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Abstract

Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement
of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for
H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory
waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest
ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow
between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage
low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from
specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of
viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus
dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed
ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of
multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create
conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present
for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza
viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence
of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued
monitoring.
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Introduction

Avian influenza viruses (AIV) are ubiquitous and their natural

reservoir is believed to be aquatic birds in which a majority of

subtypes has been identified [1,2]. Subtype H5 and H7 AIV

circulating in wild birds can become highly pathogenic in poultry

populations resulting in significant morbidity and mortality and, as

is the case for the currently circulating highly pathogenic influenza

A (H5N1) [HPAI H5N1]virus, sporadic human infection with

significant mortality rates [3,4,5,6,7]. Furthermore, AIV pose a

threat for human and animal health as new variants could emerge

leading to pandemics or epizootics. Recently, human infections

with avian derived low pathogenic avian influenza (LPAI) H10N7

virus were reported from Australia [8] and a human infection with

an avian influenza A (H9N2) virus was described in Bangladesh

[9]. Thus, risk assessment that begins by monitoring the

circulation and gene flow of AIV in their natural hosts is crucial

for pandemic preparedness [10].

The Nile Delta of northern Egypt is one of the world’s most

important bird migration routes and serves as a vital stopover for

millions of birds making their annual migration between the

Palearctic and Afrotropical regions [11]. Two major migratory

flyways, the Black Sea-Mediterranean and East African-West

Asian flyway, overlap in Egypt [12,13,14]. This region is a

wintering ground for hundreds of thousands of aquatic birds that

host influenza A viruses; e.g. species of ducks, gulls, and shorebirds
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known to harbor LPAI viruses and, in rare occasions, HPAI H5N1

viruses [1]. In fact, the first evidence of HPAI H5N1 in Egypt was

the detection of viral RNA in a common teal (Anas crecca) captured

in the Nile Delta region of Damietta in December 2005 [15]. In

addition, the first reports of H5N1 in Egyptian poultry noted the

high sequence similarity with viruses detected in wild birds in

Europe at that time period and suggested that migratory birds

introduced the virus into the country [16]. In order to monitor the

wild bird population for infection with HPAI H5N1, the US Naval

Medical Research Unit No. 3 (Cairo, Egypt), in collaboration with

the Egyptian Ministry of Environment, had initiated sampling in

several sites in 2003 when H5N1 started to spread from China into

other countries [17].

Although many African countries have reported outbreaks of

HPAI H5N1, they have usually been sporadic with limited

sustained spread [18,19]. In contrast, Egypt has experienced

frequent outbreaks of HPAI H5N1 from many different regional

governorates since it was first introduced and due to the

continuous circulation of the virus in poultry, surveillance in wild

birds to monitor re-introduction and/or spread has been a priority

[18]. While the large majority of influenza A virus positive samples

were found to be H5N1 negative (.99%; data not shown), this

study sought to determine the subtypes, nearest common ancestors

and extent of genetic diversity of the LPAI viruses that were

collected from this surveillance. LPAI viruses collected from

migratory waterfowl sampled over five consecutive years (2003–

2007) in four different regions of Egypt were analyzed and

complete genome sequences of 28 viruses were generated and

characterized to better understand the population genetics of

LPAI viruses detected in and around the Nile Delta and to

describe influenza A virus gene flow among different subtypes

potentially originating from multiple migratory bird flyways.

Materials and Methods

Ethics Statement
Bird capture, collection and sampling methods were reviewed

and approved by the US Naval Medical Research Unit Number 3

Institutional Animal Care and Use Committee (IACUC 04-01).

The animals sampled for this study did not include endangered or

protected species. The sampling of wild birds was approved by the

Ministry of State for Environmental Affairs in Egypt and carried

out on public land.

Wild Bird Surveillance and Sample Collection
Wild birds were sampled between December 2003 and

February 2007 at 12 collection sites in Egypt; 9 located within

the Nile Delta, 1 on the Sinai Peninsula (Port Said), 1 in the

southeast of the country near Aswan and 1 south of Lake Nasser

near Abu Simbel. Oropharyngeal and/or cloacal specimens were

collected with dacron swabs from birds trapped using mist nets

and restrained without anesthesia or of from hunter-killed bird

carcasses [20]. Twenty-nine different avian species were sampled

including birds from the orders Anseriformes, Charadriiformes,

Gruiformes, Ciconiiformes, Pelecaniformes, Falconiformes, and

Columbiformes; although waterfowl species such as pintail (Anas

acuta), teal, and shoveler (Anas clypeata) ducks were the most

frequently sampled.

Virus Isolation, Subtype Detection and Full Genome
Sequencing

Original specimens were screened for influenza A virus using a

real-time reverse transcription (RT)-PCR detection kit targeting

the matrix (M) gene as previously described [21]. Positive samples

were inoculated into 10–11 day old embryonated chicken eggs

(ECEs) and allantoic fluid was harvested 24 to 48 hours post-

inoculation and screened for the presence of virus by a

hemagglutination assay using turkey red blood cells. All infectious

materials were maintained in biosafety level 3 containment,

including enhancements required by the U.S. Department of

Agriculture and the Select Agents program (http://www.cdc.gov/

od/ohs/biosfty/bmbl5/bmbl5toc.htm). Genomic RNA was ex-

tracted from virus-infected allantoic fluid using the RNeasy

extraction kit (Qiagen, Valencia, CA) and used as template for

generation of cDNA by random hexamer-primed reverse

transcription. Subtyping was performed using a multiplex PCR

assay designed to target conserved regions of each of the 16

hemagglutinin (HA) genes and 9 neuraminidase (NA) genes.

