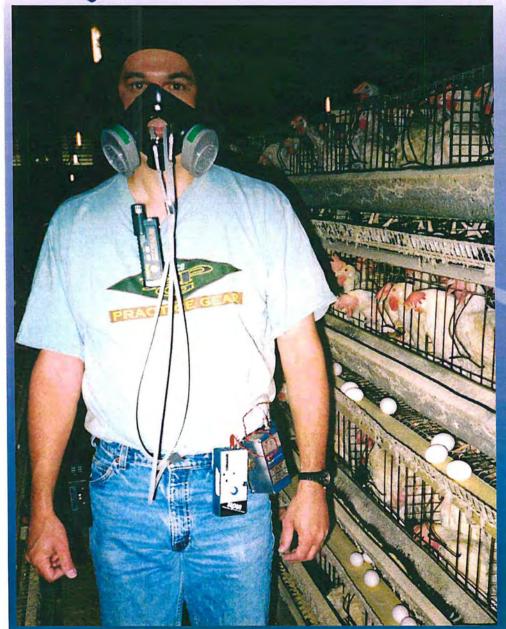
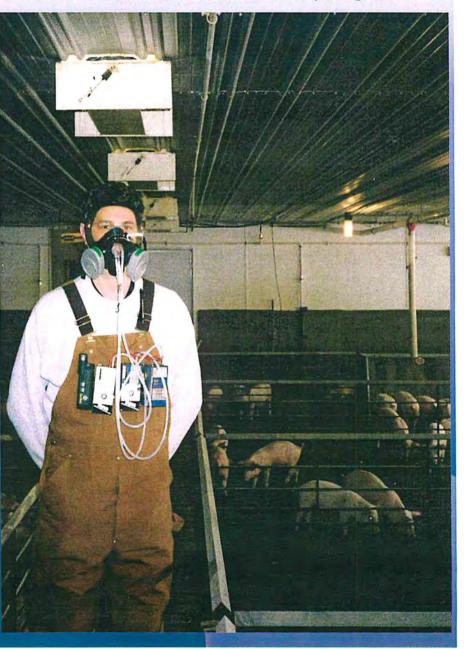


# Evaluation of a Fluorometric Method for Analysis of Ammonia in Ambient Air

W. Groves, D. Agarwal, M. Chandra, Penn State University, University Park, PA; S. Reynolds, Colorado State University, Fort Collins, CO





# Introduction - NH<sub>3</sub> Analysis

- Specialized applications require analytical methods with greater sensitivity
  - Studies of environmental / atmospheric concentrations of ammonia
  - Studies examining short-term fluctuations of ammonia concentrations
  - Measurement of respirator workplace protection factors (WPFs)



#### Industrial Health and Safety Program







# **Application - WPF Studies**

- In-mask concentrations expected to be at least 10-50 times lower than environment concentrations
  - May actually be lower by several orders of magnitude
  - -Sample times limited (1-2 hrs)
- Existing methods not adequate

# Comparison of NH<sub>3</sub> Methods

| Method                  | Туре | e Media LOQ(ug)            |    | Sample Times 1 |          |
|-------------------------|------|----------------------------|----|----------------|----------|
|                         |      |                            |    | 0.1xTLV        | 0.01xTLV |
| NIOSH 6015 <sup>2</sup> | VIS  | acid treated<br>silica gel | 2  | 5.7 min        | 57 min   |
| NIOSH 6016              | IC   | acid treated<br>silica gel | 7  | 20 min         | 200 min  |
| NIOSH S347              | ISE  | acid treated silica gel    | 20 | 57 min         | 570 min  |
| OSHA ID188              | IC   | acid treated carbon beads  | 30 | 86 min         | 860 min  |

<sup>&</sup>lt;sup>1</sup> assuming 200 mL/min sampling rate

<sup>&</sup>lt;sup>2</sup> Instrument specific method



#### Industrial Health and Safety Program

#### Fluorometric Method

- "A Simple and Precise Method for Measuring Ammonium in Marine and Freshwater Ecosystems", Holmes et al, Can J. Fish. Aquat. Sci., 56:1801-1808 (1999)
- Excellent sensitivity, relatively simple sample processing / analysis
- Aqueous samples method not designed for air samples, acidified collection media



