

This article was downloaded by: [CDC]

On: 21 February 2012, At: 13:35

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applied Occupational and Environmental Hygiene

Publication details, including instructions for authors and subscription information:

<http://www.tandfonline.com/loi/uaoh20>

Use of Dermal LD 50 as a Criterion for Skin Notation

Chen-Peng Chen, Mark F. Boeniger & Heinz W. Ahlers

Available online: 30 Nov 2010

To cite this article: Chen-Peng Chen, Mark F. Boeniger & Heinz W. Ahlers (2003): Use of Dermal LD 50 as a Criterion for Skin Notation, *Applied Occupational and Environmental Hygiene*, 18:3, 154-155

To link to this article: <http://dx.doi.org/10.1080/10473220301350>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.tandfonline.com/page/terms-and-conditions>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Letter to the Editor

Use of Dermal LD₅₀ as a Criterion for Skin Notation

Dear Dr. Pierce,

We read with interest the recent article by Czerczak and Kupczewska entitled “Assignment of Skin Notation for Maximum Allowable Concentration (MAC) List in Poland” in the March 2002 issue of *Applied Occupational and Environmental Hygiene*.⁽¹⁾ Czerczak and Kupczewska analyzed the organic chemicals from the Polish MAC list for skin notation (the *Sk* index) and concluded that “...the dermal dose LD_{50s} [lethal dose 50 percent] determined on experimental animals ought to be adopted as the fundamental criterion for providing a substance with the percutaneous absorption notation in the MAC list.”

We would like to comment on the need for a careful analysis of the data underlying a dermal LD₅₀ or an occupational exposure limit (OEL) before using either of them to assess the appropriateness of a dermal hazard notation.

Selection and Coding of a Dermal LD₅₀ Value

The authors introduced an analysis to investigate the correlation between chemicals with *Sk* notations included on the current Polish MAC list and the dermal LD₅₀ values for these chemicals. The analysis involved two steps. First, as stated in the article, the authors “procured LD_{50s} data for the 195 TLV® List (ACGIH®) chemicals from the *Registry of Toxic Effects of Chemical Substances*” (*sic*). The authors grouped the 195 substances into five coded toxicity categories, with the top three categories being *extremely toxic* (LD₅₀ < 20 mg/kg), *highly toxic* (20–200 mg/kg), and *moderately toxic* (200–5,000 mg/kg). Next, the authors used a mathematical formula to “relate the probability of chemical substance *Sk* notation in the MAC list

with the dermal toxicity code.” It is not clear what values the authors compared or which “195 TLV® List (ACGIH®) chemicals” they used as a base. However, the chemicals appear to be the 195 substances that have established ACGIH® TLVs® as well as dermal LD₅₀ values published in the *Registry of Toxic Effects of Chemical Substances* (RTECS) in 1988, as reported by Kennedy et al.⁽²⁾ This presumption is supported by the fact that the probability data reported by Czerczak and Kupczewska are the same as those reported by Kennedy et al.

Kennedy et al. suggested that all chemicals with LD₅₀ values below 1000 mg/kg should initially be assigned a skin notation until more definitive work proves otherwise. The authors noted that the Group of Experts for Chemical Agents in Poland proposed that “all chemicals with [dermal] LD_{50s} value below 1000 mg/kg should be provided with the *Sk* index in the MAC list.”

In our experience, the success of the above approach depends on the reliability and consistency of dermal LD₅₀ values as a quantitative indicator of the systemic toxicity resulting from skin exposure. In practice, the dermal LD₅₀ values reported for a chemical substance from studies employing different designs or animal species can vary significantly, and the cause of animal death as reported may not distinguish whether the fatalities result from systemic toxicity due to skin absorption or from corrosive effects at the site of administration.

The following examples illustrate some of the difficulties in interpreting LD₅₀ values based on empirical data. The insecticide diazinon (CAS 333-41-5), as summarized in RTECS, has dermal LD₅₀ values of 180, 633, 2750, and 3600 mg/kg for rats, pigs, mice, and rabbits, respectively.⁽³⁾ If we follow the

toxicity coding system the authors outlined, diazinon can be classified either as a *highly toxic* or a *moderately toxic* compound, and can be awarded or denied an *Sk* symbol, depending on the dermal LD₅₀ used to reach the decision. Other examples include ethylene chlorohydrin (CAS 107-07-3), methyl parathion (298-00-0), phorate (298-02-2), ethion (563-12-2), and chlorpyrifos (2921-88-2). These compounds all have significantly different dermal LD₅₀ values (as reported in RTECS), and the dermal LD₅₀ values for each of these compounds fall into different categories of the toxicity coding system described above.

Another source of uncertainty about the quality of dermal LD₅₀ data is the period of exposure adopted in laboratory experiments. The exposure protocol is frequently not included in the dermal LD₅₀ reports in the secondary literature such as RTECS. Most studies yielding dermal LD₅₀ values involve short exposure times, often a single exposure, and very short follow-up observations (often less than 48 hours). These typical dermal LD₅₀ study protocols may not capture chronic effects such as cancer or reproductive effects. The dermal LD₅₀ values are often based on acute effects that render them inappropriate indicators of detrimental effects of long-term exposure. An example is vinyl cyclohexene dioxide (VCD; CAS 106-87-6). VCD has reported dermal LD₅₀ values of 620 µL/kg in rabbits⁽³⁾ and 3216 mg/kg in mice.⁽⁴⁾ Both values are considered to be only moderately toxic following the authors’ toxicity coding system. However, VCD induces skin tumors in rodents from chronic dermal exposures (5 days per week for 103 to 105 weeks).⁽⁴⁾ Chronic effects from long-term exposures to hazardous substances

at low concentrations are a growing occupational health concern. Dermal LD₅₀ values determined on the basis of acute exposures may not provide adequate and necessary information for protecting workers' health.