Forward sense, M13-tagged degenerate primers were designed for

all 16 HAs and 9 NA genes and were paired with reverse sense,

M13-tagged HA and NA primers targeting conserved regions of

the 39UTR of the minus-sense genomic RNA (Table S1). In each

multiplex PCR assay at least 3 forward primers were combined

with the HA or NA gene reverse primer (primer combinations

available upon request). The PCR product was visualized by gel

electrophoresis and amplicons were sequenced using M13 forward

and reverse primers. Sequences of HA and NA fragments

generated were analyzed using basic local alignment search tool

(BLAST; available from http://blast.ncbi.nlm.nih.gov/Blast.cgi)

against the GenBank database to predict the influenza A subtype.

The surface and internal protein genes were then amplified using

influenza A virus specific primers as overlapping fragments with

the Access Quick one-step RT-PCR kit (Promega, Madison, WI)

and subsequently sequenced on an automated Applied Biosystems

3730 system using cycle sequencing dye terminator chemistry (Life

Technologies, Carlsbad, CA). Contigs of full length open reading

frames were generated for each gene (Sequencher 4.8, Gene

Codes, Ann Arbor, MI). Gene sequences were submitted to

GISAID (http://platform.gisaid.org) prior to publication (Acces-

sion Nos.: EPI 120183–120208, 120210, 120216).

Dataset Preparation, Phylogenetic Analysis and
Molecular Characterization

The presence of multibasic cleavage sites or other insertions at

the cleavage site of the HA0 was determined by comparing the

coding region of the HA0 protein of each virus to known LPAI

viruses. For HA and NA subtype-specific phylogenetic compari-

son, individual datasets contained a representative selection of

publicly available sequences and neighbor-joining (NJ) trees were

calculated to identify closest ancestors (Figures S1, S2). All HA and

NA gene sequences of Egyptian LPAI viruses sequenced for this

study were then aligned to reference sequences of subtypes HA H1

to H16 and NA N1 to N9 containing the nearest ancestors

identified. HA and NA NJ trees were then calculated and

visualized. For characterization of the internal gene segments,

large datasets of polymerase basic protein 2 (PB2; n = 2501),

polymerase basic protein 1 (PB1; n = 2380), polymerase acid

protein (PA; n = 2142), nucleoprotein (NP; n = 2001), matrix

protein (MP; n = 4190) and nonstructural protein (NS; n = 4585)

gene sequences were aligned. Included in the datasets were 21

genomes of African LPAI viruses (Zambia, n = 13; Egypt, n = 1;

Nigeria, n = 3; South Africa, n = 4) and 6 genomes of LPAI viruses

from Ukrainian migratory birds that were sequenced during the

course of this study (Accession Nos.: EPI 120209, 120211–

120215). To identify possible clusters with recent HPAI H5N1

viruses, publicly available H5N1 sequences were included in

datasets and annotated as described previously [22]. Sequence

alignments were implemented in BioEdit and calculated with the
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MUSCLE algorithm [23,24]. Alignments were manually edited

for frameshifts and sequence duplication and only sequences with

at least 90% of the coding region were included. Trees were

inferred using the NJ method with a Kimura 2-parameter

implemented in MEGA version 4 [25].

Bayesian Analysis and Estimation of the Time to the Most
Recent Common Ancestor (TMRCA)

Reduced datasets contained 92 viral sequences with the same

viruses for each of the six internal gene segments included when

possible. The PB2 gene sequence was missing for virus A/

shoveler/Egypt/14029/2006 (H1N1) due to insufficient genomic

material. Attempts to re-passage the virus were unsuccessful.

Selection criteria were based on subtype, geographic origin, date

of collection, and genetic distance to viruses analyzed in this study

determined from previous large NJ trees. To calculate time to the

most recent common ancestor (TMRCA), the date of collection

(day/month/year) for each individual virus in the dataset was

transformed into numerical values. The middle of the collection

year was used for viruses without precise collection dates. The

BEAST software package version 1.6.1 was used for TMRCA

analyses [26,27]. Convergence of data was evaluated with the

software Tracer version 1.5 after removal of 10% burn-in [28].

The analysis was repeated with modified parameters and adjusted

mean substitutions rates until the effective sample size (ESS) of

each prior was at least 200. The model that best fit our data best

was the SRD06 codon partition model using the HKY nucleotide

substitution model for each partition with unlinked frequencies.

The molecular clock model used was an uncorrelated lognormal

relaxed clock with an estimated rate of 1. The tree priors were

coalescent Bayesian Skyline with 10 groups and piecewise constant

skyline model with a randomly generated tree as a start. Each

Markov chain Monte Carlo (MCMC) run had a chain length of

100 million and was sampled every 1000 generations. For each

TMRCA a credible interval (Bayesian confidence interval) is given

as the highest posterior density (HPD 95%) that represents an

interval in the domain of a posterior probability distribution.

Maximum clade credibility (MCC) trees were generated in

TreeAnnotator [26] with 10% burn-in removed, posterior

probabilities on 0.5, and median heights. Trees were visualized

in FigTree version 1.3.1 and posterior probabilities are shown on

or above nodes [29].

In order to infer the geographic dispersal of each virus in the

dataset, one of the major flyways was assigned according to the

geographical location of that individual virus’s collection site;

Black Sea-Mediterranean (BS-MED), East African-West Asian

(EA-WA), Central Asian (CA), and the East Asian-Australian (EA-

AUS) flyway [12,30]. Egyptian viruses that did not cluster with

other viruses of known geographic collection location were not

assigned to a specific flyway due to the overlap of the BS-MED

and EA-WA flyway at collection sites and are instead referred to as

‘‘Nile Delta stopover’’. Each gene cluster in the MCC tree with a

high posterior probability ($0.7) were grouped and classified as

belonging to one of the major flyways. Clusters were designated as

belonging to a ‘‘mixed’’ flyway group when viruses of different

geographical collection location formed a monophyletic cluster.

