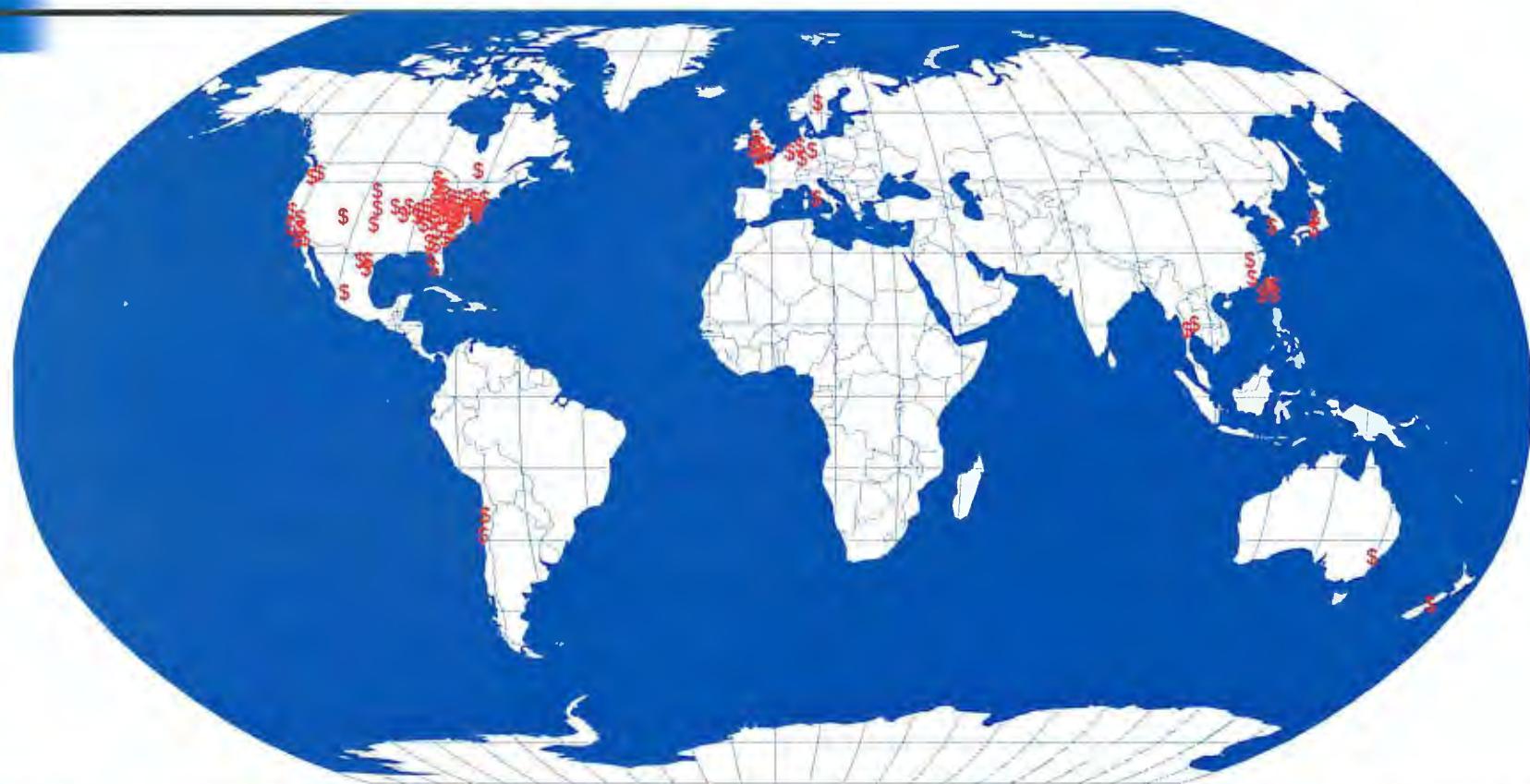
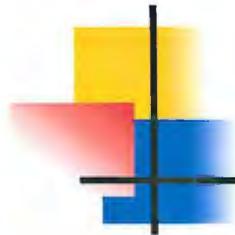