# Specific Aims for Project

- Develop sampling and analytical protocol for fluorometric analysis of NH<sub>3</sub>
  - Acid treated solid granular sorbent tube
  - Digital filter fluorometer
- Evaluate performance of the method
  - LOQ, stability/recovery, working range
  - Compare results for new method to reference laboratory / methods



# **Experimental Approach**

- Phase I: Reproduction of Holmes method in laboratory
- Phase II: Introduction of acid treated sorbent to analytical protocol
- Phase III: Identification of key analytical parameters and optimization
  - Phase IV: Method Evaluation



# Phase I Experimental Procedure

- Fluorometric method reproduced in laboratory using liquid standards
- Standard solutions prepared by serial dilution from certified 1000 ug/mL ammonium stock solution
  - Standards representing sample loadings of 0.1–2 ug NH<sub>3</sub> examined



#### Fluorometric Method

- Working Reagent
  - o-phthaldialdehyde (OPA)
  - Sodium sulfite
  - Sodium borate
- Ammonium reacts with OPA and sulfite to form fluorescent isoindole
  - Two hour room temperature incubation



#### **Generalized OPA Reaction**

OPA

o-phthaldialdehyde (OPA)

Molecular Formula: C<sub>8</sub>H<sub>6</sub>O<sub>2</sub>

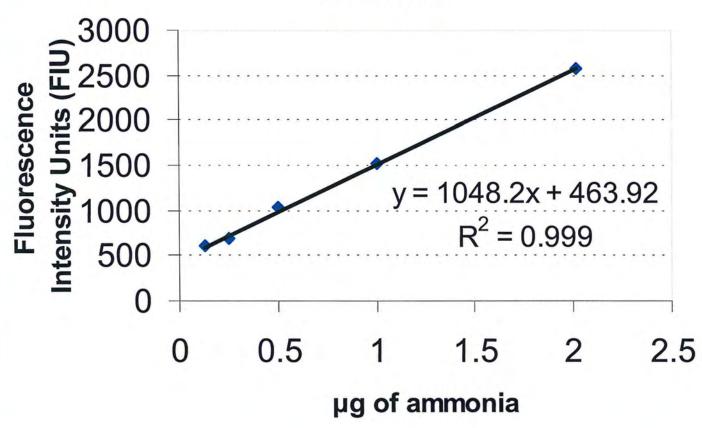
**Molecular Weight:** 134.13

 $\lambda_{\text{Max Excitation}} = 365 \text{ nm}$ 

 $\lambda_{\text{Max Emission}} = 425 \text{ nm}$ 



#### Instrumentation - Fluorometer


- Turner®-Quantech Digital Filter
   Fluorometer Model FM109515
- Quartz halogen lamp (340-650 nm)
- 365 nm narrow band excitation filter
- 420 nm narrow band emission
- 12.5x12.5x45mm sq. cuvettes





# Phase I Results - Liquid Standards







# Phase II Experimental Procedure

- Added acid treated sample media to protocol
  - -Silica gel (NIOSH)
  - Carbon beads (OSHA)
- Analysis of spiked sorbent tubes
  - Sample desorption using DI water



#### Phase II Results

- Good results for some sorbent tubes
- Magnitude of blank response variable for different tube types / quantities
  - Carbon bead sorbent tubes eliminated from further consideration
    - Possible effect of different manufacturers and sorbent lots for silica gel tubes