Single viruses that did not group with any of the other viruses in

the small phylogenetic trees were assigned to flyways based on

their clusters in big phylogenetic trees (data not shown).

Results

Surveillance, Virus Epidemiology and Subtype
Distribution

Influenza A virus was detected in 731 of the 7678 specimens

(9.5%) tested in the five-year interval between 2003 and 2007

(Table 1). A subset of 33 specimen were available for virus

isolation. In total 28 LPAI viruses were isolated from wild birds of

the order Anseriformes species; Northern shoveler (n = 17, Anas

clypeata), Common teal (n = 10, Anas crecca) and Egyptian goose

(n = 1, Alopochen aegyptiacus) (Table 1). Viruses were collected in the

Damietta Governorate located in the northern Nile Delta region

(n = 24), the Port Said Governorate (n = 1), the Aswan Governor-

ate (n = 1), and Abu Simbel located at Lake Nasser in southern

Egypt (n = 2) (Table 2). We found 8 different hemagglutinin (HA)

subtypes and 8 different neuraminidase (NA) subtypes accounting

for 15 unique subtypes (Table 2). The predominate subtypes for

HA were H10 (n = 9) and H7 (n = 8) and for NA, N7 (n = 8) and

N1 (n = 7) (Table 2).

Phylogenetic Relationships of the HA and NA Genes
All HA and NA gene sequences of Egyptian viruses grouped

according to their specific subtype in phylogenetic trees (Figure 1).

When analyzed individually, HA gene segments of different

subtypes appeared to have evolved closely with European or

Eurasian viruses also collected from wild bird species (Figure S1).

New World viruses clustered in separate groups for all subtypes in

both genes. Both H5 and H7 HA phylogenies indicated a nearest

ancestry with recent AIV from wild birds or poultry from Europe

(Spain, Sweden, and Netherlands) and Central Asia (Mongolia),

while H5 and H7 viruses with highly pathogenic cleavage sites

formed separate groups (Figure S1). H10 HA genes from all

Egyptian viruses formed a discrete cluster except for A/shoveler/

Egypt/00600-NAMRU3/2004 subtype (H10N7) that grouped

close to A/duck/Mongolia/149/03 (H10N5) indicating a different

genetic origin. Unlike other subtypes, the H11 virus sequence, A/

teal/Egypt/00688-NAMRU3/2004 (H11N9), grouped in a mixed

cluster with viruses from Europe, Africa, Asia, and Oceania within

the same subtype (except for one virus) (Figure S1). None of the

viruses sequenced possessed a polybasic cleavage site indicative of

a highly pathogenic phenotype (Table 2).

NA phylogenies revealed that Egyptian viruses shared common

ancestors with AIV from Europe (Germany, Netherlands, Sweden)

Table 1. Number of influenza A virus PCR positive specimen
and number of embryonated chicken egg isolates.

Bird species
(Latin name) Number

Total specimen collected 7678

PCR positive specimen 731

Isolation attempted 33

Isolated viruses 28

Northern shoveler
(Anas clypteata)

17

Common teal
(Anas crecca)

10

Egyptian goose
(Alopochen aegyptiacus)

1

Isolation negative 5

doi:10.1371/journal.pone.0068522.t001
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and/or Eurasia (Mongolia, Far East Russia) (Figure S2). Indepen-

dent of their subtypes, N1 neuraminidase genes (H1N1, H10N1,

H7N1) from this study clustered together and were distinct from

the HPAI H5N1 AIV genes (Figure S2). The N7 sequences

grouped in 3 defined clusters, with one group closely related to

European viruses and two clusters with viruses from Southeast

Asia (Japan) and Central Asia (Mongolia) suggesting multiple

independent sources (Figure S2). Unlike other subtypes, the N8

sequence of A/teal/Egypt/11974-NAMRU3/2005 (H13N8) was

closely related to recent H13N8 viruses that formed a separate

cluster from all other HxN8 AIV in the phylogenetic tree (Figure

S2). In the N2 phylogeny, H5N2 and H1N2 viruses grouped

together with European viruses, whereas H6N2 viruses clustered

together with other European viruses but all shared a common

Asian ancestry with A/duck/Nanchang/1749/1992 (H11N2).

The H7N3 NA sequences were separated with one virus grouping

with European and Asian viruses, whereas A/shoveler/Egypt/

00017-NAMRU3/2007 (H7N3) was more closely related to Asian

viruses (Figure S2). Similarly, the N4 sequence (only 42 sequences

available), the N6 sequence and the three N9 (72) sequences,

shared common ancestors predominantly with European or

Central Asian AIV (Figure S2).

Phylogeny of Internal Genes (PB2, PB1, PA, NP, M, NS)
To explore the possible genetic exchange between New World

and Old World viruses, we analyzed representative (n$2000)

sequences for each gene and inferred phylogenies. Genes from

Egyptian viruses were invariably most closely related to European,

Asian and African counterparts sharing between 99–96% nucle-

otide identities indicating that none of these genes originated from

the New World (Figure S3). Thus, sequences from North

American viruses were excluded from more detailed analysis.

The 6 internal genes of Egyptian viruses described here grouped

among AIV from many different regions and clustering was

independent of subtype, collection date or host species. Most of the

Egyptian AIV genes were distinct from highly pathogenic (H5 or

H7) viruses from Egypt or elsewhere, and they shared nearest

common ancestors with low pathogenic Eurasian AIV. In contrast,

the PA genes of three viruses (subtypes H5N2, H7N7, H7N3)

shared common ancestors with those of a small group of HPAI

H5N1 viruses that did not co-evolve with the majority of H5N1

viruses (data not shown). Notably, all internal gene sequences of

A/teal/Egypt/11974-NAMRU3/2005 (H13N8) were most close-

ly related to those of other H16 or H13 viruses and clustered

independently from all other viruses (Figure 2, Figure S3). Its

Table 2. Avian influenza viruses analyzed in this study with subtype, collection site (Governorate in Egypt), date of collection
(DOC) and amino acid sequence of the cleavage site (*) of the HA0 protein.

