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There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep
loss. We utilized pattern recognition algorithms to determine which features of data collected under con-
trolled laboratory conditions could most reliably identify cognitive performance impairment in response
to sleep loss using data from only one testing session, such as would occur in the “real world” or field
conditions. A training set for testing the pattern recognition algorithms was developed using objective
Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from
laboratory studies during which subjects were sleep deprived for 26-52 h. The algorithm was then tested
in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify
performance impairment with a single testing session in individuals studied under laboratory conditions
using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high
as 82%. When this algorithm was tested on data collected under real-world conditions from individuals
whose data were not in the training set, accuracy of predictions for individuals categorized with low per-
formance impairment were as high as 98%. Predictions for medium and severe performance impairment
were less accurate. We conclude that pattern recognition algorithms may be a promising method for
identifying performance impairment in individuals using only current information about the individual’s
behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance
impairment in the laboratory setting may not be the best indicators of performance impairment under
real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used
in conjunction with other assessments of sleepiness in real-world conditions to quantify performance
impairment in response to sleep loss.
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1. Introduction

Laboratory studies have quantified the effects of insufficient
sleep from either acute sleep deprivation or chronic sleep restric-
tion on cognitive performance, including impaired reaction time,
accuracy, visual attention, working memory and decision making,
and subjective alertness (Belenky et al., 2003; Van Dongen et al.,
2003; Santhi et al., 2007). It is now well accepted that multiple
aspects of performance and alertness are affected by (i) a circa-
dian process, an ~24-h rhythm regulated by the suprachiasmatic
nucleus of the hypothalamus; (ii) homeostatic processes in which
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sleep pressure builds during wake and declines during sleep; and
(iii) non-linear interaction of these processes (Dijk et al., 1992;
Dijk and Czeisler, 1994; Wyatt et al., 2004; Cohen et al., 2010).
In these controlled laboratory conditions, environmental factors
such as schedule, light levels, activity level and meal timing have
been carefully controlled and other activities such as caffeine con-
sumption and pharmaceuticals have been eliminated. Therefore,
translation and application of these experimental findings into
an operational/real-world setting in which prediction of perfor-
mance in an individual has been a goal, has been limited. Several
mathematical models have used the results of these laboratory
experiments to attempt to provide a predictive tool of the effect of
a given sleep/wake schedule on cognitive performance (for review,
see Van Dongen, 2004); some of these models have also incorpo-
rated data collected under operational settings (see Mallis et al.,
2004). These models, however, require inputs of prior sleep/wake
history and possibly ambient light levels to appropriately estimate
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sleep/wake homeostasis (Akerstedt et al., 2004; Hursh et al., 2004)
and circadian phase (timing) (Jewett and Kronauer, 1999). In
operational/real-world settings, requiring these inputs decreases
the practical utility of these models. Furthermore, the output of the
models are based on population averages, which also limits utility
since there are large inter-individual differences in performance
measures, such that some people maintain levels of performance
comparable to their well-rested baseline values even after many
hours or several days of sleep deprivation whereas others become
impaired more quickly (Van Dongen et al., 2004).

Recent model developments have enabled predictions based on
an individual (Van Dongen et al., 2007; Rajaraman et al., 2008).
These models, however, require that individuals are monitored
over several hours or days in order to identify the magnitude of
their performance impairment in response to sleep loss relative
to their baseline performance levels. In a real-world setting, pro-
longed multiple data collection sessions may not be feasible. What
is needed is areal-time measure that can provide information about
an individual’s level of performance impairment at that particular
moment in time with a single measurement session and without
prior knowledge of variables such as past performance on cogni-
tive tests, prior sleep/wake history, circadian phase, ambient light
levels or prior light exposure history.

We hypothesized that pattern recognition algorithms could be
used to extract important features using already collected data as
the basis for categorizing (or classifying) performance impairment
inanewindividual using data collected from a single testing session
by matching the features of the new data (test set) to the exist-
ing data (training set). If successful, pattern recognition algorithms
could utilize the large volumes of already-collected data from lab-
oratory studies to create training sets against which to classify new
data collected in the field. In addition, this classification can be
made using only the features of the training set that are deemed
necessary for reliably identifying the class (i.e., low, medium or
severe performance impairment) of a new individual. The pattern
recognition algorithm may not require information such as prior
sleep/wake history, lighting levels and/or baseline performance
information since it is presumed that the effects of these variables
are embodied in the behavioral response and do not require explicit
inclusion as features in the training set. In this paper, we intro-
duce the use of pattern recognition algorithms to identify level of
performance impairment and validate these pattern recognition
algorithms on data previously collected in a field study of hospital
interns (Lockley et al., 2004; Anderson et al., 2012) and in a field
study of ground control crews working on a Mars sol (T=24.65h)
schedule (Barger et al., 2012).