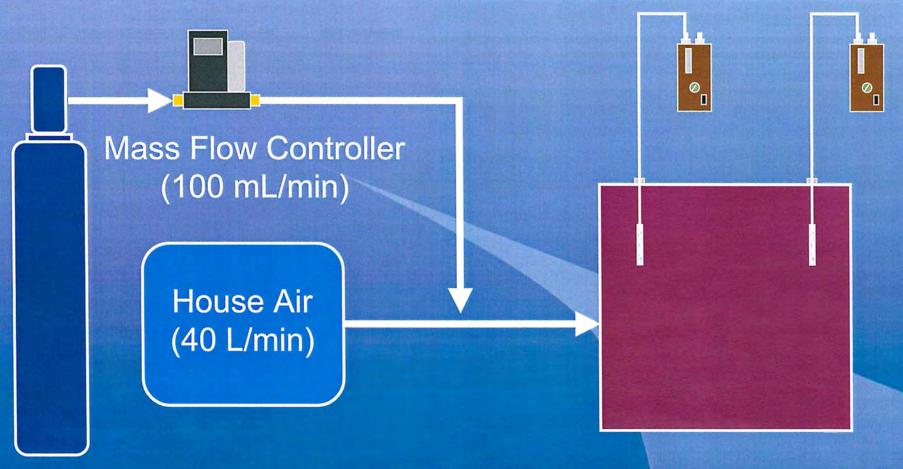
# Phase III Results - Optimal Protocol

- SKC Sorbent Tube (Cat. No. 226-10-6)
  - 100 mg (backup section)
- Protocol
  - Sample desorbed in 80 mL D.I. (1 Hr)
  - 20 mL working reagent added
  - 2 hr room temperature incubation
  - Sample transferred to cuvette and read with fluorometer

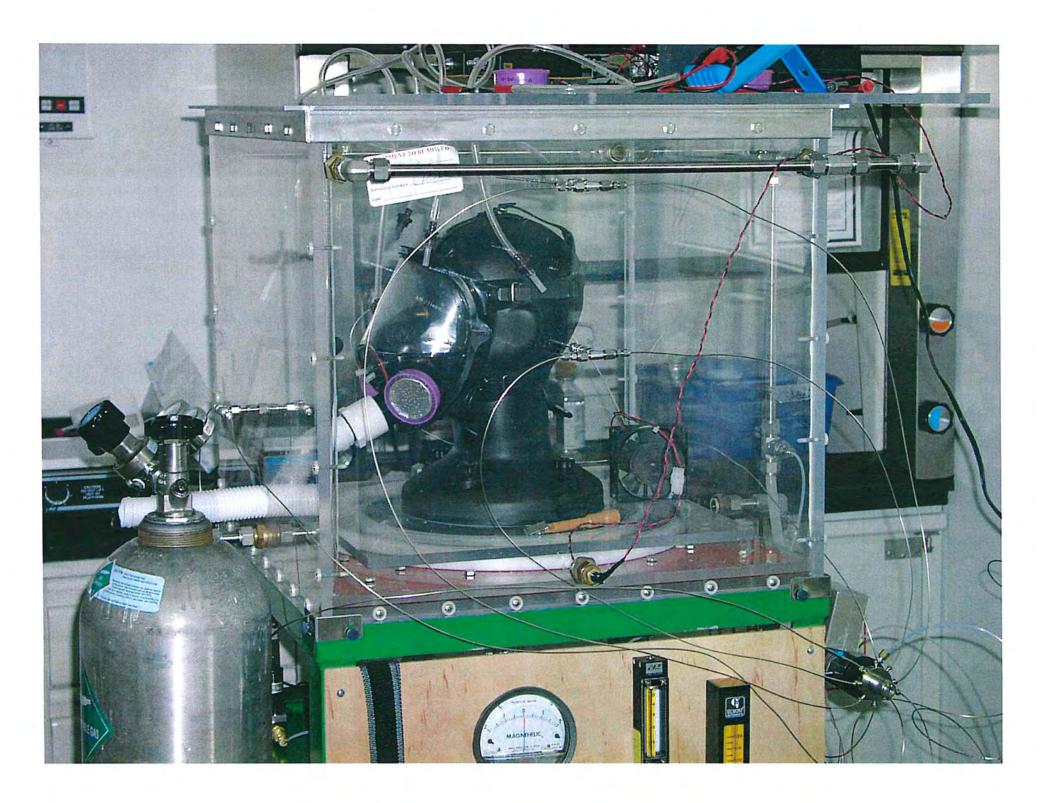


#### Phase IV

- Method Evaluation
  - Chamber studies examining method performance for different sampling flow rates and NH<sub>3</sub> concentrations
  - Comparison of new method to reference laboratory
    - Sorbent tube fortification using span gas
      - **Evaluation of LOQ**