Other factors that may contribute to the uncertainty of dermal LD₅₀ values from animal studies include the sensitivity of tested animal species and the concomitant exposure to solvent vehicles. The presence of solvents in a mixture may enhance the skin permeation of the tested compounds.⁽⁵⁾ All these experimental variables potentially reduce the accuracy and consistency of empirical data. Therefore, the use of dermal LD₅₀ values requires a careful analysis of data to ensure the quality of data and the validity of results for interpreting systemic toxicity.

Mathematical Determination of Dermal Absorption/Toxicity Potential

Czerczak and Kupczewska also presented a mathematical method designed by Fiserova-Bergerova et al.⁽⁶⁾ to determine the dermal absorption of chemical substances for the purpose of *Sk* assignment. In this method, the *Sk* assignment is determined by relating the chemical dose estimated to be due to dermal absorption to a calculated reference dose based on inhalation uptake at the OEL. The authors also presented a discussion of the Dutch Expert Committee on Occupational Standards based on a similar strategy. This strategy has its limitations: It depends on the reference dose, which in turn depends on the OEL. OELs may be set by analogy, and they may have significant safety factors incorporated into their derivation. Many OELs are simply based on skin, eye, or respiratory tract irritation. These OELs may result in reference doses that are not appropriate bases for determining the systemic effects from dermal absorption.

Conclusions

Dermal LD₅₀ data are often inconsistent and dependent on study protocols,

and the supporting studies are normally conducted in a manner that yields only acute toxicity data. The dermal LD₅₀ is useful as an indicator for occupational health risk only when the health effects of a substance are limited to acute effects. Mathematical methods for estimating the health risks posed by skin absorption of chemical substances are also subject to limitations when used as the single tool in the risk assessment process. As noted above, determining an appropriate reference dose requires a thorough analysis of the data supporting the OEL.

An additional approach that may be considered for screening chemical substances is the parallel use of a validated mathematical model for estimating dermal absorption and the dermal LD₅₀ information. The use of such an approach is currently the goal of our own interest. This approach preserves the simplicity of using dermal LD₅₀ values as a quantitative measure, yet it incorporates the stability of a modeling approach. The approach also circumvents the difficulty in translating laboratory observations of toxic effects in studies with different design protocols. This approach may be a useful tool in adjusting for the observed variations in reporting and calculating dermal LD₅₀ values, variations in criteria for assigning skin notations, and variations in standards for developing OELs.

In this approach, a mathematical model predicting dermal absorption risk is first "calibrated" with chemical substances known to promote systemic toxicity via skin absorption. Through the calibration process, the model variables (e.g., the amount of a chemical that must be absorbed through skin to constitute a health risk) will be properly defined. The model can then be used in addition to dermal LD₅₀ values and other relevant information to assess the risk of skin exposure. The modeling results and the dermal LD₅₀ for a chemical may not always agree. However, the disagreement provides a safeguard to alert the risk assessors that further analysis is necessary to fully quantify the risk; for example, determining whether the LD₅₀ values of the evaluated chemical are based on

systemic or local corrosive effects, or whether the OEL is based on systemic effects or local irritation.

Additional investigations will allow proper analysis and verification of information from the screening processes. These efforts will generate important information and contribute to producing systematic estimates of dermal toxicity for substances that have been inadequately evaluated. These investigations should benefit workers as well as occupational safety and health professionals who are considering dermal risks and the need for protection against the potential effects of hazardous materials.

Respectfully,

Chen-Peng Chen, Ph.D.,
Mark F. Boeniger, M.S., C.I.H.,
and Heinz W. Ahlers, J.D.

REFERENCES

1. Czerczak, S.; Kupczewska, M.: Assignment of Skin Notation for Maximum Allowable Concentration (MAC) List in Poland. *Appl Occup Environ Hyg* 17(3):187-199 (2002).
2. Kennedy Jr., G.L.; Brock, W.J.; Banerjee, A.K.: Assignment of Skin Notation for Threshold Limit Values Chemicals Based on Acute Dermal Toxicity. *Appl Occup Environ Hyg* 8(1):26-30 (1993).
3. National Institute for Occupational Safety and Health: Registry of Toxic Effects of Chemical Substances (RTECS) Database. CD-ROM. NIOSH, Cincinnati, OH (December 2001).
4. National Toxicology Program: Toxicology and Carcinogenesis Studies of 4-Vinyl-1-Cyclohexene Diepoxide (CAS No. 106-87-6) in F344/N Rats and B6C3F1 Mice (Dermal Studies). NTP Technical Report Series No. 362. DHHS (NIH) Pub. No. 90-2817. National Technical Information Service, Springfield, VA (1989).
5. Watkinson, A.C.; Joubin, H.; Green, D.M.; et al.: The Influence of Vehicle on Permeation from Saturated Solutions. *Int J Pharm* 121:27-36 (1995).
6. Fiserova-Bergerova, V.; Pierce, J.T.; Droz, P.O.: Dermal Absorption Potential of Industrial Chemicals: Criteria for Skin Notation. *Am J Indus Med* 17:617-635 (1990).