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Abstract

Motivated by an ecological sampling problem, we compare a Poisson distribution having a 0xed mean
with a Poisson distribution having a random mean, which has an arbitrary continuous (or discrete) probability
distribution. These comparisons are made with respect to the likelihood ratio ordering, simple stochastic
ordering, uniform variability ordering and expectation ordering. As a particular case, the mixed Poisson and
the Poisson distribution with a 0xed mean are compared when both the distributions have the same mean.
Similar comparisons are made between the mixed binomial and the binomial distribution having a 0xed
probability of success.
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1. Introduction

This paper is motivated by an ecological sampling problem. Speci0cally, the abundance of intertidal
rock-surface species is determined by counting the number of each species present in sampled
quadrants of a speci0ed size (e.g., 0:5 m2). Since it is expensive and time-consuming to identify
and count the individuals in each of a large number of species that can be present in a study,
sub-sampling is often done. Assuming the abundance of a species is Poisson distributed, the issue

∗ Corresponding author. Department of Statistics, West Virginia University, PO Box 6330, Morgantown, WV 26506-
6330, USA. Fax: 304-293-2272.

0167-7152/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.spl.2003.07.002



280 N. Misra et al. / Statistics & Probability Letters 65 (2003) 279–290

arises as to whether it is better to mix the sample and divide out 1
4 (say) of the volume to be counted

(a 0xed Poisson) or to divide the quadrant into fourths and randomly sample one sub-quadrant (a
mixed Poisson). We want to study the eDects of the two sub-sampling approaches by comparing a
species count N (0xed Poisson) to M (mixed Poisson) in terms of various stochastic orders. Since
too many 0 counts can cause estimation problems (e.g., in a generalized linear model), as a special
case, we want to study the eDects of the two sub-sampling approaches by comparing the probability
of getting at least one count of a species under the two approaches.

Furthermore, in categorical data analysis, where the Poisson or binomial sampling is assumed, the
data sometimes displays more (or less) variability than is predicted for these models. It might happen
because the true sampling distribution is a mixture of diDerent Poisson or binomial distributions
(Agresti, 1990, p. 42). Thus, in real-life situations, it is of interest to compare Poisson and binomial
distributions with their mixtures with respect to the variability and other stochastic orderings.

In situations such as described above, it is known that the probability density function (pdf) of
some variable X of interest is a mixture of pdfs of random variables Y�, �∈�, and it is of interest of
compare random variables X and Y	, for a 0xed 	∈�. In particular, it may be of interest to compare
random variables X and Y F�, where F� is the mean of the mixing distribution. Shaked (1980) made
such comparisons when the pdfs of random variables Y�, �∈�, belong to the general exponential
family. He showed that the two resulting pdfs must cross each other exactly twice in a prescribed
manner and, as a consequence of this 0nding, he established the variability ordering between the
two random variables. In this paper, we consider mixtures of two speci0c members (namely, the
Poisson and binomial) of the exponential family and compare them with any member in that family
with respect to various stochastic orderings.

In Section 2, we de0ne various stochastic orders used in this paper for making comparisons of
Poisson and binomial random variables to their mixtures. With respect to these stochastic orders,
in Section 3, we derive conditions which ensure that the mixed Poisson random variable, with an
arbitrary mixing distribution, is larger than the Poisson random variable having a 0xed mean. Similar
comparisons between the mixed binomial random variable, with an arbitrary mixing distribution, and
the binomial random variable having a 0xed mean are made in Section 4.

2. Orderings of distributions

Stochastic orders are useful in comparing random variables measuring certain characteristics in
diverse areas. The simplest comparison is through comparing the means of the two random variables
(expectation ordering). However, this comparison is not very informative, being based only on the
two numbers. A more informative comparison is through the various stochastic orders introduced
in the probability literature. Below, we de0ne some of the stochastic orders which are relevant in
the context of this paper. For more details, we refer to Ross (1983), Singh (1989) and Shaked and
Shanthikumar (1994).

Likelihood ratio ordering: Let X and Y be two random variables having probability density
functions (pdfs) fX (:) and fY (:), respectively. The random variable X is said to be larger than the
random variable Y in the likelihood ratio ordering (written as X ¿lr Y ) if, for all real numbers x
and y (y6 x), fX (x)fY (y)¿fX (y)fY (x). This is the strongest ordering between the two random
variables.
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Simple stochastic order: Let FX (x) and FY (x) be the distribution functions of random variables X
and Y , respectively. The random variable X is said to be larger than the random variable Y in the
simple stochastic order (written as X ¿st Y ) if FX (x)6FY (x), for all real numbers x. This is the
most commonly used stochastic order in the area of probability and statistics and is usually called
the stochastic order.