# Phase IV Experimental Procedure


#### **Chamber Studies**

- Span gas used to prepare NH<sub>3</sub> test
   atmospheres ranging from 0.1-4 PPM
- Samples collected at flow rates ranging from 50-200 mL/min
- Mass of ammonia determined using fluorometric method and compared with expected

## Phase IV - Test Atmosphere Generation



NH<sub>3</sub> Calibration Gas (404 PPM) NH<sub>3</sub> Test Atmosphere (1.01 PPM)



# Phase IV Chamber Study Results

| Ammonia<br>Concentration <sup>1</sup><br>(ppm) | Sample<br>Time<br>(min) | Sample<br>Flow Rate<br>(mL / min) | Predicted<br>Sample Mass <sup>2</sup><br>(µg) | Experimental<br>Sample Mass<br>(µg) | %<br>Difference <sup>3</sup> |
|------------------------------------------------|-------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------|------------------------------|
| 4.00                                           | 8                       | 102                               | 2.28                                          | 2.72                                | 19.2                         |
|                                                | 8                       | 101                               | 2.27                                          | 2.61                                | 14.9                         |
|                                                | 8                       | 101                               | 2.28                                          | 2.61                                | 14.5                         |
|                                                | 8                       | 101                               | 2.26                                          | 2.55                                | 12.8                         |
|                                                |                         |                                   |                                               |                                     |                              |
| 1.00                                           | 15                      | 201                               | 2.10                                          | 2.05                                | -2.5                         |
|                                                | 15                      | 101                               | 1.06                                          | 1.00                                | -5.6                         |
|                                                | 15                      | 50.6                              | 0.530                                         | 0.546                               | 3.0                          |
|                                                |                         |                                   |                                               |                                     |                              |
| 0.500                                          | 15                      | 201                               | 1.06                                          | 1.03                                | -2.7                         |
|                                                | 15                      | 99.9                              | 0.524                                         | 0.511                               | -2.5                         |
|                                                | 15                      | 50.7                              | 0.266                                         | 0.215                               | -19.2                        |
|                                                |                         |                                   |                                               |                                     |                              |
| 0.250                                          | 15                      | 201                               | 0.530                                         | 0.493                               | -6.9                         |
|                                                | 15                      | 101                               | 0.265                                         | 0.261                               | -1.5                         |
|                                                | 15                      | 50.8                              | 0.134                                         | 0.131                               | -2.2                         |
|                                                |                         |                                   |                                               |                                     |                              |
| 0.126                                          | 15                      | 201                               | 0.265                                         | 0.264                               | -0.4                         |
|                                                | 15                      | 103                               | 0.136                                         | 0.165                               | 21.3                         |
|                                                | 15                      | 50.8                              | 0.067                                         | 0.113                               | 68.6 <sup>*</sup>            |



# Phase IV Experimental Procedure

#### Reference Laboratory Comparison

- -1.01 PPM test atmosphere generated
- Side-by-side samples collected
  - Fluorometric method samples collected for 120 min at 50 mL/min (n=26)
  - Reference lab samples collected for 240 min at 200 mL/min (n=13) (NIOSH S347)
  - Results compared



| Result                                   | Reference<br>Laboratory | Fluorometric<br>Method |
|------------------------------------------|-------------------------|------------------------|
| Ave. Conc. (PPM)                         | 0.740                   | 1.06                   |
| SD                                       | 0.069                   | 0.027                  |
| CV                                       | 9.4%                    | 2.5%                   |
| n                                        | 12                      | 26                     |
| Error Relative to<br>Reference Lab       |                         | 43%                    |
| Error Relative to Expected Concentration | -24%                    | 5%                     |



