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Abstract

Motivated by an ecological sampling problem, we compare a Poisson distribution having a fixed mean
with a Poisson distribution having a random mean, which has an arbitrary continuous (or discrete) probability
distribution. These comparisons are made with respect to the likelihood ratio ordering, simple stochastic
ordering, uniform variability ordering and expectation ordering. As a particular case, the mixed Poisson and
the Poisson distribution with a fixed mean are compared when both the distributions have the same mean.
Similar comparisons are made between the mixed binomial and the binomial distribution having a fixed
probability of success.
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1. Introduction

This paper is motivated by an ecological sampling problem. Specifically, the abundance of intertidal
rock-surface species is determined by counting the number of each species present in sampled
quadrants of a specified size (e.g., 0.5 m?). Since it is expensive and time-consuming to identify
and count the individuals in each of a large number of species that can be present in a study,
sub-sampling is often done. Assuming the abundance of a species is Poisson distributed, the issue
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arises as to whether it is better to mix the sample and divide out i (say) of the volume to be counted
(a fixed Poisson) or to divide the quadrant into fourths and randomly sample one sub-quadrant (a
mixed Poisson). We want to study the effects of the two sub-sampling approaches by comparing a
species count N (fixed Poisson) to M (mixed Poisson) in terms of various stochastic orders. Since
too many 0 counts can cause estimation problems (e.g., in a generalized linear model), as a special
case, we want to study the effects of the two sub-sampling approaches by comparing the probability
of getting at least one count of a species under the two approaches.

Furthermore, in categorical data analysis, where the Poisson or binomial sampling is assumed, the
data sometimes displays more (or less) variability than is predicted for these models. It might happen
because the true sampling distribution is a mixture of different Poisson or binomial distributions
(Agresti, 1990, p. 42). Thus, in real-life situations, it is of interest to compare Poisson and binomial
distributions with their mixtures with respect to the variability and other stochastic orderings.

In situations such as described above, it is known that the probability density function (pdf) of
some variable X of interest is a mixture of pdfs of random variables Yy, 0 € , and it is of interest of
compare random variables X and Y, for a fixed p € Q. In particular, it may be of interest to compare
random variables X and Yj;, where 0 is the mean of the mixing distribution. Shaked (1980) made
such comparisons when the pdfs of random variables Yy, 6 € Q, belong to the general exponential
family. He showed that the two resulting pdfs must cross each other exactly twice in a prescribed
manner and, as a consequence of this finding, he established the variability ordering between the
two random variables. In this paper, we consider mixtures of two specific members (namely, the
Poisson and binomial) of the exponential family and compare them with any member in that family
with respect to various stochastic orderings.

In Section 2, we define various stochastic orders used in this paper for making comparisons of
Poisson and binomial random variables to their mixtures. With respect to these stochastic orders,
in Section 3, we derive conditions which ensure that the mixed Poisson random variable, with an
arbitrary mixing distribution, is larger than the Poisson random variable having a fixed mean. Similar
comparisons between the mixed binomial random variable, with an arbitrary mixing distribution, and
the binomial random variable having a fixed mean are made in Section 4.

2. Orderings of distributions

Stochastic orders are useful in comparing random variables measuring certain characteristics in
diverse areas. The simplest comparison is through comparing the means of the two random variables
(expectation ordering). However, this comparison is not very informative, being based only on the
two numbers. A more informative comparison is through the various stochastic orders introduced
in the probability literature. Below, we define some of the stochastic orders which are relevant in
the context of this paper. For more details, we refer to Ross (1983), Singh (1989) and Shaked and
Shanthikumar (1994).

Likelihood ratio ordering: Let X and Y be two random variables having probability density
functions (pdfs) fx(.) and fy(.), respectively. The random variable X is said to be larger than the
random variable Y in the likelihood ratio ordering (written as X > Y) if, for all real numbers x
and y (y <x), fx(x)fy(y) = fx(»)fy(x). This is the strongest ordering between the two random
variables.
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Simple stochastic order: Let Fy(x) and Fy(x) be the distribution functions of random variables X
and Y, respectively. The random variable X is said to be larger than the random variable Y in the
simple stochastic order (written as X > Y) if Fy(x) < Fy(x), for all real numbers x. This is the
most commonly used stochastic order in the area of probability and statistics and is usually called
the stochastic order.