Virus Subtype Governorate DOC Cleavage site

A/teal/Egypt/00677-NAMRU3/2004 H1N1 Damiatta 1/28/2004 PSIQS–-R*G

A/shoveler/Egypt/00134-NAMRU3/2005 H1N1 Damiatta 1/13/2005 PSIQS–-R*G

A/shoveler/Egypt/14029-NAMRU3/2006 H1N1 Damiatta 12/8/2006 PSIQS–-R*G

A/teal/Egypt/01351-NAMRU3/2007 H1N1 Damiatta 1/26/2007 PSIQS–-R*G

A/teal/Egypt/20431-NAMRU3/2003 H1N2 Damiatta 12/22/2003 PSIQS–-R*G

A/teal/Egypt/09888-NAMRU3/2005 H4N6 Damiatta 10/3/2005 PEKAS–-R*G

A/shoveler/Egypt/20313-NAMRU3/2003 H5N2 Damiatta 12/15/2003 PRE––TR*G

A/shoveler/Egypt/13251-NAMRU3/2006 H6N2 Damiatta 12/2/2006 PQIET–-R*G

A/teal/Egypt/13203-NAMRU3/2006 H6N2 Damiatta 12/2/2006 PQIET–-R*G

A/shoveler/Egypt/14879-NAMRU3/2006 H7N1 Damiatta 12/22/2006 PELPK–GR*G

A/shoveler/Egypt/00597-NAMRU3/2004 H7N1 Damiatta 1/27/2004 PEIPK–GR*G

A/shoveler/Egypt/00017-NAMRU3/2007 H7N3 Damiatta 12/29/2006 PEIPK–GR*G

A/shoveler/Egypt/00241-NAMRU3/2007 H7N3 Damiatta 1/5/2007 PEIPK–GR*G

A/teal/Egypt/00835-NAMRU3/2004 H7N7 Damiatta 2/18/2004 PEIPK–GR*G

A/shoveler/Egypt/09864-NAMRU3/2004 H7N7 Damiatta 12/22/2004 PEIPK–GR*G

A/Egyptian goose/Egypt/05588-NAMRU3/2006 H7N7 Aswan 4/7/2006 PEIPK–GR*G

A/shoveler/Egypt/00215-NAMRU3/2007 H7N9 Damiatta 1/5/2007 PEIPK–GR*G

A/teal/Egypt/12908-NAMRU3/2005 H10N1 Port Said 11/21/2005 PEIMQ–GR*G

A/shoveler/Egypt/00006-NAMRU3/2007 H10N1 Damiatta 12/29/2006 PEIMQ–GR*G

A/shoveler/Egypt/01574-NAMRU3/2007 H10N4 Damiatta 2/9/2007 PEIMQ–GR*G

A/shoveler/Egypt/00600-NAMRU3/2004 H10N7 Damiatta 1/27/2004 PEIMQ–GR*G

A/shoveler/Egypt/09782-NAMRU3/2004 H10N7 Abu Simbel 12/18/2004 PEIMQ–GR*G

A/shoveler/Egypt/09781-NAMRU3/2004 H10N7 Abu Simbel 12/18/2004 PEIMQ–GR*G

A/shoveler/Egypt/01198-NAMRU3/2007 H10N7 Damiatta 1/19/2007 PEIMQ–GR*G

A/teal/Egypt/01207-NAMRU3/2007 H10N7 Damiatta 1/19/2007 PEIMQ–GR*G

A/shoveler/Egypt/00004-NAMRU3/2007 H10N9 Damiatta 12/29/2006 PEIMQ–GR*G

A/teal/Egypt/00688-NAMRU3/2004 H11N9 Damiatta 1/28/2004 PAIAS–-R*G

A/teal/Egypt/11974-NAMRU3/2005 H13N8 Damiatta 9/10/2005 PAISN–-R*G

doi:10.1371/journal.pone.0068522.t002
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nucleotide sequence for each gene was 97% identical to the closest

related virus from the same cluster. This is the first isolate of a

H13N8 subtype from a duck species and the second duck isolate of

any H13 subtype virus (the other is H13N6). Both A/shoveler/

Egypt/09782-NAMRU3/2004 and A/shoveler/Egypt/09781-

NAMRU3/2004 (H10N7), collected on the same day and

location, were identical in their HA gene, and were almost

identical in their N7 gene, clustering closest with each other in all

internal genes, suggesting sampling of nearly identical viruses

(Figures 1, S1, S2). The internal genes of A/teal/Egypt/20431-

NAMRU3/2003 (H1N2) were very similar to those of a previously

reported A/avian/Egypt/920431/2006 (H9N2) virus (Figure S1).

Bayesian Analysis and TMRCA Estimates
Dated phylogenetic trees using Bayesian analysis were inferred

and TMRCA were estimated using small datasets with 92

sequences (including the 28 new isolates described herein).

Egyptian viruses from this study were assigned to between 5

(NS) and 14 (NP) distinct phylogenetic groups based on high

posterior probability support at a common node (Figures 2 and 3).

Most virus sequences clustered with AIV collected from more than

one of the four different flyways and in the flyway groupings were

neither specific to subtype nor to dates of collection or TMRCA

estimates at the common node (Figures 2 and 3).