2. Methods
2.1. Datasets

All studies were approved by the Partners Healthcare Insti-
tutional Review Board. Informed consent was obtained from all
subjects prior to study.

2.1.1. Laboratory data

The laboratory data used to train and validate our pattern recog-
nition algorithms were collected under three separate protocols
that included sleep deprivation. All subjects were healthy, not on
medications and were not allowed caffeine or other stimulants.
Details of subject selection and experimental protocols are included
in the published reports (Klerman and Dijk, 2008; Cohen et al.,
2010) of each protocol. In total, the data set used to train and val-
idate our pattern recognition algorithms includes 33 subjects and
506 testing sessions.

In the first study, younger (N=17, 9 female, mean age
23.1+3.9years, range 18-32years) and older subjects (N=7, 3
female, mean age 65.6 4.2 years, range 60-71 years) were sched-
uled to 28 (N=14, 5 older) or 52 (N=10, 2 older) hours of sleep
deprivation. During the sleep deprivation component of the proto-
col, the 10-min version of the Psychomotor Vigilance Task (PVT)
was administered every 2h and the Karolinska Sleepiness Scale
(KSS)was administered every 30 min. Only KSS scores administered
immediately prior to a PVT were used for this analysis.

In the second study, 9 subjects (4 female, mean age
27.1 £4.5years, range 21-34 years) were scheduled toa T=42.85-h
forced desynchrony protocol with 10 h of bedrest opportunity per
42.85-h “day” (Cohen et al., 2010). Subjects were awake 32.85h
per “day”, thereby having an extended wake duration similar to
the acute sleep deprivation condition in the first laboratory study.
The 10-min version of the PVT was administered every 4h dur-
ing this protocol and the KSS was administered every 30 min; only
data from the first day of the forced desynchrony were included in
our data set (i.e., a single 32.85-h wake episode) and only KSS data
associated with PVT data were used.

In the third study (St. Hilaire et al., unpublished data), 12 sub-
jects (6 female, mean age 23.3 4+ 3.0 years, range 18-30years) were
scheduled to a 50-h sleep deprivation preceded by 3 baseline days
in which subjects were scheduled to 8 h of sleep and 16 h of wake
at their habitual times. During the sleep deprivation component
of the protocol, the PVT was administered every 2 h. The subjects
from this protocol were not used in the training set; instead the
PVT data from these subjects were used as an independent data set
to determine classification labels for each test session included in
the training set (described below).

2.1.2. Field data

Data from two field-based studies were used to test the pat-
tern recognition algorithms. In these two studies, the health,
medication, pharmaceutical and caffeine use, and sleep schedule
(including napping) behavior of the subjects were not controlled.
For the first study, as described in Lockley et al. (2004 ) and Anderson
et al. (2012), PGY-1 medical interns were enrolled in a study
designed to quantify the effects of extended duration work hours
(24-30h) on sleep, alertness and the rates of medical errors among
interns working in critical care units. This study tested the hypoth-
esis that eliminating extended work shifts with an intervention (IV)
schedule would increase sleep duration and reduce attentional fail-
ures as compared to a traditional intern schedule in which shifts
were scheduled for up to 30 continuous hours every 3rd night (Q3
schedule). Additional details about the Q3 and IV schedules can be
found in Lockley et al. (2004). For this analysis, data from 34 interns
(11 female, mean age 28.04 1.8 years, range 24-32 years) were
available. PVT data were collected intermittently in each intern dur-
ing both schedules. The PVT task used in this study was the same
10-min version as the task used for the laboratory studies described
above. The intern data were used as an independent test set to
determine whether a training set consisting of data from laboratory
studies is able to classify individual performance impairment using
data collected under real-world (field) conditions. All 34 subjects
were used for the final analysis of the Q3 schedule; 1 subject on the
IV schedule had inadequate sleep/wake data and was excluded.