If X =47, then E(X) = E(Y), where E(.) denotes the expectation. Also, X > Y implies that
X =4 7Y (Ross, 1983) but, in general, the converse may not be true. If X is larger than ¥ in any
of the above two orderings, it implies that X is likely to take higher values compared to Y.

Expectation ordering: The random variable X is said to be larger than the random variable Y in
the expectation ordering (written as X >g Y) if E(X) = E(Y). This is the simple ordering between
means of the two distributions.

Convex ordering: The random variable X is said to be larger than the random variable Y in the
convex ordering (written as X >, Y) if, for every real valued convex function ¢(.) defined on the
real line, E(p(X)) = E(H(Y)).

If the random variable X is larger than the random variable Y in the convex ordering, then
E(X)=E(Y) and X is likely to be more variable than Y. This ordering implies that Var(X) is
larger than Var(Y) (Shaked and Shanthikumar, 1994).

Uniformly more variable ordering: Let X and Y be two random variables with pdfs fx(.) and
fr(.), respectively, and let supp(X ) and supp(Y) denote the respective supports. X is said to be uni-
formly more variable than Y (denoted as X >, ¥) if supp(Y) C supp(X) and the ratio fy(x)/fx(x)
is unimodal over supp(X) but X and Y are not ordered by the usual stochastic order.

For random variables X and Y having the same mean, it is known that X >, Y implies that
X = Y (Shaked and Shanthikumar, 1994).

3. Stochastic orderings between Poisson and mixed Poisson distributions

Let N be a random variable having Poisson distribution with a fixed mean 4 > 0, i.c.,
et )k

k!’

Pr(N =k)= k=0,1,2,.... (1)

Let M be a Poisson random variable with mean @, where © is a non-degenerate random variable
having the probability density function g(6), 0 > 0. The assumption that @ is non-degenerate is not
restrictive as, in the degenerate case, N and M both will have the Poisson distribution and various
orderings between them follow the ordering between their means. Also, although we have assumed
O to be a continuous random variable, all the results of this section hold even when @ is assumed
to be an arbitrary discrete random variable. We have

o] 6_09k
Pr(M = k)= o 9(0)d0. k=0.1..... (2)
0 .

In this section, we make comparisons between the random variables N and M with respect to the
likelihood ratio, stochastic, uniform variability and expectation orderings. The following lemma will
be useful in proving the main results.



282 N. Misra et al. | Statistics & Probability Letters 65 (2003) 279-290

Lemma 3.1. Define, a;(k) = E(e ®0*")/E(e ®0%), k=0,1,..., g = a;(0), 4, = —In[E(e~?)],
Jo =E(O) and hi(x) =x zj;o [(—1)/(Inx)//j!], 0 <x <1, k=0,1,... . Then,

(a) ay(k) is an increasing function of k € {0,1,...},
(b) for each fixed k € {0,1,...}, h(x) is a concave function of x € (0,1),
(C) 0< }v() < )\41 < )Q.

Proof. (a) We may write

J T e 0% g(0)do

(k)= > e=00%g(0)do

=E(W,), k=0,1,...,

where W) is a random variable having the pdf
Yi(x) = Cre ¥ g(x), x>0

here Cj is the normalizing constant.

Fix k€{0,1,...}. Clearly, Y41(x)/Yi(x) is an increasing function of x > 0, which implies that
Wii1 =1 Wi, which further implies that W1 >4 W, and therefore ai(k+ 1)=E(W; 1) = E(W;) =
ai(k). Since the chosen k € {0,1,...} was arbitrary, the assertion follows.

(b) For k =0, note that A¢(x) =x is both concave and convex. For k € {1,2,...}, we have

&2 _ (—Inx)!
a2 O = =T

<0, V0<x<l1
which proves the assertion (b).