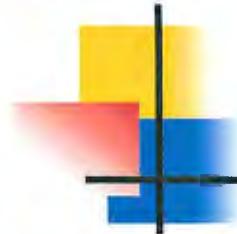
ISRP 2002 abstract


Presenter/author	Title	Abstract
Boord, Leslie Dower, John M. <i>National Personal Protective Technology Laboratory, NIOSH, Pittsburgh, Philadelphia, USA</i>	NIOSH CBRN respiratory Protection Standards Update	<p>Emergency response forces in the United States are required under federal regulations to provide NIOSH-approved respirators appropriate for the expected hazards. NIOSH efforts to develop the appropriate respiratory protection standards began with a domestic assessment of potential chemical, biological, radiological, and nuclear (CBRN) terrorism agents. A review of national and international military and industrial respiratory protection standards for protection against terrorism agents was conducted. Based upon findings from the threat assessment and standards review, NIOSH developed a three year schedule for NIOSH CBRN respirator standards to address all classes of respiratory protection.</p> <p>In December 2001, NIOSH announced the first set of CBRN respirator standards to address open-circuit self-contained breathing apparatus (SCBA). Fire fighters and hazardous material incident (HAZMAT) responders expressed a primary concern that their open-circuit SCBA would survive a CBRN exposure. The NIOSH CBRN SCBA standard combines a three tier approval structure: NIOSH industrial SCBA approval; National Fire Protection Association fire service certification; and three special performance tests against chemical warfare agents and facepiece protection levels. Current CBRN respirator standards efforts are directed at standards for full facepiece air-purifying respirators. Standards concepts and future standards schedules will be discussed.</p>

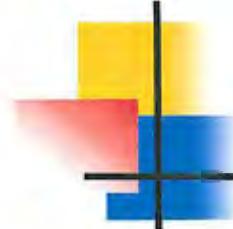
National Personal Protective Technology Laboratory



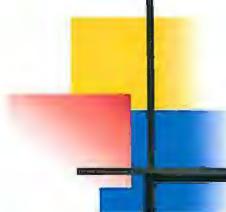
Respirator Certification



**US(54), Australia(1), Canada(1), Chile(2), China(2), Denmark(1), England(6),
Germany(3), Italy(1), Japan(2), Korea(1), Mexico(1), New Zealand(1), Taiwan(4),
Thailand(2), Sweden(2)**


CBRN Standards Development

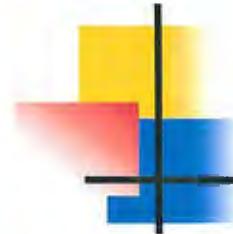
- Workshops/Committee Meetings
 - NIOSH-DOD-OSHA Chemical-Biological Respiratory Workshop & Report
 - Interagency Board Standards & PPE Committees
- MOU's and Agreements
 - Memoranda of Understanding with NIOSH, NFPA, NIST, and OSHA
 - NIST-NIOSH and NIST-SBCCOM Interagency Agreements
 - Interagency Agreement – DOE
- Agency Support
 - CDC and NIST Program Support
- Stakeholders
 - User Groups and Manufacturing Organizations: IAFF, IAFC, NFPA, IAB and ISEA


CBRN Standards Development

- Why Not Military Respirators?
- Inherent Differences Between NIOSH & Military Standards
 - Purpose
 - Target User Groups
 - Hazards
 - Operation
 - Protection

CBRN Standards Development

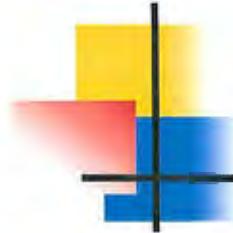
	NIOSH
Purpose	Product Certification Minimum design, performance, quality
User Group	General worker population – wide fitness levels & age
Hazard	Toxic industrial chemicals, O ₂ Deficiency; Fire
Operation	Hazard characterized w/engineering & admin. controls
Protection	40 hrs/wk, 30 yr. With no adverse health effects


CBRN Standards Development

	NIOSH	Military
Purpose	Product Certification Minimum design, performance, quality	Product Procurement Performance specs/ operational requirement
User Group	General worker population – wide fitness levels & age	Physically conditioned military personnel – younger age group
Hazard	Toxic industrial chemicals, O ₂ Deficiency; Fire	Chemical warfare agents under battlefield scenarios
Operation	Hazard characterized w/engineering & admin. controls	Hazard characterized, escape paths, dissipate w/time & weathering
Protection	40 hrs/week, 30 yr. with no adverse health effects	Limited missions Limited casualties & incapacitations