Unlike all other viruses, the PB2, PB1 and NP genes of A/

shoveler/Egypt/00017-NAMRU3/2007 (H7N3) grouped with

East Asian sequences indicating genetic transfer from the East

Asian gene pool (Figures 2 and 3, Figure S1). The PB2 gene

sequences of viruses from Egypt clustered in 11 distinct

phylogenetic groups with high statistical confidence as indicated

by large posterior probabilities (Figure 2A). A majority of

phylogenetic groups (n = 9) contained genes that were associated

with 2 or more flyways (BS-MED and EA-WA, Figure 2A).

Groups 1 and 4 were comprised of genes clustering only with

viruses from the Nile Delta (Figure 2A, Table 3). Group 1 had

TMRCA estimates around the year 2004 (HPD 95% 4.72, 9.39)

and group 4 had the earliest TMRCA estimate of all the groups in

PB2 phylogenies around the year 1988 (HPD 95% 16.72, 29.99).

In addition, three viruses clustered in groups with distinct

geographic flyways and were segregated from all other Egyptian

virus genes (groups 8–10, Figure 2A, Table 2).

The PB1 genes clustered in 9 diverse groups with mixed flyways,

except for three Egyptian viruses that clustered apart from all

other viruses (groups 3, 5, and 9, Figure 2B, Figure 3). Groups 2, 4

and 6 were all related to the Black Sea –Mediterranean and group

10 with East African- West Asian flyway. The TMRCA ranged

from 1994 (HDP 95% 8.69, 27.44) for group 1 to 2003 (HDP 95%

7.21, 9.19) for group 6 (Table 2).

In the PA gene, viruses grouped in 8 phylogenetic clusters with

group 1 containing only the H13N8 virus, which had an estimated

TMRCA around 1969 (HPD 95% 29.76, 54.73). In group 8 there

were only viruses from Egypt with a TMRCA around 1995

(Table 2, Figures 2 and 3). Groups 2 and 5 were comprised of

viruses that belonged to the Black Sea-Mediterranean flyway.

Group 7 viruses clustered with a virus located in the Central Asian

flyway and diverged around 2001 (HPD 95% 7.81, 10.41). Group

3 contained viruses that shared common ancestry with 2 HPAI

H5N1 viruses (A/whooper swan/Hokkaido/4/2011 and A/

grebe/Tyva/2/2010) that had most probably diverged around

2005 (HPD 95% 4.91, 7.1; Table 2). When the same viruses were

analyzed in large trees, they clustered with other AIV subtypes

(data not shown).

The NP gene sequences clustered in 14 different groups. Group

6, 10 and 11 contained only Egyptian viruses (Figures 2D, 3).

Single Egyptian viruses clustered each with distinct viruses from

the Central Asian flyway (group 1, and 8), the East Asian-

Australian flyway (group 2) and the BS-MED flyway (groups 4, 9,

12, 14) (Figures 2D, 3). TMRCAs ranged from 1993 (HDP 95%

14.29, 20.88, Table 2) in group 8 to the most recent in the year

2005 (HDP 95% 4.56, 7.35) for group 2. A single virus, A/

shoveler/Egypt/14029-NAMRU3/2006 (H1N1), clustered closest

with HPAI H5N1 viruses of lineage G V X-series Z Z+ and shared

a TMRCA around the year 1996 (HPD 95% 11.8, 18.29, Table 2).

Large datasets used to generate preliminary trees showed the latter

virus shared a node with AIV viruses A/duck/Fujian/12371/2005

(H6N2) and A/chicken/Guangxi/3791/2005 (H5N1). Also, based

on the large dataset, group 4 viruses shared ancestors with the

Aquatic W lineage of HPAI H5N1 viruses identified in poultry

from Southeast Asia (data not shown) [22].

The MP gene phylogenies the Egyptian virus genes were

separated into 7 groups (Figures 2E, 3). Five groups contained

viruses representing one of the major flyways: Central Asian

flyway in groups 1 and 6, the BS-MED flyway in groups 2, 5 and 7

and the EA-WA flyway in group 4 (Figures 2E, 3). The TMRCAs

were estimated between the year 1988 (HDP 95% 15.72, 31.27,

Table 2) for group 7 and 2004 (HDP 95% 4.33, 9.86) for group 5.

NS gene sequences clustered in 2 alleles with 23 viruses of allele

A and 5 viruses of allele B and in 5 separate phylogenetic groups

(Figures 2F, 3). Group 5 was comprised of H13 sequences with the

common node around the year 1945 (15.75, 151.55), groups 2 and

3 were outlier sequences which did not cluster with any other virus

in the small tree (Table 2). The biggest groups were 1 and 4 with at

least 2 or more viruses collected from different flyways (Figure 3).

Molecular Characterization of Amino Acid Sequences
All subtypes differed in the amino acid sequences of the N-

terminal side of the cleavage site of the HA but lacked a multiple

basic amino acid motif (Table 2). The amino acid residues of HA

known to contribute to receptor binding reflected only avian

consensus sequences and none of the NA sequences displayed the

stalk deletion associated with pathogenicity in HPAI H5N1 viruses

[31]. Furthermore, no neuraminidase-inhibitor or adamantane

antiviral drug resistance markers were detected [32,33,34].