(c) 2o < A, follows using the concavity of the function di(x) = —xInx, 0 <x < 1, and Jensen’s
inequality. Similarly, 4; < 4, follows using the concavity of the function d,(x) =1Inx, 0 <x < 1,
and Jensen’s inequality. [

The following theorem provides conditions on parameters A, Ay, 4; and A, that ensure that M is
larger than N in various orderings.

Theorem 3.1. Let N and M be random variables having distributions given by (1) and (2), respec-
tively. Then, under the notations of Lemma 3.1,

(@) M =N if and only if 0 < 1 < Jg,
(b) M =4 N if and only if 0 < 1 < 44,
(¢) M Zg(<g)N if and only if 0 < A < (=)4,.

Proof. (a) Consider the likelihood ratio

_Pr(M =k) E(e96%)

k) = Pr(N =k) e M

, k=0,1,2,.... (3)
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Then

Ik +1)=I(k)Y k=0,1,...,
E(ef@@lﬁrl)
E(e=9@k)’

< A< Ay, (by virtue of Lemma 3.1 (a)),

<:>)u< Vk:(),l,

which provides a necessary and sufficient condition for the ratio in (3) to be non-decreasing. Hence
the assertion (a) follows.
(b) First, suppose that 0 < 4 < Ay. For, k=0,1,2,..., consider

A;(k)=Pr(N < k) — Pr(M < k)

Since the Poisson distribution is stochastically increasing in the mean /, to show that M >y N, it
is enough to establish that

A,() =0, Yk=012,....

For fixed k£ €{0,1,2,...}, then
[In {E(e=®)})/ Zk E(e°0/)

k
A;,(k)=E(e )Y " (-1)/ F
j=0 Jj=0
By applying Jensen’s inequality to the function /4;(x), defined in Lemma 3.1, it follows from

above that
4;,(k) = 0.
Conversely, suppose that M >4 N. Then
Pr(N <0) = Pr(M <0)
S A< AL

Hence the assertion (b) is proved.
(c) This is obvious. [J

Remarks. 1. We note that Pr(M = 1) = Pr(N =2 1) © Pr(M=0) < Pr(N=0) < 1< 1 &M =4«N,
as proved in the above theorem. Thus, it is interesting to observe that Pr(M > 1) = Pr(N > 1)
ensures that M >y N.

2. From Lemma 3.1 (c¢) we have 4y < /1 < 4, and it follows from the above theorem that M is
larger than N in the likelihood ratio ordering when A falls in the interval (0, Ag]. For 4 € (4o, 4], the
random variable M is larger than N in stochastic ordering but, in this range of A, M is not larger
then N in the likelihood ratio ordering. For A € (41, 4;], the random variable M is larger than the
random variable N in the expectation ordering but, in this range of A, M is not larger than N in the
simple stochastic ordering.
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3. Theorem 3.1 (b) provides a condition under which sampling from the mixture of Poisson
distributions is more favorable than the sampling from Poisson distribution.

4. When the mixing distribution belongs to the gamma family, it can be shown that the distribution
of the mixture random variable M is negative binomial, which is a common species abundance
distribution. Interestingly, in this case, it can be shown that 1 < 4y < CV(N) = CV(M), where
CV(.) denotes the coefficient of variation. Thus, in this case, M >, N < CV(N) = CV(M).

In the following theorem, we establish that if the mixing random variable @ is such that, for
every x > 0, Pr(®@ > x) > 0, then no value of 4 > 0 can ensure N >4 M. Under this condition on
the mixing random variable ©, in the following theorem, we also establish that M >,, N if and
only if 1> ;.

Theorem 3.2. Suppose that, for every x > 0, Pr(@ > x) > 0, then

(a) no value of 2 >0 can ensure N =4 M,
(b) M =N if and only if 1 > 4.