If X ¿st Y , then E(X )¿E(Y ), where E(:) denotes the expectation. Also, X ¿lr Y implies that
X ¿st Y (Ross, 1983) but, in general, the converse may not be true. If X is larger than Y in any
of the above two orderings, it implies that X is likely to take higher values compared to Y .

Expectation ordering: The random variable X is said to be larger than the random variable Y in
the expectation ordering (written as X ¿E Y ) if E(X )¿E(Y ). This is the simple ordering between
means of the two distributions.

Convex ordering: The random variable X is said to be larger than the random variable Y in the
convex ordering (written as X ¿cx Y ) if, for every real valued convex function �(:) de0ned on the
real line, E(�(X ))¿E(�(Y )).
If the random variable X is larger than the random variable Y in the convex ordering, then

E(X ) = E(Y ) and X is likely to be more variable than Y . This ordering implies that Var(X ) is
larger than Var(Y ) (Shaked and Shanthikumar, 1994).
Uniformly more variable ordering: Let X and Y be two random variables with pdfs fX (:) and

fY (:), respectively, and let supp(X ) and supp(Y ) denote the respective supports. X is said to be uni-
formly more variable than Y (denoted as X ¿uv Y ) if supp(Y ) ⊆ supp(X ) and the ratio fY (x)=fX (x)
is unimodal over supp(X ) but X and Y are not ordered by the usual stochastic order.
For random variables X and Y having the same mean, it is known that X ¿uv Y implies that

X ¿cx Y (Shaked and Shanthikumar, 1994).

3. Stochastic orderings between Poisson and mixed Poisson distributions

Let N be a random variable having Poisson distribution with a 0xed mean �¿ 0, i.e.,

Pr(N = k) =
e−��k

k!
; k = 0; 1; 2; : : : : (1)

Let M be a Poisson random variable with mean �, where � is a non-degenerate random variable
having the probability density function g(�), �¿ 0. The assumption that � is non-degenerate is not
restrictive as, in the degenerate case, N and M both will have the Poisson distribution and various
orderings between them follow the ordering between their means. Also, although we have assumed
� to be a continuous random variable, all the results of this section hold even when � is assumed
to be an arbitrary discrete random variable. We have

Pr(M = k) =
∫ ∞

0

e−�� k

k!
g(�) d�; k = 0; 1; : : : : (2)

In this section, we make comparisons between the random variables N and M with respect to the
likelihood ratio, stochastic, uniform variability and expectation orderings. The following lemma will
be useful in proving the main results.
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Lemma 3.1. De=ne, a1(k) = E(e−��k+1)=E(e−��k); k = 0; 1; : : : ; �0 = a1(0), �1 = −ln[E(e−�)],
�2 = E(�) and hk(x) = x

∑k
j=0 [(−1) j(ln x) j=j!], 0¡x¡ 1, k = 0; 1; : : : : Then,

(a) a1(k) is an increasing function of k ∈{0; 1; : : :},
(b) for each =xed k ∈{0; 1; : : :}, hk(x) is a concave function of x∈ (0; 1),
(c) 0¡�06 �16 �2.

Proof. (a) We may write

a1(k) =

∫∞
0 e−�� k+1g(�) d�∫∞
0 e−�� kg(�) d�

= E(Wk); k = 0; 1; : : : ;

where Wk is a random variable having the pdf

 k(x) = Cke−xxkg(x); x¿ 0;

here Ck is the normalizing constant.
Fix k ∈{0; 1; : : :}. Clearly,  k+1(x)= k(x) is an increasing function of x¿ 0, which implies that

Wk+1¿lr Wk , which further implies that Wk+1¿st Wk and therefore a1(k +1)=E(Wk+1)¿E(Wk)=
a1(k). Since the chosen k ∈{0; 1; : : :} was arbitrary, the assertion follows.

(b) For k = 0, note that h0(x) = x is both concave and convex. For k ∈{1; 2; : : :}, we have

d2

dx2
hk(x) =−(−ln x)k−1

x(k − 1)!
¡ 0; ∀ 0¡x¡ 1

which proves the assertion (b).
(c) �06 �1 follows using the concavity of the function d1(x) =−x ln x, 0¡x¡ 1, and Jensen’s

inequality. Similarly, �16 �2 follows using the concavity of the function d2(x) = ln x, 0¡x¡ 1,
and Jensen’s inequality.

