

induced fluorescence. Parallel processing speeds up handling and improves reproducibility. Picomolar concentrations can be quantified at precision levels ~ 5-10% CV. Miniaturization reduces volume requirements for sample and reagent. A protein is quantified using  $<1 \mu\text{l}$  of sample. Potentially  $>10$  different proteins could be quantified simultaneously from a  $20 \mu\text{l}$  sample, increasing information content and providing results within hours.

## 75.31

**Role of macrophages in traumatic skeletal muscle injury**

Mukesh Summan, Tracy Hulderman, Joanna M Matheson, Petia P Simeonova, Toxicology and Molecular Biology, DHHS/CDC/NIOSH, 1095 Willowdale Road, Morgantown, WV 26505

Traumatic skeletal muscle injuries result in profound histopathological changes and loss of muscle function. These injuries are associated with local infiltration of large numbers of mononuclear cells, degeneration of injured myofibres and phagocytic removal of cell debris. In the present study we evaluated the role of systemic macrophages in the injury/repair mechanisms in a traumatic skeletal muscle injury model using liposome encapsulated clodronate, a drug with well characterized monocyte/macrophage depleting qualities. C57BL/6 mice ( $n = 4$  per group) were injected with clodronate liposomes 48 and 2 hours prior to the freeze injury of the left tibialis anterior (TA) muscle and every third day during the post-injury period. Control mice received phosphate buffered saline (PBS) liposomes. At 1, 3 or 9 days post-injury, the TA muscles were harvested for histology or gene expression evaluation by quantitative real time RT-PCR. Histopathological examination revealed less inflammatory cell infiltration in the injured muscles of clodronate treated mice at day 3 post-injury and delayed muscle tissue recovery with an impaired clearance of the necrotic myofibers at day 9 post-injury. Furthermore, macrophage depletion significantly attenuated injury-induced inflammatory cytokine and growth factor mRNA expression, for example tumor necrosis factor  $\alpha$ , when compared to the PBS-liposome treated mice. These findings define the role of macrophages and the related cytokines as critical components of the complete recovery from skeletal muscle traumatic injury.

## 75.32

**Reversal of Erosive Changes with Addition of Infliximab to Standard Therapy in Rheumatoid Arthritis**

David H Snow, Carolina Arthritis Associates, PA, 1710 S. 17th Street, Wilmington, NC 28401

Infliximab (IFX) in combination with methotrexate (MTX) significantly improves signs and symptoms of rheumatoid arthritis (RA), improves physical function and inhibits progression of structural joint (JT) damage. We describe reversal of erosive (ERO) changes when IFX was added to standard therapy (TX) in a refractory RA patient (pt). A 67 year old white male with a 3yr history of RA had impressive synovitis of metacarpophalangeal (MCP), proximal interphalangeal (PIP) and subtalar JT, wrists, ankles, and knees. Radiographic (RG) evidence revealed extensive ERO changes of PIP, joint space narrowing (JSN) of MCP, and erosions of IP. Previous TX with prednisone (GC), NSAIDS, HCQ, MTX, Aurothioglucose (AU), and SSZ proved inadequate. Synovitis and elevated ESR persisted with increasing weekly doses of MTX. After 3 infusions of 3mg/kg IFX, synovitis of MCP and PIP resolved and fist function was restored to normal. After 2 years, pt continues to receive 5.6 mg/kg IFX q8 wk with no serious infusion reactions or serious adverse events. Au TX was discontinued, GC and MTX doses decreased. Pt shows no evidence of synovitis in hands, wrists, feet, or knees. Repeat RG evaluations show healing of ERO changes and JSN of PIP, right first IP, and restoration of ulnar styloid process. Pt reports marked improvement in quality of life and physical function. This case report suggests that IFX added to standard combination therapy may promote reversal and healing of those erosive changes.

## 75.33

**Interleukin 6 indirectly induces migration of cultured epidermal cells from IL-6 deficient mice**

Randle Michael Gallucci, Dusti K Sloan, Anne B Murray, Sijy J O'Dell, Pharmaceutical Sciences, University of Oklahoma, P.O. Box 26901, Oklahoma City, OK 73190