We found some aa residue changes in the internal genes of

avian influenza viruses that were described as being involved in

enhanced polymerase activity in mammalian cells [35]. All of the

Egyptian viruses had the L13P substitution in their PB1 protein

but maintained S678 [35]. A/Egyptian goose/Egypt/5588-

NAMRU3/2006 (H7N7) had N319K in the NP protein which

was also found to increase polymerase activity in H5N1 viruses

[35]. This aa replacement was very rare when comparing 2001

aligned avian influenza NP protein sequences. All viruses had

amino acids typical of avian influenza viruses in the PB2 protein at

residues E627 [36,37,38]. Five viruses had the serine at position 66

in their PB1-F2, which has been shown in H5N1 viruses to

increase virulence in mammals [39]. All viruses had a full length

Figure 1. Phylogeny of HA gene sequences of H1 to H16 subtypes (A) and NA gene sequences of N1 to N9 subtypes (B). Viruses
identified in this study from Egypt and Ukraine are in boldface. NJ trees were calculated with Mega4 and color coded for each subtype [25]. For
Figure 1A H2, H12, H15, H16 HA sequences and for Figure 1B N5 NA gene sequences were included as reference only. Trees are rooted on an
influenza B virus sequence (B/Yamagata/186/2005).
doi:10.1371/journal.pone.0068522.g001
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PB1-F2 (1–87 aa) unlike truncated versions found in the human

pdmH1N1 (PB1-F2 encodes 11 amino acids) and human seasonal

influenza H1N1 (PB1-F2 encodes 57 amino acids) [40]. Human-

influenza associated amino acid residues include PB1-F2 in

positions 76, 82, 87 [41,42,43]. In our dataset, 22 viruses shared

a serine at position 82, one virus had a glycine at position 87, and

two viruses had both 82 and 87 residues replaced by aserine (A/

shoveler/Egypt/14879-NAMRU3/2006, H7N9; A/teal/Egypt/

00677-NAMRU3/2004, H1N1). M1 and M2 protein sequences

were typically avian-like. The NS1 proteins of allele B viruses

differed in at least 67 amino acids from allele A counterparts. NS1

residues 186 and Phe103/Met106 have been implicated in

interaction with anti-IFN capacity [44,45]. Viruses that belonged

to NS allele B in this study had the Phe103Y/Met106 substitution

Figure 2. Phylogenies and TMRCA of PB2 (A), PB1 (B), PA (C), NP (D), MP (E) and NS (F) genes inferred with BEAST [26]. Posterior
probabilities (.0.7) are shown at each node on the tree and a time scale in years is shown below each tree. Branches containing Egyptian viruses
were collapsed around nodes and numbered according to the tree topology from top to bottom. All trees are rooted to the ancestral virus, A/equine/
Prague/2/1956 H7N7, and the outlier branch was replaced by a black arrow except NS, which is midpoint rooted. The coloring of collapsed
monophyletic groups (key shown in figure inset) corresponds to the predicted flyway (Red for East Asian-Australian flyway, purple for Black Sea-
Mediterranean flyway, green for Central Asian flyway, blue for East African-West Asian flyway, orange for Nile Delta and yellow if the group contained
2 or more reference viruses collected from different flyways. Viruses that did not cluster with any other viruses are indicated with (#) behind the
number. Abbreviations aq = aquatic, barhead = bar headed, ck = chicken, dk = duck, eq = equine, gar = garganey, gs = goose, magp = magpie,
ml = mallard, ost = ostrich, qu = quail, pel = pelican, sho = shoveler, te = teal, tk = turkey, wi = wild, whisk = whiskered, wh-fr-gs = white fronted goose,
EGY = Egypt, N3 = NAMRU3, UKR = Ukraine.
doi:10.1371/journal.pone.0068522.g002

Figure 3. Phylogenetic groups of migratory flyways of viruses from this study. Viruses identified in this study and included in the TMRCA
analysis are grouped according to their flyway in the dated phylogenetic tree (Figure 2). Subtypes are also included. Color code is indicated in the
figure legend and reflects the inferred flyway in which the Egyptian viruses grouped (red for East Asian-Australian flyway, purple for Black Sea-
Mediterranean flyway, green for Central Asian flyway, blue for East African-West Asian flyway, orange for Nile Delta and yellow if the group contained
2 or more reference viruses collected from different flyways). Viruses from this study that did not cluster with any other viruses from Figure 2 are
indicated with (#) behind the number and were assigned to flyways that was inferred from large trees (data not shown).
doi:10.1371/journal.pone.0068522.g003
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in their NS1, whereas all viruses of allele A had Phe103/Met106.

The NS2 of allele B viruses differed by at least 14 amino acids

from those of allele A viruses. In the NS2 position, all viruses

contained the avian-specific methionine or glutamine at residue 14

and avian-specific serine at position 70 except for 2 viruses with a

glycine (A/teal/Egypt/01351-NAMRU3/2007, H1N1 and A/

teal/Egypt/11974-NAMRU3/2005, H13N8) [46]. Similar to the

phylogenetic divergence, the H13N8 virus differed also in the

internal protein amino acid sequence with at least 16 (NP gene), 11

(PB2), 9 (PB1) and 7 (PA) amino acids from any other virus

identified in this study.

Discussion

This study provides a detailed characterization of full genomes

of multiple subtypes of low pathogenicity avian influenza A viruses

collected from wild birds in Egypt. Notably, 15 different influenza

A subtypes, including a rare H13N8 virus subtype, were identified

through this multiyear surveillance program. The 28 viruses

described were collected during avian influenza surveillance from

2003 through 2007 with all of the mature HA amino acid cleavage

sites identified as those typically found in low pathogenicity AI

viruses [47]. The six internal genes from all the Egyptian and

Ukrainian viruses analyzed in this study were most closely related

to genes from other AIV previously detected in the Paleartic

ecozone. The internal genes (PB2, PB1, PA, NP, M, and NS)

clustered with viruses predominantly of European, African,

Central Asian or Far Eastern origin, which is in agreement with

the convergence of major migratory bird flyways in the Nile Delta

[11,13,48]. All sequences showed different clustering patterns for

each gene except for H13N8, which always grouped with H13 and

H16 viruses (Figure 2; Figure S3). All other Egyptian viruses either

formed specific subtype clusters or grouped according to collection

date or geographic origin of collection. The HA of the H11 virus

(A/teal/Egypt/00688-NAMRU3/2004) grouped interspersed in

the tree with other viruses of the same subtype (Figure S1),

indicating this could be a sign of sequence gaps because only 68

H11 HA sequences are available from public databases (excluding

the New World isolates).