- Fluorometric method biased relative to reference lab (43%)
- Within 5% of expected concentration (1.01 PPM)
- Reference lab results for seven QC samples average 75% of expected





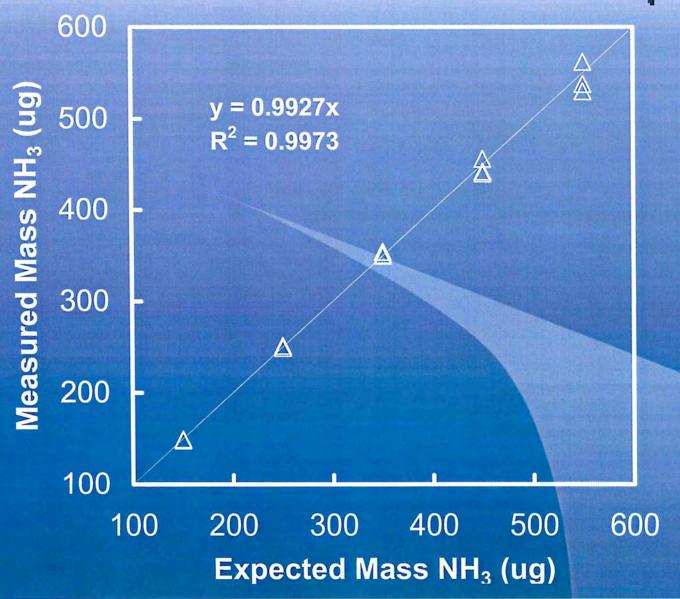
Industrial Health and Safety Program

| Result                                      | Reference Laboratory (adjusted) | Fluorometric Method |
|---------------------------------------------|---------------------------------|---------------------|
| Ave. Conc. (PPM)                            | 0.919                           | 1.06                |
| SD                                          | 0.086                           | 0.027               |
| CV                                          | 9.4%                            | 2.5%                |
| n                                           | 12                              | 26                  |
| Error Relative to<br>Reference Lab          |                                 | 15%                 |
| Error Relative to<br>Expected Concentration | -9%                             | 5%                  |



- Still significant bias even after adjusting reference lab reported concentrations using QC sample results
- Worked with reference lab to investigate
  - Samples were close to reporting limit for lab (20 ug)
  - Tried larger sample loadings (500 ug)
    - Exchanged spiked samples
  - Problems never resolved




# Phase IV Experimental Procedure Analysis of fortified sorbent tubes

- Certified calibration gas used to fortify sample tubes with known amount of NH<sub>3</sub>
- Fluorometric method results compared to expected mass of NH<sub>3</sub> (analyzed blind)
- Loadings ranged from 150-550ug NH<sub>3</sub>
  - Three tubes at each of five loadings

#### Phase IV - Sorbent Tube Fortification



# Phase IV Results - Fortified Samples





# Phase IV Results - Fortified Samples

- No significant difference between experimental results and calculated levels of fortification
- All errors less than 5%

Average error = -0.57%

Range of error = -3.6 - 2.2%

Ave. Abs Error = 1.3%



#### Phase IV Results (cont.)

- LOQ estimated to be 0.08 ug
  - Based on 10 x SD of the blank response
  - Represents a 20-300 fold improvement in sensitivity compared to existing methods
- Stability studies showed an average recovery of 98% after seven day storage at room temp (0.25, 0.50, 1.0 ug)



#### Conclusions

- A fluorometric method for analysis of NH<sub>3</sub> in ambient air has been developed and evaluated in the laboratory
  - Results demonstrate excellent sensitivity, accuracy, and precision
  - Relatively simple sample processing and analysis
  - Additional work needed to field validate method and to compare results with other reference methods



# Acknowledgement

- Support for this project is gratefully acknowledged
  - National Institute for Occupational Safety and Health SERCA grant (5K01 OH00177)
    - Penn State College of Earth and Mineral Sciences Wilson Research Initiation Grant