CBRN Standards Development

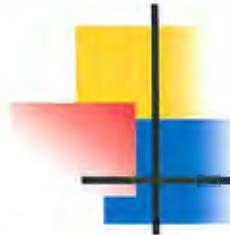
	NIOSH	Military	Terrorism
Purpose	Product Certification Minimum design, performance, quality	Product Procurement Performance specs/ operational requirement	Product Certification Enhanced design, performance, quality
User Group	General worker population – wide fitness levels & age	Physically conditioned military personnel – younger age group	Wide age emergency Responders – better physical fitness
Hazard	Toxic industrial chemicals, O ₂ Deficiency; Fire	Chemical warfare agents under battlefield scenarios	Bio, chemical, rad & warfare agents in extreme conditions
Operation	Hazard characterized w/engineering & admin. controls	Hazard characterized, escape paths, dissipate w/time & weathering	Hazards unknown uncharacterized uncontrolled
Protection	40 hrs/week, 30 yr. with no adverse health effects	Limited missions Limited casualties & incapacitations	Multiple limited term engagement w/mild non-persistent effects


CBRN Standards Development

- CBRN Standards Development Process
 - Hazard Analysis
 - Protection
 - Human Factors/Environmental Factors
 - Concept Definition
 - Test Requirements
 - Testing/Validation
 - Quality Assurance Provisions
 - Peer Reviews (Public Process)

CBRN Standards Development

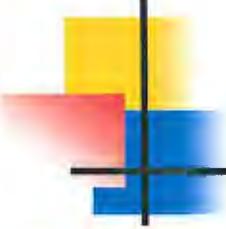
CBRN SCBA


CBRN Standards Development

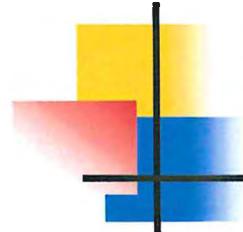
- CBRN SCBA Standard
 - Hazard Analysis
 - Credible Event Modeling
 - Sarin, GB: 2000 mg/m³
 - Mustard, HD: 300 mg/m³ & 0.86 ml
 - Protection
 - Penetration/Permeation by CW Agents
 - Breakthrough
 - GB: 0.087 mg/m³ peak & 2.1 mg-min/m³ C_t
 - HD: 0.6 mg/m³ peak & 6.0 mg-min/m³ C_t

CBRN Standards Development

- CBRN SCBA Standard
 - Human / Environmental Factors
 - Particulate:
 - Silica Flour, 1 hr., 40 lpm
 - Vibration:
 - 250 rpm, 3 hours
 - Corrosion Resistance:
 - Salt Spray, 48 hrs, 50% RH, 48 hrs.


CBRN Standards Development

- CBRN SCBA Standard
 - Human / Environmental Factors
 - High Flow:
 - 300 lpm peak, 103 lpm ventilation
 - Speech Intelligibility:
 - 70 dba Background
 - Hot / Cold Exposure:
 - 71°C & -32°C, 12 hrs
 - Heat & Flame:
 - 95°C, 40 lpm, 15 minutes
 - 950°C, 103 lpm, 10 seconds
 - Drop 150 mm (6in.)


CBRN Standards Development

- CBRN-SCBA – 3 Tier Standard
 - 42 CFR, Part 84 (NIOSH)
 - NFPA 1981, Current Edition
 - Special Tests
 - CW Agents (GB & HD)
 - Respirator Fit
- CBRN-SCBA Standard Implemented January 22, 2002
- Certification Testing in Process
 - First Approval Issued May, 2002

Schedule

Task Name	2001	2002	2003	2004	2005
Gas Mask					
Escape sets (APR)					
PAPR					
SCBA/APR combination					
SCBA (closed)					
Escape set (SCBA)					
SAR					

CBRN Standards Development

- NPPTL Contact Information:

NPPTL

P.O. Box 18070

626 Cochrans Mill Road

Pittsburgh, PA 15236

Phone: (412) 386-4000

Web Address: <http://www.cdc.gov/niosh/npptl>