The following theorem provides conditions on parameters �; �0; �1 and �2 that ensure that M is
larger than N in various orderings.

Theorem 3.1. Let N and M be random variables having distributions given by (1) and (2), respec-
tively. Then, under the notations of Lemma 3.1,

(a) M¿lr N if and only if 0¡�6 �0,
(b) M¿st N if and only if 0¡�6 �1,
(c) M¿E (6E)N if and only if 0¡�6 (¿)�2.

Proof. (a) Consider the likelihood ratio

l(k) =
Pr(M = k)
Pr(N = k)

=
E(e−��k)
e−��k ; k = 0; 1; 2; : : : : (3)
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Then

l(k + 1)¿ l(k) ∀ k = 0; 1; : : : ;

⇔ �6
E(e−��k+1)
E(e−��k)

; ∀ k = 0; 1; : : :

⇔ �6 �0; (by virtue of Lemma 3:1 (a));

which provides a necessary and suMcient condition for the ratio in (3) to be non-decreasing. Hence
the assertion (a) follows.

(b) First, suppose that 0¡�6 �1. For, k = 0; 1; 2; : : : ; consider

��(k) = Pr(N6 k)− Pr(M6 k)

= e−�
k∑

j=0

� j

j!
−

k∑
j=0

E(e−��j)
j!

:

Since the Poisson distribution is stochastically increasing in the mean �, to show that M¿st N , it
is enough to establish that

��1(k)¿ 0; ∀ k = 0; 1; 2; : : : :

For 0xed k ∈{0; 1; 2; : : :}, then

��1(k) = E(e−�)
k∑

j=0

(−1) j [ln {E(e−�)}] j
j!

−
k∑

j=0

E(e−��j)
j!

:

By applying Jensen’s inequality to the function hk(x), de0ned in Lemma 3.1, it follows from
above that

��1(k)¿ 0:

Conversely, suppose that M¿st N . Then

Pr(N6 0) ¿ Pr(M6 0)

⇔ �6 �1:

Hence the assertion (b) is proved.
(c) This is obvious.

Remarks. 1. We note that Pr(M¿ 1)¿Pr(N¿ 1) ⇔ Pr(M=0)6Pr(N=0) ⇔ �6 �1 ⇔ M¿st N ,
as proved in the above theorem. Thus, it is interesting to observe that Pr(M¿ 1)¿Pr(N¿ 1)
ensures that M¿st N .
2. From Lemma 3.1 (c) we have �06 �16 �2 and it follows from the above theorem that M is

larger than N in the likelihood ratio ordering when � falls in the interval (0; �0]. For �∈ (�0; �1], the
random variable M is larger than N in stochastic ordering but, in this range of �, M is not larger
then N in the likelihood ratio ordering. For �∈ (�1; �2], the random variable M is larger than the
random variable N in the expectation ordering but, in this range of �, M is not larger than N in the
simple stochastic ordering.
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3. Theorem 3.1 (b) provides a condition under which sampling from the mixture of Poisson
distributions is more favorable than the sampling from Poisson distribution.

4. When the mixing distribution belongs to the gamma family, it can be shown that the distribution
of the mixture random variable M is negative binomial, which is a common species abundance
distribution. Interestingly, in this case, it can be shown that �6 �0 ⇔ CV(N )¿CV(M), where
CV(:) denotes the coeMcient of variation. Thus, in this case, M¿lr N ⇔ CV(N )¿CV(M).

In the following theorem, we establish that if the mixing random variable � is such that, for
every x¿ 0, Pr(�¿x)¿ 0, then no value of �¿ 0 can ensure N¿st M . Under this condition on
the mixing random variable �, in the following theorem, we also establish that M¿uv N if and
only if �¿�1.

Theorem 3.2. Suppose that, for every x¿ 0, Pr(�¿x)¿ 0, then

(a) no value of �¿ 0 can ensure N¿st M ,
(b) M¿uv N if and only if �¿�1.

Proof. (a) Using the relationship between the Poisson and gamma probabilities, we may write

Pr(N¿ k) =
∫ �

0

e−yyk−1

(k − 1)!
dy; k = 1; 2; : : : (4)

and

Pr(M¿ k) =
∫ ∞

0

FG(y)
e−yyk−1

(k − 1)!
dy; k = 1; 2; : : : ; (5)

where FG(y) =
∫∞
y g(t) dt; y¿ 0, denotes the survival function of the mixing random variable �.