We have previously shown that IL-6 deficient transgenic mice (IL-6KO) display significantly delayed cutaneous wound healing compared to wild type control animals, requiring up to three fold longer to heal. While the necessity of inflammation during wound healing has been well established, the role of IL-6 in this process has not. To further describe the role of IL-6 in skin wound healing, an in vitro model was developed utilizing cultured dermal keratinocyte and epidermal fibroblast cells from neonatal IL-6KO mice. This system allows for the direct assessment of the effects of IL-6 on skin cells without the confounding presence of endogenous IL-6. Using a transwell migration assay, we have found that IL-6 appears to significantly induce cell motility in cultured IL-6KO keratinocytes (up to 5 fold) when cultured in the presence of dermal fibroblasts. In addition to these functional data, results from gene array analysis of IL-6 treated fibroblasts indicate that IL-6 does not appear to modulate any known soluble keratinocyte migratory factors. These data indicate that a likely mechanism by which IL-6 can modulate wound healing is by stimulating the migration of keratinocytes indirectly through the production of an as yet unidentified soluble fibroblast derived factor.

## 75.34

**Automation of intracellular cytokine staining for flow cytometry**

Laurel Nomura<sup>1</sup>, Holden T. Maecker<sup>1</sup>, Pierre Bierre<sup>2</sup>, <sup>1</sup>BD Biosciences, Immunocytometry Systems, 2350 Quince Dr, San Jose, CA 95131, <sup>2</sup>PB Consulting, pbierre@attbi.com

Flow cytometric analysis of intracellular cytokine responses offers a way to measure immune function within specific cell types (e.g. CD4, CD8 T-cells). After activation of whole blood samples, cells are prepared for cytokine flow cytometry (CFC) by lysing, centrifugation washing, permeabilizing, rewashing, staining with mAb, and washing again. Our goal was to adapt a commercially available, cell-washing test-tube robot, BD Biosciences' Lyse/Wash Assistant (LWA), to automate these sample preparation steps. The LWA with Intracellular Option handles all the above steps except mAb dispensing. The LWA first runs a *pre-staining protocol*, which performs cell lysis and permeabilization. Samples are then removed for manual mAb addition. Finally, the samples go back on the LWA for a *post-staining protocol*, which times the mAb incubation and performs a final wash, outputting analysis-ready cells. Equivalency with the manual CFC method was established through regression analysis on two key results variables: percent of CD69+ cytokine+ cells, and population mean signal-to-noise. Lab worker hands-on time was reduced by about 80%. The LWA is very simple to operate, and with a few modifications for intracellular staining, offers a low-cost method for standardizing sample preparation of cytokine flow cytometry assays. Research supported by BD Biosciences, Immunocytometry Systems.

## 75.35

**Role of CCL3 in Protective Antiviral Immunity**

John M Dye<sup>1</sup>, Allan J. Zajac<sup>2</sup>, Daniel G Quinn<sup>1</sup>, <sup>1</sup>Microbiology & Immunology, Loyola University, 2160 South First Avenue, Maywood, IL 60153, <sup>2</sup>Microbiology, Univ. of Alabama at Birmingham, Birmingham, AL

We have shown that mice deficient in the chemokine CCL3 or its receptors fail to develop protective immunity against secondary intracranial (i.c.) infection with lymphocytic choriomeningitis virus (LCMV). Immunostaining of brain sections revealed no difference between the accumulation or localization of CD8 cells in the brains of i.c. infected CCL3-deficient mice compared with B6 mice. This suggests that the failure of CCL3-deficient mice to control the infection is not due to a failure of the CD8 cells to localize to the infected CNS. By flow cytometry we found that all of the LCMV-specific CD8 cells and approximately half of the LCMV-specific CD4 cells express CCL3. We investigated whether CCL3 production by infiltrating immune cells

The American Association of Immunologists  
90<sup>th</sup> Anniversary Annual Meeting