For the second study (Barger et al., 2012), all subjects were sci-
entists or engineers working on a 24.65-h Mars sol at the Science
Operations Center in Tucson AZ in support of the Phoenix Mars
Lander, which landed on Mars on May 25, 2008. Nineteen sub-
jects total (6 female, mean age 36.8 +9.7 years, range 25-63 years)
participated in a study to assess performance and alertness and
sleep/wake patterns from actigraphy and sleep diaries, while liv-
ing and working on the Mars sol schedule. Participants were asked
to complete the previously validated 5-min version of the PVT using
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a portable handheld device (Loh et al., 2004; Lamond et al., 2005;
Roach et al., 2006) at least twice per day. In addition to using this
data as an independent test set to test our pattern recognition algo-
rithms, we also used this data set to test whether results from a
10-min PVT (from laboratory studies) can be used to classify results
from a 5-min PVT data (from real-world conditions). Seventeen
subjects from the Phoenix Mars Lander group were used for this
final analysis; 2 subjects had inadequate sleep/wake or PVT data
and were excluded.

2.2. Description of the pattern recognition algorithms

2.2.1. Feature space

Pattern recognition algorithms require a set of data called the
feature space to represent each object (i.e., each testing session from
eachindividual) as a point in n-dimensional space. For this analysis,
each object in the feature space was derived from an individual
testing session that included the Psychomotor Vigilance Task (PVT),
the Karolinska Sleepiness Scale (KSS), and the length of time awake
and time of day when the testing session was administered. These
features were chosen because the PVT and KSS are relatively easy
to administer in a field setting, for example on a hand-held device.
Additionally, there are large amounts of PVT and KSS data available
from laboratory sleep deprivation studies for different lengths of
time awake and circadian phase.

The PVT is an objective performance test that measures sus-
tained attention to a visual stimulus presented at a high signal rate
with a randomized inter-stimulus interval distributed uniformly
from 1 to 9s. Subjects are instructed to respond as quickly as pos-
sible once the visual stimulus appears on the screen; the reaction
time (RT) to this stimulus is recorded and provided as feedback to
the subject (Dorrian et al., 2005). In typical analysis of PVT data, a
summary statistic, such as mean or median RT or the number of
lapses (RT >500ms), is computed from each testing session and
changes are tracked across sessions. The distribution of RT per-
centiles (5th-95th) collected during a 10-min session of the PVT
has also been used to compare performance changes across sessions
(Santhi et al., 2007).

The KSS is a subjective measure that asks individuals to rate
their sleepiness in the past 5min on a 1-9 scale, with 1 indicating
“very alert” and 9 indicating “Sleepy - great effort to keep awake
- fighting sleep” (Akerstedt and Gillberg, 1990). The version of the
KSS administered in all laboratory and field studies used in this
analysis included descriptors on the odd numbers only.

The full feature space to be tested included 8 dimensions: (1)
the mean fastest 10% and (2) median response times from PVT,
(3) number of PVT lapses, (4) KSS score, (5) length of time awake
(LOTA) and (6) time of day (TOD) at the time the testing session was
administered, (7) age and (8) sex of the individual. TOD was binned
across 24 h into six 4-h bins: 2:00-5:59, 6:00-9:59, 10:00-13:59,
14:00-17:59, 18:00-21:59, and 22:00-1:59.

The laboratory training set (feature space) consisted of 506 test-
ing sessions (objects). A total of 33 subjects contributed to these 506
testing sessions. Thus, each individual represented in the training
set was associated with one or more objects in the feature space.
For example, a subject studied under a 52-h sleep deprivation that
completed a test session every 2 h contributes 28 testing sessions
to the training set.