From (4), it follows that

Pr(N¿ k)6
�k

k!
; k = 1; 2; : : : :

Choose 	¿�. Then, from (5), it follows that

Pr(M¿ k)¿
∫ 	

0

FG(y)
e−yyk−1

(k − 1)!
dy

¿ e−	 FG(	)
	k

k!
; k = 1; 2; : : : :

Therefore,

R(k) =
Pr(N¿ k)
Pr(M¿ k)

6
(�=	)k

FG(	)e−	

→ 0; as k → ∞:
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Thus it follows that, for any �¿ 0, there exists a suMciently large k (depending on �) such that
Pr(N¿ k)¡Pr(M¿ k), which proves the assertion (a).

(b) Suppose that �¿�1. Then, from Theorem 3.1 (b) and (a) above, it is clear that random
variables M and N are not ordered by the simple stochastic order. Also, it follows from the arguments
used in the proof of Theorem 3.1 (a) that Pr(N=k)=Pr(M=k) is unimodal, implying that M¿uv N .
The converse part follows by using the similar arguments.

In the following theorem, we compare the random variables N and M , when E(�) = �. In this
case, N and M have the same mean i.e., �= E(N ) = E(�) = E(M) = �2.

Theorem 3.3. Suppose that �2 = E(�) = �. Then,

(a) M¿uv N ,
(b) M¿cx N , which further implies that Var(N )6Var(M),
(c) Pr(N¿ 1)¿Pr(M¿ 1),
(d) under the assumption of Theorem 3.2, neither M is larger than N in the stochastic ordering

nor N is larger than M in the stochastic ordering.

Proof. (a) Follows from Theorem 3.2 (b), since �2 ¿�1.
(b) Since M¿uv N and E(M) = E(N ), it implies that M¿cx N . Thus E((�(N ))6E(�(M)) for

all convex functions �(:). Thus E(M 2)¿E(N 2), which implies that Var(M)¿Var(N ), since M
and N have the same means.
(c) It is easily seen that Pr(N = 0)6Pr(M = 0), if �¿ �1. The proof follows by observing that

�2¿ �1.
(d) From (c), it follows that M cannot be larger than N in the simple stochastic order.
The fact that N cannot be larger than M in the simple stochastic order is established in Theorem

3.2 (a).

Remarks. 1. Results (a) and (b) of Theorem 3.3 are proved under a more general setting by
Shaked (1980).

2. For the sampling of rare species in ecology, Theorem 3.3 (c) suggests that if the Poisson
distribution has the same mean as that of the mixing distribution, then the sampling from the
Poisson distribution is more favorable than the sampling from mixture of Poisson distributions. A
similar criterion based on the probability of 0nding at least one fault is used in software engi-
neering to compare partition and random testing procedures (Boland et al., 2002; Weyuker and
Jeng, 1991).

4. Stochastic orderings between binomial and mixed binomial distributions

To avoid introduction of further notations, some of the notations of Section 3 will be repeated
here in the context relevant to this section. For a 0xed p∈ (0; 1) and a 0xed positive integer n, let
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N be a random variable having binomial distribution given by

Pr(N = k) =
n!

k!(n− k)!
pk(1− p)n−k ; k = 0; 1; 2; : : : ; n: (6)

Let M be a binomial random variable with n number of trials and the probability of
success �, where � is a non-degenerate random variable having the probability density func-
tion g(�); 0¡�¡ 1. As in Section 3, although we have assumed � to be a continuous random
variable, all the results of this section hold even when � is assumed to be an arbitrary discrete
random variable. Moreover, the assumption that � is non-degenerate is not restrictive. We have

Pr(M = k) =
∫ 1

0

n!
k!(n− k)!

� k(1− �)n−kg(�) d�; k = 0; 1; : : : ; n: (7)

In this section, we make comparisons between random variables N and M , given by (6) and
(7), respectively, with respect to the likelihood ratio, stochastic, uniform variability and expectation
orderings. The following lemma will be useful in proving the main results:

Lemma 4.1. De=ne, b1(k)=E(�k+1(1−�)n−k−1)=E(�k(1−�)n−k−1); k=0; 1; : : : ; n−1, p0=b1(0),
p1 = 1 − [E((1 − �)n)]1=n, p2 = E(�), p3 = [E(�n)]1=n, p4 = b1(n − 1), sk(x) =