Proof. (a) Using the relationship between the Poisson and gamma probabilities, we may write

Pr(N > k)= ey dy, k=1,2,... 4)
o, (k—1)
and
0o efyyk l
Pr(M>k):/0 GO Gy k=12 (5)

where G(y) = f)oo g(t)dt, y >0, denotes the survival function of the mixing random variable ©.
From (4), it follows that
Ik
E)
Choose p > A. Then, from (5), it follows that
k— 1

Pr(N > k) < k=12,....

ey
(k- 1)'

- Mk
> e 'G(w) . k=12,

Pr(M > k) > / G

Therefore,
Pr(N = k)
R(k) = Pr(M = k)
(A/w)*
= Gu)e*

—0, ask — oo.



N. Misra et al. | Statistics & Probability Letters 65 (2003) 279-290 285

Thus it follows that, for any A > 0, there exists a sufficiently large & (depending on A) such that
Pr(N = k) < Pr(M > k), which proves the assertion (a).

(b) Suppose that 4 > 4;. Then, from Theorem 3.1 (b) and (a) above, it is clear that random
variables M and N are not ordered by the simple stochastic order. Also, it follows from the arguments
used in the proof of Theorem 3.1 (a) that Pr(N =k)/Pr(M =k) is unimodal, implying that M >, N.
The converse part follows by using the similar arguments. [

In the following theorem, we compare the random variables N and M, when E(®) = A. In this
case, N and M have the same mean ie., A=EWNN)=E(@)=E(M) = ;.

Theorem 3.3. Suppose that 1, = E(@) = A. Then,

(a) M =, N,

(b) M = N, which further implies that Var(N) < Var(M),

(¢) Pr(N =2 1)>Pr(M = 1),

(d) under the assumption of Theorem 3.2, neither M is larger than N in the stochastic ordering
nor N is larger than M in the stochastic ordering.

Proof. (a) Follows from Theorem 3.2 (b), since /; > 4;.

(b) Since M =, N and E(M)=E(N), it implies that M = N. Thus E((¢(N)) < E(¢p(M)) for
all convex functions ¢(.). Thus E(M?) > E(N?), which implies that Var(M) > Var(N), since M
and N have the same means.

(c) It is easily seen that Pr(N =0) < Pr(M =0), if 4 > A;. The proof follows by observing that
Ay = 1.

(d) From (c), it follows that M cannot be larger than N in the simple stochastic order.

The fact that N cannot be larger than M in the simple stochastic order is established in Theorem
32 (a). DO

Remarks. 1. Results (a) and (b) of Theorem 3.3 are proved under a more general setting by
Shaked (1980).

2. For the sampling of rare species in ecology, Theorem 3.3 (c) suggests that if the Poisson
distribution has the same mean as that of the mixing distribution, then the sampling from the
Poisson distribution is more favorable than the sampling from mixture of Poisson distributions. A
similar criterion based on the probability of finding at least one fault is used in software engi-
neering to compare partition and random testing procedures (Boland et al., 2002; Weyuker and
Jeng, 1991).

4. Stochastic orderings between binomial and mixed binomial distributions

To avoid introduction of further notations, some of the notations of Section 3 will be repeated
here in the context relevant to this section. For a fixed p€(0,1) and a fixed positive integer n, let
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N be a random variable having binomial distribution given by

n! k n—k
Pr(N:k):mp(l—p) , k=0,1,2,...,n. (6)
Let M be a binomial random variable with » number of trials and the probability of
success @, where @ is a non-degenerate random variable having the probability density func-
tion g(0), 0 < 0 < 1. As in Section 3, although we have assumed @ to be a continuous random
variable, all the results of this section hold even when @ is assumed to be an arbitrary discrete
random variable. Moreover, the assumption that @ is non-degenerate is not restrictive. We have

Pr(M = k) = 1”7!0"(1—9)“ 0)d0, k=0,1 (7)
o Kl(n— k) gL ews Pl

In this section, we make comparisons between random variables N and M, given by (6) and
(7), respectively, with respect to the likelihood ratio, stochastic, uniform variability and expectation
orderings. The following lemma will be useful in proving the main results:

Lemma 4.1. Define, b(k)=E(O**'(1 - @) *1)/E(O*(1—-0)Y 1), k=0,1,....,n—1, py=b,(0),
pr=1—[E(1 = 0))]"", py=E(O), ps=[EO")]"", ps=bi(n—1), si(x) = Zf-:o nl/(j{(n —
JDx=m —xVmy 0 <x <1, k=0,1,...,n—1 and tk(x):z’;zo n! /(1 (n — j)DxI"(1 = xVmy =i,
O0<x<1,k=0,1,....,n—1. Then,

(a) by(k) is an increasing function of k € {0,1,...,n — 1},

(b) for each fixed k € {0,1,...,n — 1}, sy(x) is a concave function of x € (0,1),
(c) for each fixed k €{0,1,...,n— 1}, tx(x) is a convex function of x € (0,1),
O<p<pr<pp<p3<ps<l.

Proof. (a) We may write
bi(k)=E(Vy), k=0,1,....,n—1,
where V. is a random variable having the pdf
Ui () = Dix* (1 —x)" " lg(x), 0<x<1;

here D is the normalizing constant.

Fix k€{0,1,...,n — 1}. Clearly, y;,  ,(x)/)j(x) is an increasing function of x € (0,1), which
implies that V.1 > V}, which further implies that V. > V; and therefore by(k+1)=E(Viy) =
E(Vi) = by(k). Since the chosen k €{0,1,...,n — 1} was arbitrary, the assertion follows.

(b) For k£ =0, note that so(x) =x is both concave and convex. For k € {1,2,...,n — 1}, we have

d  (n—1) 1 —xlm\*
dxsk(x)_k!(n—k—l)!< yin ) O=a <l

which is clearly a decreasing function of x € (0,1). This proves the assertion (b).
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(¢) For k€{0,1,...,n— 1}, we have

B ' ~ /n n—k—1
itk(x): (n =1 <1 ol ) , 0<x<1
dx

Ck(n—k—1)\_ xn

which is clearly an increasing function of x € (0,1). This proves the assertion (c).

(d) p3 < p4 follows using the convexity of the function e;(x) =x""=D 0 < x < 1, and Jensen’s
inequality; p, < p3 follows using the convexity of the function e,(x)=x", 0 <x < 1, and Jensen’s
inequality; and p; < p, follows using the convexity of the function e;(x)=(1—x)", 0 <x < 1, and
Jensen’s inequality. The inequality py < p; follows from the inequality p; < p4, with @ replaced
by 1 —©. O

The following theorem provides conditions on parameters p, po, pi, p2, p3; and ps that ensure
M is larger than N in various orderings.

Theorem 4.1. Let N and M be random variables having distributions given by (6) and (7), respec-
tively. Then, under the notations of Lemma 4.1,

(a) M =N if and only if 0 < p < py,

(b) N =, M if and only if ps < p <1,

(¢) M =4 N if and only if 0 < p < py,

(d) N >4 M if and only if ps < p <1,

() M =N if and only if p; < p < ps,

(f) M 2 (<g) N if and only if 0 < p < (=)p.

Proof. (a) and (b). Consider the likelihood ratio

Pr(M =k) E(O 1 —0O)*)

O=%w=t) = pFa—prt

k=0,1,2,....n. (8)

Then,
Ik+1)=()Ik), Yk=0,1,...,n—1,
Sp< (=) bi(k), Vk=0,1,....n—1
S p<(=)po (pg), (by virtue of Lemma 4.1 (a))

which provides a necessary and sufficient condition for the ratio in (8) to be non-decreasing (non-
increasing). Hence assertions (a) and (b) follow.
(c¢) First, suppose that 0 < p < p;. For, k=0,1,2,...,n, consider

A3(k)=Pr(N < k) —Pr(M < k)
y n! J n—j - n! j n—j
:;ﬂ(n—j)!p(l_p) _27-!1?(@ (1 -0y,