2.2.2. Classification labels

In order to use pattern recognition algorithms to classify the
relative performance impairment for each individual during each
test battery session, it was necessary to classify each of the 506
sessions in the laboratory training set with a label reflecting rela-
tive performance impairment. There is currently no “gold standard”
or biomarker for defining performance impairment in response to

sleep loss. It has been shown that several measures extracted from
the PVT change in response to sleep deprivation in laboratory stud-
ies (e.g., Van Dongen et al., 2003; Belenky et al., 2003; Wyatt et al.,
2004; Cohen et al., 2010), and the number of PVT lapses has been
unofficially accepted as a potential marker of performance impair-
ment. To our knowledge, however, there is no evidence that PVT
lapses map onto real-world functioning; no studies have reported
that X number of lapses indicates Y% increase in, for example,
motor vehicle accidents, medical errors or aviation errors. In fact,
at least one study suggests that PVT median RT may be a better
indicator of performance impairment than PVT lapses in medical
residents on light vs. heavy call schedules (Arnedt et al., 2005). PVT
lapses, furthermore, represent an arbitrary cut-off (500 ms) that
does not reflect inter-individual differences in response speed. The
90th percentile of reaction times, a measure based on the entire
RT distribution rather than an absolute value, has been shown to
be a robust measure of performance impairment in laboratory data
(Santhi et al., 2007). The mean slowest 10% RT, a summary statistic
generated from each PVT session and reported in multiple publi-
cations (e.g., Wyatt et al., 2004; Grady et al., 2010; Anderson et al.,
2012), is similar to the 90th percentile measure. We hypothesize
that tracking the change in mean slowest 10% RT provides a more
robust measure of an individual’s change in performance over sleep
deprivation than the number of PVT lapses. Therefore, to classify
each testing session for the training set, we first computed the
relative mean slowest 10% RT for each individual across a sleep
deprivation episode by calculating the percent change in mean
slowest 10% RT for each session from the best (i.e., lowest) mean
slowest 10% RT score; this assumes the testing session with the low-
est mean slowest 10% RT represents the individual’s best possible
performance. These relative mean slowest 10% RTs were then cate-
gorized into three groups, labeled “1”, “2” or “3”, representing low
performance impairment, medium performance impairment and
severe performance impairment, respectively. Each testing session
was categorized into one of these three groups based on the follow-
ing cut-off values: a testing session was labeled as “1” if the percent
increase in mean slowest 10% was less than 25%, “3” if the percent
increase was greater than 100% and “2” if the percent increase was
between 25% and 100%. A 25% increase in mean slowest 10% corre-
sponds to an increase of ~90 ms in this measure and a 100% increase
corresponds to an increase of ~360 ms. For comparison, the num-
ber of lapses occurring during testing sessions in which there was
a~25%increase in mean slowest 10% RT was between 0 and 17; for
testing sessions in which there was a ~100% increase in mean slow-
est 10% RT, the number of lapses was between 6 and 17 lapses. The
label for each testing session in the training set, therefore, reflected
performance changes across multiple testing sessions within an
individual; the label could not be reliably derived from an outcome
variable from a single testing session, such as the number of PVT
lapses from a single session.

2.2.3. Algorithm selection

We tested two methods for pattern recognition: the k Near-
est Neighbor (kNN) algorithm and a Naive Bayes classifier. Both
are supervised learning methods that compare a test object of
unknown class to the training set, which consists of a set of objects
with known classes. We chose to test these two methods for their
relatively small computational requirements to highlight the fea-
sibility of transitioning these methods to use in the field.

kNN classifies the unknown object by a majority vote of its k
“nearest” neighbors, where “nearest” is defined by minimizing the
distance between the test object and each object in the training set
across the n-dimensions of the feature space. If k=1, the object in
the testing set is simply assigned to the class of its nearest neigh-
bor. For the kNN implementation used in this analysis, Euclidean
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distance was used to determine the k nearest neighbors. This
method was programmed and run in MatLab v7.11.0.

The Naive Bayes classifier estimates the parameters of a defined
probability distribution (e.g., Gaussian) during training. To test a
new object, a posterior probability of that test object belonging to
the class is computed. The Naive Bayes classifier assumes that all
features used in the feature space are conditionally independent;
however, even when features are not independent, the Naive Bayes
classifier can still be used. For the Naive Bayes implementation used
in this analysis, both a normal (Gaussian) distribution and a kernel
distribution were tested. When the Gaussian distribution is spec-
ified, the Naive Bayes classifier assumes each feature is normally
distributed for each class. This assumption is not made when the
kernel distribution is used; instead, a separate kernel density esti-
mate is computed for each class. The NaiveBayes function from the
MatLab v7.11.0 Statistics Toolbox was used for this analysis.