For all genes, except for the NP gene of A/shoveler/Egypt/

14029-NAMRU3/2006 (H1N1), virus sequences grouped sepa-

rately from Egypt HPAI H5N1 viruses. The latter virus shared a

most recent common ancestor with HPAI H5N1 viruses circulat-

ing around 1996, indicating a common evolutionary pathway in a

wild bird reservoir. Most of the viruses showed a high similarity in

their nucleotide sequence to other low pathogenic viruses from the

three flyways. However, some genes formed independent groups

with viruses sequenced only for this study suggesting these viruses

were enzootic in the region or represented sampling bias in the

birds surveyed. Other genes did not cluster with any other virus

present indicating significant sequence gaps.

Previously described genotypes of HPAI H5N1 viruses were

applied in phylogenetic analyses but were not specifically used to

define specific clustering for LPAI viruses described in this study.

For the PA gene, some H5N1 HPAI viruses formed clusters with

LPAI viruses and were separate from all other known H5N1

viruses. These 3 H5N1 viruses belonged to clade 2.3.2.1 (based on

WHO/OIE/FAO HA clade nomenclature) [49]. These viruses

were found both in domestic poultry and wild birds indicated a

possible transmission route between the different hosts. According

to the genotyping for H5N1 viruses, the PA sequence of virus A/

chicken/Primorje/1/2008 belongs to the Aquatic V lineage

usually found in aquatic birds. This may be a sign of a previous

exchange of PA gene segments between low pathogenic influenza

in wild birds or poultry and HPAI viruses of subtype H5N1.

However, the lack of LPAI genes found in circulating H5N1

viruses in Egyptian poultry indicates there are few opportunities

for viruses of wild bird-origin to reassort with viruses of poultry-

origin [50].

Most of the densely populated areas of the country are on or

around major water reservoirs, such as the Nile Delta in the

northeast, the Nile River in central and Upper Egypt, and in the

southeastern part of the country around Lake Nasser and the

Aswan dam region. Low pathogenic viruses have not been

Table 3. Estimated calendar year (with decimals) of the most recent common ancestor (TMRCA) of phylogenetic groups 1 to 14
described in Figures 2 and 3.

Gene Segment

Group PB2 PB1 PA NP M NS

1 2004.59 (4.77, 9.39) 1994.54 (8.69, 27.44) 1969.23 (29.76, 54.73) 1996.44 (9.02, 21.13) 2003.98 (5.35, 10.9) 1945 (15.75, 151.55)

2 1995.7 (12.08, 20.08) 1998.03 (12.07, 14.74) 1996.28 (12.97, 16.92) 2005.26 (4.56, 7.35) 2004.54 (4.33, 9.86) 1988 (14.15, 36.77)

3 1996.07 (11.87, 19.61) 1997.04 (11.11, 17.73) 1995.16 (16.13, 23.15) 1995.59 (13.11, 18.68) 1990.78 (15.28, 27.74) 2005.72 (5.28, 5.29)

4 1988.64 (16.72, 29.99) 2001.82 (8.15, 10.39) 2002.16 (7.59, 10.27) 2000.8 (8.29, 12.78) 2003.2 (5.98,10.29) 1980.84 (21.14, 46.83)

5 1990.75 (15.07, 27.35) 2002.34 (7.43, 9.98) 2000.94 (8.79, 11.67) 1996.21 (12.02, 18.28) 1998.75 (9.06, 18.2) 2007.03 (3.97, 3.97)

6 1997.73 (10.01, 17.45) 2003.08 (7.22, 9.13) 2000.97 (8.96, 11.41) 2000.34 (8.82, 13.06) 2001.93 (7.11, 12.91)

7 1995.84 (11.66, 29.2) 2001.51 (8.32, 10.9) 2001.92 (7.81, 10.41) 2001.92 (6.52, 12.13) 1988.31 (15.72, 31.27)

8 1990.75 (15.07, 27.35) 1999.16 (9.19, 16.02) 1995.5 (9.02, 14.84) 1993.83 (14.29, 20.88)

9 1997.28 (11.61, 17.73) 1997.09 (10.69, 18.03) 1995.6 (12.63, 18.81)

10 1998 (7.26, 19.19) 1996.22 (11.8, 18.29)

11 1994.72 (11.23, 23.62) 1995.28 (10.51, 21.06)

12 2001.68 (8.02, 11.05)

13 2003.5 (5.17, 11.52)

14 1998.09 (9.38, 16.97)

TMRCA of each internal gene segment group is shown with the 95% HPD in parenthesis.
doi:10.1371/journal.pone.0068522.t003

LPAI Viruses Circulate among Wild Birds in Egypt

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e68522



identified from domestic poultry in Northeast Africa and might be

under-reported due to sequence gaps unlike in Sub-Saharan and

South African regions where wild bird surveillance was reported

[51]. Additionally, the low pathogenic viruses cause only mild

symptoms in migratory birds and escape surveillance targeted

towards sick or dead birds [52].

The seasonal migration patterns facilitate contact and possible

transmission of influenza viruses to poultry especially for

Anseriformes such as mallard, teal and shoveler. Mallard species

migrate to their winter, non-breeding sites located in the North of

Egypt including the Nile Delta region [53]. Other flyways may

contribute to diversity of low pathogenic sequences in Egypt, such

as the Central Asian, the East Asian- Australian, and East Atlantic

flyways, where breeding regions of Anseriformes species reside (Asia-

Pacific migratory waterbird conservation strategy: 2001–2005

2001; Stroud 2004). Two of the major migratory flyways overlap

in Egypt, including the Black-Sea-Mediterranean and the East

African-West Asian flyway [13,48], which was a likely contributing

factor to the extensive genetic diversity described in this study.

