern (although relatively
inefficient because of the number of parameters
involved), the variances of observations differ for
each time period and the covariance varies for pairs
of measurements separated by different intervals. A
simpler approach might apply a first-order autore-
gressive [AR (1)] structure that models the covariance
as an exponentialy decreasing function of the time
interval between measurements. Such a structure was
applied in arecent study (Symanski et al., 2001b) that
applied an hierarchical linear mixed model to evaluate
long-term trends in exposures to nickel aerosols and
was found to provide a better fit (compared to CS)
in some of the data that were analyzed. While more
complex covariance structures can only be evaluated
on relatively large datasets with fair numbers of
repeated observations, investigators are urged to con-
sider the broad array of variance—covariance specifi-
cations that are available (provided the data support
such applications) to ensure that the most appropriate
model is applied. Given a suitable variance—covari-
ance structure, studies should also be conducted to
determine whether it is reasonabl e to assume common
variances and covariances among measurements col-
lected on different groups of workers.
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