∑k
j=0 n!=(j!(n −

j)!)x(n−j)=n(1− x1=n) j, 0¡x¡ 1, k =0; 1; : : : ; n− 1 and tk(x)=
∑k

j=0 n!=(j!(n− j)!)x j=n(1− x1=n)n−j,
0¡x¡ 1, k = 0; 1; : : : ; n− 1. Then,

(a) b1(k) is an increasing function of k ∈{0; 1; : : : ; n− 1},
(b) for each =xed k ∈{0; 1; : : : ; n− 1}, sk(x) is a concave function of x∈ (0; 1),
(c) for each =xed k ∈{0; 1; : : : ; n− 1}, tk(x) is a convex function of x∈ (0; 1),
(d) 0¡p06p16p26p36p4 ¡ 1.

Proof. (a) We may write

b1(k) = E(Vk); k = 0; 1; : : : ; n− 1;

where Vk is a random variable having the pdf

 ∗
k (x) = Dkxk(1− x)n−k−1g(x); 0¡x¡ 1;

here Dk is the normalizing constant.
Fix k ∈{0; 1; : : : ; n − 1}. Clearly,  ∗

k+1(x)= 
∗
k (x) is an increasing function of x∈ (0; 1), which

implies that Vk+1¿lr Vk , which further implies that Vk+1¿st Vk and therefore b1(k+1)=E(Vk+1)¿
E(Vk) = b1(k). Since the chosen k ∈{0; 1; : : : ; n− 1} was arbitrary, the assertion follows.
(b) For k = 0, note that s0(x) = x is both concave and convex. For k ∈{1; 2; : : : ; n− 1}, we have

d
dx

sk(x) =
(n− 1)!

k!(n− k − 1)!

(
1− x1=n

x1=n

)k

; 0¡x¡ 1

which is clearly a decreasing function of x∈ (0; 1). This proves the assertion (b).
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(c) For k ∈{0; 1; : : : ; n− 1}, we have

d
dx

tk(x) =− (n− 1)!
k!(n− k − 1)!

(
1− x1=n

x1=n

)n−k−1

; 0¡x¡ 1

which is clearly an increasing function of x∈ (0; 1). This proves the assertion (c).
(d) p36p4 follows using the convexity of the function e1(x)= xn=(n−1); 0¡x¡ 1, and Jensen’s

inequality; p26p3 follows using the convexity of the function e2(x)= xn; 0¡x¡ 1, and Jensen’s
inequality; and p16p2 follows using the convexity of the function e3(x)=(1−x)n; 0¡x¡ 1, and
Jensen’s inequality. The inequality p06p1 follows from the inequality p36p4, with � replaced
by 1−�.

The following theorem provides conditions on parameters p, p0, p1, p2, p3 and p4 that ensure
M is larger than N in various orderings.

Theorem 4.1. Let N and M be random variables having distributions given by (6) and (7), respec-
tively. Then, under the notations of Lemma 4.1,

(a) M¿lr N if and only if 0¡p6p0,
(b) N¿lr M if and only if p46p¡ 1,
(c) M¿st N if and only if 0¡p6p1,
(d) N¿st M if and only if p36p¡ 1,
(e) M¿uv N if and only if p1 ¡p¡p3,
(f) M¿E (6E) N if and only if 0¡p6 (¿)p2.

Proof. (a) and (b). Consider the likelihood ratio

l(k) =
Pr(M = k)
Pr(N = k)

=
E(�k(1−�)n−k)
pk(1− p)n−k ; k = 0; 1; 2; : : : ; n: (8)

Then,

l(k + 1)¿ (6)l(k); ∀k = 0; 1; : : : ; n− 1;

⇔p6 (¿) b1(k); ∀k = 0; 1; : : : ; n− 1

⇔p6 (¿)p0 (p4); (by virtue of Lemma 4:1 (a))

which provides a necessary and suMcient condition for the ratio in (8) to be non-decreasing (non-
increasing). Hence assertions (a) and (b) follow.

(c) First, suppose that 0¡p6p1. For, k = 0; 1; 2; : : : ; n, consider

�∗
p(k) = Pr(N6 k)− Pr(M6 k)

=
k∑

j=0

n!
j!(n− j)!

pj(1− p)n−j −
k∑

j=0

n!
j!(n− j)!

E(�j(1−�)n−j):
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Since the binomial distribution is stochastically increasing in the success probability p, to show that
M¿st N , it is enough to establish that

�∗
p1
(k)¿ 0; ∀k = 0; 1; 2; : : : ; n:

For 0xed k ∈{0; 1; 2; : : : ; n}, we have

�∗
p1
(k) =

k∑
j=0

n!
j!(n− j)!