= S =)
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Since the binomial distribution is stochastically increasing in the success probability p, to show that
M =4 N, it is enough to establish that
A5, (k)y=0, Vk=0,1,2,....n
For fixed k €{0,1,2,...,n}, we have

k
Aj;l(k)—z o n! {E((l @)n)}l/n]j[E({l _ @}n)](n—j)/n

k

n! .
2 i Be e

By applying Jensen’s inequality to the function s;(x), defined in Lemma 4.1, it follows from
above that

A5, (k) =0
Conversely, suppose that M > N. Then
Pr(N <0) = Pr(M <£0)
< p < P

Hence the assertion (c¢) is proved.
(d) First, suppose that p; < p < 1. As in (¢), to show that N >4 M, it is enough to establish
that

A;3(k)<0, Vk=0,1,2,...,n
For fixed £ €{0,1,2,...,n}, we have

k ! )
A;(k)—z T E@PI— {E@)} T

k

n! i
—Z ﬁE(@f(l ey ).

By applying Jensen’s inequality to the function #(x), defined in Lemma 4.1, it follows from
above that

A,(k) <0
Conversely, suppose that N > M. Then
Pr(N = n) = Pr(M = n)
< D3 < p < 17

which proves the assertion (d).
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(e) Suppose that p; < p < p3. Then, it follows from (c¢) and (d) that random variables M and
N are not ordered by the simple stochastic order. Also, it follows from the arguments used in the
proof of (a) and (b) that Pr(N = k)/Pr(M = k) is unimodal, implying that M >, N. The converse
part follows using similar arguments.

(f) This is obvious. [J

Remarks. 1. We note that Pr(M > 1)=>Pr(N >1) & Pr(M =0)<Pr(N =0) & 0<p<
p1= M =4 N, as proved in the above theorem. Thus, it is interesting to observe that Pr(M > 1) >
Pr(N > 1) ensures that M >y N. Similarly, Pr(N = n) > Pr(M = n) is enough to ensure that
N >=4M.

2. Unlike in the case of Poisson distribution, in the binomial case, there exist values of success
probability p (p3 < p < 1) such that N >4 M.

3. Theorem 4.1. (¢) (Theorem 4.1 (d)) provides a condition under which sampling from the
mixture of binomial distributions (binomial distribution) is more favorable than the sampling from
the binomial distribution (mixture of binomial distributions).

4. Interestingly, when n = 1 and the mixing distribution belongs to the beta family, it can be
shown that p < py (p = ps) <& CV(N) = (<) CV(M), where CV(.) denotes the coefficient of
variation. Thus, in this case, M >, N (N >, M) if and only if CV(N) > (<) CV(M).

In the following theorem, we compare random variables N and M when E(®) = p. In this case,
N and M have the same mean i.e., np =E[N]|=E[M]=nps,.

Theorem 4.3. Suppose that p, = E(@) = p. Then,

(a) M =N,

(b) M = N, which further implies that Var(N) < Var(M),

(c) Pr(N =21)>Pr(M > 1),

(d) neither M is larger than N in the stochastic ordering nor N is larger than M in the stochastic
ordering.

Proof. (a) Follows from Theorem 4.1 (e), since p; < p; < ps.

(b) Since M =, N and E(M) = E(N), it implies that M > N. Thus E(¢(N)) < E(¢p(M)) for
all convex functions ¢(.). Thus E(M?) > E(N?), which implies that Var(M) > Var(N), since M
and N have the same means.

(c) It is easily seen that Pr(N =0) < Pr(M =0), if p; < p < 1. The proof follows by observing
that p, = p;.

(d) From (c), it follows that M cannot be larger than N in the simple stochastic order. Since
P2 < p3, the fact that N cannot be larger than M in the simple stochastic order follows from
Theorem 4.1 (d). O

Remarks. 1. Results (a) and (b) of Theorem 4.3 are proved under a more general setting by
Shaked (1980).

2. Theorem 4.3 (c) suggests that if the probability of success of the underlying binomial distribu-
tion is the same as the mean of the mixing distribution, then sampling from the binomial distribution
is more favorable than sampling from the mixture of binomial distributions.
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