2.2.4. Parameter validation and feature space selection

The appropriate use of pattern recognition algorithms requires
a validation step before applying the chosen algorithms to the test
set. The validation step includes choosing both the optimal param-
eters for the algorithm (e.g., parameter “k” for kNN, and the normal
or kernel distribution for Naive Bayes) and choosing the optimal
feature space (out of the 8 available features) that best classifies
the majority of the data. The test set cannot be used for the vali-
dation step, thus we used data from the training set to validate the
parameters and choose the feature space. There are several meth-
ods for using the training set at the validation step. For example, one
method is to set aside a proportion (e.g., one-third) of the training
set as a validation set, and then use the validation set as a mock test
set to optimize parameters and the feature space to the remainder
of the training set (e.g., the other two-thirds of the data). For this
analysis, however, we used the leave-one-out method to generate a
unique validation set for each subject: each of the 33 subjects was
tested on a subset of the full training set (506 test sessions) that
omitted their own test sessions but included all of the test sessions
from each of the remaining 32 subjects (e.g., Subject 1 contributing
28 test sessions to the full training set would be tested against a
subset of training data containing only the 478 other test sessions).

To further improve on this validation approach, a method called
bootstrap aggregation (or “bagging”) was employed. The bagging
method improves classification accuracy and reduces variance
(Witten and Frank, 2005). From each unique validation set cre-
ated for each subject, we further generated 100 training sets that
included a subset of test sessions from each validation set. Each
of these 100 subset validation sets contained 150 test sessions
randomly sampled with replacement from the validation set. For
example, for Subject 1, their validation set contained 478 test ses-
sions from each of the other 32 subjects, and each of their 100 subset
validation sets contained 150 test sessions from this sample of 478
test sessions. Thus, for Subject 1, each test session (a total of 28
test sessions) belonging to Subject 1 was classified independently
on 100 subset validation sets, which each generated a classification
label for that test session, resulting in 100 classifications for each of
the 28 test sessions for Subject 1. The final predicted classification
label for each of these 28 test sessions was chosen by majority rule:
for example, if the test session was classified as a ‘1’ for 60 of the
subset validation sets, ‘2’ for 30 of the subset validation sets and ‘3’
for 10 of the subset validation sets, the final predicted classification
label for that test session for that subject would be chosen as ‘1°.
See Supplementary Fig. 1 for further details.

The validation steps just outlined above were used to determine
the optimal value of k for the kNN algorithm and the optimal prob-
ability distribution - normal or kernel - to use for the Naive Bayes
classifier. For the kNN algorithm, general practice limits the value
of k to less than the square root of the number of objects (in this

case, v/506 =~ 23) in the full training set, and thus values of k=1 to
k=22 were tested. Values of k in multiples of 2 and 3 were, however,
omitted to avoid tiebreakers among the three classification groups.
For kNN the value of k which resulted in the highest percentage
of correctly classified test sessions across all subjects was chosen
as the optimal k to be used for running the algorithm on the test
set data. For the Naive Bayes classifier, the probability distribution
which resulted in the highest percentage of correctly classified test
sessions across all subjects was chosen as the optimal distribution
to be used for running the algorithm on the test set data.

Once optimal parameters were chosen for each of the algo-
rithms, it was necessary to determine the optimal feature space
from the full feature space to use for classification. The same valida-
tion procedures outlined above were used to create the appropriate
subset validation sets for each of the 33 subjects in the full training
set. To choose the optimal feature space from the set of 8 features
available, a method called forward feature selection was used. In
the first step of forward feature selection, each of the 8 features (PVT
mean fastest 10%, median and lapses, KSS score, LOTA, TOD, age,
sex) were independently used to classify all of the data in the train-
ing set (using the leave-one-out method and bagging as described
above). The one feature with the highest classification percentage
(i.e., that maximized the percent of testing sessions in the training
set that were correctly classified) was selected. In the next step,
each of the remaining features was paired with the selected fea-
ture from the first step and all of the data in the training set were
re-classified. For example, if LOTA was found to provide the high-
est classification percentage at the first step, then at the second
step of forward feature selection, the following 2-dimensional fea-
ture spaces were tested: LOTA and PVT mean fastest 10% RT, LOTA
and median RT, LOTA and lapses, LOTA and KSS, LOTA and TOD,
LOTA and age, LOTA and sex. The feature pair with the highest
classification percentage was chosen. At the third step of forward
feature selection, this feature pair (e.g., LOTA and KSS) was paired
with the remaining features (i.e., PVT mean fastest 10% RT, median
RT, lapses, TOD, age, sex). Feature selection continued in this way,
testing the addition of each feature one by one to the optimal fea-
ture space selected at the previous forward selection step, until the
classification percentage no longer improved.