[1− {E((1−�)n)}1=n] j[E({1−�}n)](n−j)=n

−
k∑

j=0

n!
j!(n− j)!

E(�j(1−�)n−j):

By applying Jensen’s inequality to the function sk(x), de0ned in Lemma 4.1, it follows from
above that

�∗
p1
(k)¿ 0:

Conversely, suppose that M¿st N . Then

Pr(N6 0)¿ Pr(M6 0)

⇔p6p1:

Hence the assertion (c) is proved.
(d) First, suppose that p36p¡ 1. As in (c), to show that N¿st M , it is enough to establish

that

�∗
p3
(k)6 0; ∀k = 0; 1; 2; : : : ; n:

For 0xed k ∈{0; 1; 2; : : : ; n}, we have

�∗
p3
(k) =

k∑
j=0

n!
j!(n− j)!

[E(�n)] j=n[1− {E(�n)}1=n]n−j

−
k∑

j=0

n!
j!(n− j)!

E(�j(1−�)n−j):

By applying Jensen’s inequality to the function tk(x), de0ned in Lemma 4.1, it follows from
above that

�∗
p3
(k)6 0:

Conversely, suppose that N¿st M . Then

Pr(N¿ n)¿ Pr(M¿ n)

⇔p36p¡ 1;

which proves the assertion (d).
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(e) Suppose that p1 ¡p¡p3. Then, it follows from (c) and (d) that random variables M and
N are not ordered by the simple stochastic order. Also, it follows from the arguments used in the
proof of (a) and (b) that Pr(N = k)=Pr(M = k) is unimodal, implying that M¿uv N . The converse
part follows using similar arguments.

(f) This is obvious.

Remarks. 1. We note that Pr(M¿ 1)¿Pr(N¿ 1) ⇔ Pr(M = 0)6Pr(N = 0) ⇔ 0¡p6
p1 ⇔ M¿st N , as proved in the above theorem. Thus, it is interesting to observe that Pr(M¿ 1)¿
Pr(N¿ 1) ensures that M¿st N . Similarly, Pr(N = n)¿Pr(M = n) is enough to ensure that
N¿st M .
2. Unlike in the case of Poisson distribution, in the binomial case, there exist values of success

probability p (p36p¡ 1) such that N¿st M .
3. Theorem 4.1. (c) (Theorem 4.1 (d)) provides a condition under which sampling from the

mixture of binomial distributions (binomial distribution) is more favorable than the sampling from
the binomial distribution (mixture of binomial distributions).

4. Interestingly, when n = 1 and the mixing distribution belongs to the beta family, it can be
shown that p6p0 (p¿p4) ⇔ CV(N )¿ (6) CV(M), where CV(.) denotes the coeMcient of
variation. Thus, in this case, M¿lr N (N¿lr M) if and only if CV(N )¿ (6) CV(M).

In the following theorem, we compare random variables N and M when E(�) = p. In this case,
N and M have the same mean i.e., np= E[N ] = E[M ] = np2.

Theorem 4.3. Suppose that p2 = E(�) = p. Then,

(a) M¿uv N ,
(b) M¿cx N , which further implies that Var(N )6Var(M),
(c) Pr(N¿ 1)¿Pr(M¿ 1),
(d) neither M is larger than N in the stochastic ordering nor N is larger than M in the stochastic

ordering.

Proof. (a) Follows from Theorem 4.1 (e), since p16p26p3.
(b) Since M¿uv N and E(M) = E(N ), it implies that M¿cx N . Thus E(�(N ))6E(�(M)) for

all convex functions �(:). Thus E(M 2)¿E(N 2), which implies that Var(M)¿Var(N ), since M
and N have the same means.
(c) It is easily seen that Pr(N = 0)6Pr(M = 0), if p16p¡ 1. The proof follows by observing

that p2¿p1.
(d) From (c), it follows that M cannot be larger than N in the simple stochastic order. Since

p26p3, the fact that N cannot be larger than M in the simple stochastic order follows from
Theorem 4.1 (d).

Remarks. 1. Results (a) and (b) of Theorem 4.3 are proved under a more general setting by
Shaked (1980).

2. Theorem 4.3 (c) suggests that if the probability of success of the underlying binomial distribu-
tion is the same as the mean of the mixing distribution, then sampling from the binomial distribution
is more favorable than sampling from the mixture of binomial distributions.
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