Unlike all other viruses, A/shoveler/Egypt/00017-NAMRU/

2007 (H7N3) clustered closely with Southeast Asian viruses in

PB2, PB1 and NP gene sequences. Furthermore, for several genes

and viruses, close grouping with viruses from the Central Asian

flyway was observed. Both indicate that not only genes derived

from AIV of the BS-MED and EA-WA flyways contribute to the

gene pool in Egypt’s LPAI viruses, but also genes from the Central

Asian and Southeast Asia flyways. The large gene pool of the

internal genes has a low divergence when compared to the

external genes HA and NA and is characteristic for low pathogenic

AIV. Thus, the identification and significance of possible

reassortment among these viruses were difficult to establish [54].

Migratory birds carrying influenza viruses travel long distances in

large groups and could intermingle with local bird populations

transmitting influenza viruses to local wild birds and free range

poultry [55]. Our data support these findings with genes sequences

that evolved independently and grouped with viruses of diverse

origins and lacking a defined association by subtype, origin or date

of collection. Furthermore, the phylogenetic groups that we

defined for each gene shared a most common recent ancestor

dating within 5 to 10 years prior to the virus sample collection date

(2003–2007), except for H13N8 virus genes. This would be

consistent with the notion that LPAI viruses undergo exchange of

internal genes regularly. We observed low sequence diversity in

sequences from internal genes and interspersed clustering, unlike

that observed for highly pathogenic viruses circulating in poultry

that have diversified into different genotypes [22].

For the first time we analyzed full genome sequences of multiple

subtypes not reported previously in Africa, including H1N1,

H7N1, H10N4 and H10N7. In addition, this is the first subtype

H13N8 isolated from a duck (Anas crecca; Common teal, Eurasian

teal) and is only the third full genome of this subtype available in

public databases. Remarkably, the H13N8 virus clustered

separately in all genes and differed substantially compared to

any other subtype except for H16 viruses. The high diversity may

indicate a separate gene pool for these two subtypes or gaps in

surveillance. We found that the H13N8 sequences were at least 7

(PA) to 16 (NP) amino acids different from any of the other viruses

identified here. The high divergence in the NP protein could

indicate a possible link for this species restriction, as nucleoprotein

sequences were species specific in phylogenetic comparisons. The

H13 subtypes are commonly found in shorebirds (Charadrii-

formes) [56] and rarely reported from Anseriformes in Siberia/Japan

[57], and Alaska [58]. It was hypothesized previously that the

predominant isolation of H13 and H16 viruses from gull species

confirms the common notion that these viruses belong to the

influenza A virus ‘‘gull lineage’’ [59]. H13 and H16 viruses are

genetically distinct from viruses from other hosts and seem to have

adapted to replication in gull hosts in particular [60,61]. Extensive

studies are needed to determine whether the duck isolate from this

study was a transient infection acquired from a shorebird or

indeed a virus adapted to ducks.

In conclusion, here we show for the first time LPAI virus

sequences identified in Egypt from 2003 to 2007 illustrating the

importance of the Nile Delta as a funnel for a large diversity of

influenza A viruses. Internal gene sequences were closely related to

Eurasian, African and/or Middle East-origin viruses. Using

Bayesian phylogenies with TMRCA analyses, the internal genes,

in general, should be grouped according to specific migratory bird

flyways indicating the Nile Delta serves as a source for a widely

distributed influenza A virus gene pool. Most recent common

ancestors identified were 5 to 10 years before the collection date of

the viruses, except for H13 viruses. All viruses showed a low

sequence variation, except for the H13N8 subtype, which

clustered separately from all other viruses and was found for the

first time in a duck species.

Supporting Information

Figure S1 Phylogenetic trees of HA genes analyzed
using large datasets of publicly available sequences
and LPAI viruses sequenced from Egypt (boldface). The

eight trees are labeled with their HA subtype H1 (A), H4 (B), H5

(C), H6 (D), H7 (E), H10 (F), H11 (G), H13 (H). Separate branches

were collapsed and labeled according to their host and location if

they did not contain any virus from this study (e.g. North

American Avian). NJ trees were calculated with Mega4 [25] and

Kimura 2-parameter distance model. The subtypes are shown

behind virus names; in (D) all viruses were of subtype H6N2. In

H7 (E) high pathogenicity viruses are indicated by+following the

virus names.

(PDF)

Figure S2 Phylogenetic trees of NA genes analyzed using
large datasets of publicly available sequences and LPAI
viruses sequenced from Egypt (boldface). The eight trees

are labeled with their NA subtype N1 (A), N2 (B), N3 (C), N4 (D),

N6 (E), N7 (F), N8 (G), N9 (H). Separate branches were collapsed

and labeled according to their host and location if they did not

contain any virus from this study (e.g. North American Avian). NJ

trees were calculated with Mega4 [25] and Kimura 2-parameter

distance with subtypes shown behind virus names.

(PDF)

Figure S3 Reference viruses to phylogenetic groups
described in this study by group (Figures 2 and 3) and
gene segment. Kimura 2-parameter distances were calculated

from bigger alignments in Mega4 (Tamura et al. 2007). Color

codes reflect flyways the reference viruses belong to. Abbreviations

aq = aquatic, av = avian, barhead = bar headed, ck = chicken,

dk = duck, eggs = Egyptian goose, eq = equine, gar = garga-

ney,gl = gull, gs = goose, magp = magpie, ml = mallard, ost = os-

trich, qu = quail, pel = pelican, sho = shoveler, te = teal, tk = tur-

key, wi = wild, whisk = whiskered, wh-fr-gs = white fronted goose,

EGY = Egypt, GD = Guangdong, N3 = NAMRU3, PT = Portu-

gal, Rep = Republic, UKR = Ukraine.

(PDF)

Table S1 Primer sequences used in the multiplex
subtype detection assay.

(XLSX)
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