**Immunology 2003**  
**Denver, Colorado**  
**May 6 – 10, 2003**

APR 23 2003

**ABSTRACTS 29.1 – 162.31**

**Indexes**  
**Key Word**  
**Author**

The American Association of Immunologists

American Association of Veterinary  
Immunologists

American Society of Transplantation  
Association of Medical Laboratory

Immunologists

Canadian Society for Immunology  
Clinical Immunology Society

International Society for Interferon and Cytokine  
Research

International Society for  
NeuroImmunoModulation

International Society of Neuroimmunology

PsychoNeuroImmunology Research Society

Society for Leukoctye Biology

Society for Mucosal Immunology

Society for Natural Immunity

# THE FASEB JOURNAL

Volume 17, Number 7

April 14, 2003

## ABSTRACTS

### WEDNESDAY

May 7, 2003

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| T Cell Development .....                                            | C1  |
| Signaling and Costimulation in Allergic Inflammation .....          | C9  |
| Immunopathogenesis of Infection .....                               | C15 |
| Vaccine and Immunotherapeutic Strategies against Pathogens .....    | C23 |
| Pathogenic Mechanisms in Autoimmune Disease .....                   | C31 |
| Animal Models of Autoimmune Disease .....                           | C38 |
| Regulation of Leukocyte Migration and Inflammation in Disease ..... | C43 |
| Host Defense and Innate Immunity .....                              | C50 |
| Transplantation Immunology I .....                                  | C58 |
| Signaling of Chemokines and Cytokines .....                         | C65 |
| Molecular Regulation of Inflammation .....                          | C70 |
| Anti-tumor Effector Cells and Regulation of Tumor Immunity .....    | C73 |
| Effector Mechanisms and Regulation of Effector Cells .....          | C79 |
| Protective Mucosal Immune Responses .....                           | C85 |

### THURSDAY

May 8, 2003

|                                                                  |      |
|------------------------------------------------------------------|------|
| B Cell Development and Activation .....                          | C88  |
| Transcriptional Regulation of the Immune System .....            | C97  |
| Regulation of Lymphocyte Migration and Tissue Localization ..... | C104 |
| Fc Receptors, Complement and Acute Phase Proteins .....          | C106 |
| Transplantation Immunology II .....                              | C111 |
| The Role of Chemokines and Cytokines .....                       | C116 |
| Class I Pathway and CD8 T Cell Recognition .....                 | C119 |
| Immunotherapy of Cancer .....                                    | C122 |
| Non-classical Antigen Presentation Pathways ..                   | C129 |
| Role of Modulatory Cytokines in Disease Models .....             | C130 |
| Immunomodulation I: Cytokines and Chemokines .....               | C139 |

|                                                                  |      |
|------------------------------------------------------------------|------|
| Immunomodulation II: Cytokines and Chemokines .....              | C142 |
| Hematopoiesis and Mechanisms of Cell Survival .....              | C147 |
| Innate Immunity against Pathogens .....                          | C153 |
| Lymphocyte Responses to Pathogens .....                          | C162 |
| Tolerance and Autoimmunity .....                                 | C174 |
| Costimulation and Autoimmunity .....                             | C177 |
| Genetics and Autoimmune Disease .....                            | C179 |
| B Cells and Autoantibodies in Pathogenesis of Autoimmunity ..... | C182 |

### FRIDAY

May 9, 2003

|                                                                                                      |      |
|------------------------------------------------------------------------------------------------------|------|
| Molecular Aspects of Repertoire Formation (Recombination, Isotype Switching, Somatic Mutation) ..... | C190 |
| Host Defense against Parasitic and Fungal Infections .....                                           | C193 |
| Macrophages and Dendritic Cells .....                                                                | C197 |
| Immune System Regulation: Signal Pathways in B Cell Development, Regulation and Activation .....     | C202 |
| Mechanisms of Costimulation and Tolerance ....                                                       | C210 |
| Immune System Regulation: Signaling Pathways in T Cell Development, Regulation, and Activation ..... | C218 |
| Influences on Mucosal Immunity .....                                                                 | C230 |
| Mechanisms of Tumor Rejection and Modulation of Anti-tumor Responses .....                           | C235 |
| T Cell Memory and Homeostasis .....                                                                  | C240 |
| Development and Regulation of Allergic Disease and Asthma .....                                      | C248 |
| Anchoring Immunity: Interactions of Pathogens with Antigen Presenting Cells .....                    | C255 |
| Regulatory T Cells in Autoimmunity .....                                                             | C258 |
| Regulation of Signal Pathways in Immune Cells .....                                                  | C260 |
| Cytokines and Autoimmune Disease .....                                                               | C269 |
| Immunotherapy .....                                                                                  | C275 |

The abstracts on pages C1-C334 were prepared by the authors and printed by photo-offset without change. Abstracts are not subject to scientific review; therefore, the scientific validity of the results reported is the responsibility of the authors and sponsors. Accuracy, form of citation, designation of materials,

acknowledgment of coauthors and of grant support, terminology, nomenclature, and the like, remain the responsibility of the authors and sponsors. The appearance of an abstract in this issue does not necessarily imply future publication of a scientific paper.

**Editor-in-Chief**  
Vincent T. Marchesi  
**Editorial Associate**  
Claire S. Veilleux

**Associate Editors**  
Edward J. Goetzl  
Yusuf A. Hannun  
Joseph A. Madri

**Publications and Communications Committee**  
Alan G. Goodridge (ASBMB)  
Sandra R. Wolman (ASIP)  
Susan S. Percival (ASNS)  
Eleanor S. Metcalf (AAI)  
Suse B. Broyde (BPS)  
Donald A. Fischman Chair (AAA)  
Mark A. Hermodson (Protein)  
Marc K. Drezner (ASBMR)  
Stephen J. Weiss (ASCI)  
Peter H. Byers (ASHG)  
Thomas D. Sargent (SDB)  
Sidney H. Golub (non-voting)  
**Ex Officio**  
Steven L. Teitelbaum  
Vincent T. Marchesi  
FASEB Society  
Executive Officers

**Director, FASEB Office of Publications**  
Nancy J. Rodnan  
**Senior Editor**  
Lynn Willis  
**Copy Editor**  
Kendall Sites  
**FJ Express Production Coordinator**  
Mary Kiorpis Eig  
**Marketing/Advertising Manager**  
Jennifer L. Pesanelli  
**Advertising Account Manager**  
Susan J. Mergenhenagen  
301-634-7103  
Fax: 301-634-7153  
**Subscription Manager**  
Eleanor B. Peebles  
301-634-7029  
Fax: 301-634-7099

**Editorial Board**  
Kari Alitalo  
Mina J. Bissell  
Meredith Bond  
David A. Brenner  
H. Franklin Bunn  
George H. Caughey  
Pierre Chambon  
Thomas O. Daniel  
Balz Frei  
Martin E. Hemler  
Timothy Hla  
Tadamitsu Kishimoto  
Hynda K. Kleinman  
John S. Lazo  
John J. Lemasters  
George M. Martin

Mark P. Mattson  
Linda C. McPhail  
Hideaki Nagase  
Lina M. Obeid  
Jordan S. Pober  
Robert E. Pollack  
Stanley B. Prusiner  
Russel J. Reiter  
Noel R. Rose  
Charles N. Serhan  
William C. Sessa  
Solomon H. Snyder  
Andrew P. Somlyo  
William G. Stetler-Stevenson  
Makoto M. Taketo  
George D. Yancopoulos

**Editor-in-Chief**  
Boyer Center for Molecular Medicine  
Yale University School of Medicine  
295 Congress Avenue, (P.O. Box 9812)  
New Haven, CT 06519-1418, USA  
Phone: 203-737-2334 Fax: 203-737-2267  
email: vincent.marchesi@yale.edu

**Editorial Office**  
Boyer Center for Molecular Medicine  
Yale University School of Medicine  
295 Congress Avenue (P.O. Box 9812)  
New Haven, CT 06519-1418, USA  
Phone: 203-737-2334 Fax: 203-737-2267  
Email: faseb@yale.edu

**Publications Office**  
*The FASEB Journal*  
9650 Rockville Pike  
Bethesda, MD 20814-3998, USA  
Phone: 301-634-7100  
Fax: 301-634-7809  
Email: ksites@faseb.org

*The FASEB Journal* (ISSN-0892-6638) is published 15 times a year (monthly except three times in March and two times in April) by the Federation of American Societies for Experimental Biology, 9650 Rockville Pike, Bethesda, MD 20814-3998, U.S.A. Copyright © 2003 by FASEB. All rights reserved. Requests for copyrighted material should be made in writing to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. Periodicals postage paid at Bethesda, Maryland, and at additional mailing offices. **Postmaster:** Send change of address to *The FASEB Journal*, 9650 Rockville Pike, Bethesda, MD 20814-3998. The views expressed in articles are those of the authors and not necessarily those of the Federation. Send manuscripts and proposals to the Editor-in-Chief. See **Instructions for Authors** online at <http://www.fasebj.org>.

| 2003        | United States | Canada/Mexico | Rest of World | Online Only |
|-------------|---------------|---------------|---------------|-------------|
| INSTITUTION | \$648.        | \$672.        | \$710.        | \$648.      |
| MEMBER      | \$93.         | \$113.        | \$146.        | N/A         |
| INDIVIDUAL  | \$159.        | \$179.        | \$212.        | N/A         |
| STUDENT     | \$45.         | \$65.         | \$97.         | N/A         |

#### Corporate members of FASEB

The American Physiological Society • American Society for Biochemistry and Molecular Biology • American Society for Pharmacology and Experimental Therapeutics  
American Society for Investigative Pathology • American Society for Nutritional Sciences • The American Association of Immunologists • Biophysical Society  
American Association of Anatomists • The Protein Society • The American Society for Bone and Mineral Research • American Society for Clinical Investigation  
The Endocrine Society • The American Society of Human Genetics • Society for Developmental Biology