2.2.5. Testing on field data

The optimal parameters and feature spaces chosen for the
kNN and Naive Bayes algorithms were determined from validation
against the laboratory training set. These optimized parameters
and feature spaces were used to classify the data in our two field-
collected data sets. Each object in the test set, which represented a
test session completed by an individual at a given LOTA and TOD,
was compared to all 506 testing sessions (33 subjects) in the labo-
ratory training set. In a true test set, the true class of a test object
would be unknown, and the purpose of the analysis would be to
predict the class to which the object belongs. For this analysis, how-
ever, all objects in the test set were classified a priori (see above)
in order to report classification sensitivity and specificity results.

To compare the ability of the kNN and Naive Bayes algorithms
to classify correctly each object in our test set, we computed sen-
sitivity and specificity scores. Sensitivity measures the proportion
of true positives that are correctly identified as such. To compute
the sensitivity value for testing sessions labeled as “1” (low per-
formance impairment), for example, we computed the proportion
of testing sessions categorized as “1” that were correctly predicted
by the algorithm as belonging to “1”. For example, if 100 testing
sessions were a priori labeled as “1” and the algorithm correctly
identified 50 of these testing sessions as belonging to “1”, then the
sensitivity of the algorithm for classifying “1” would be 50%. Speci-
ficity measures the proportion of true negatives that are correctly
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identified as such. To compute the specificity value for testing ses-
sions labeled as “1”, for example, we computed the proportion of
testing sessions categorized as “2” or “3” that were not identified
by the algorithm as “1” by summing the number of testing sessions
that were correctly predicted as “2” or “3” and dividing this sum
by the total number of testing sessions originally labeled as “2” or
“3” in the test set. For example, if 50 testing sessions were labeled
in the test set as “2” and 25 were labeled in the test set as “3”, and
the algorithm correctly predicted 60 of those testing sessions as
not belonging to “1” (meaning 15 of those testing sessions were
incorrectly predicted as belonging to “1”), then the specificity for
“1” would be 80%. The false positive rate for “1” can be computed
as the specificity value subtracted from 100%; for this example, the
false positive rate would be 20%. Both sensitivity and specificity
were computed in this way for each label “1”, “2” and “3”.

Positive predictive value (PPV) and negative predictive value
(NPV) were also computed for classification results from each algo-
rithm. PPV is often used in diagnosis of disease and reflects the
probability that a positive test result reflects the underlying con-
dition being tested. A PPV of 100% for a disease indicates that all
patients that tested positive for the disease were found to have the
disease (i.e., no false positives). In contrast, NPV reflects the prob-
ability that a negative result means the patient does not have the
disease. An NPV of 100% for a disease indicates that all patients that
tested negative for the disease were found to not have the disease
(i.e., no false negatives). For our classification results, for example,
PPV for “1” was computed as the number of test sessions labeled
in the test set as “1” that were also predicted as “1” (true positives)
divided by all the test sessions predicted as belonging to “1” (true
positives and false positives). For example, if 100 test sessions were
predicted as “1”, and 90 of these were labeled in the test set as “1”
while 10 were labeled in the test set as “2” or “3”, then the PPV
for “1” would equal 90%. NPV for “1” was computed as the num-
ber of test sessions labeled in the test set to “2” or “3” that were
also predicted as “2” or “3”, divided by the number of all test ses-
sions predicted by the algorithm as “2” or “3” (a number which
may include test sessions that are labeled in the test set as “1”). For
example, if 100 test sessions were predicted by the algorithm as “2”
or “3” and 80 of these test sessions were labeled as “2” or “3” (i.e.,
not labeled as “1”), then the NPV for “1” would equal 80%. Both PPV
and NPV were computed in this way for each label “1”, “2” and “3”.

2.3. Comparison of pattern recognition algorithm results to
classification based on lapses

The goals of using pattern recognition algorithms for this anal-
ysis were (1) to demonstrate the ability to classify performance
impairment from a single observation of the state of an individual’s
neurobehavioral performance level, i.e., a single testing session and
(2) to use a measure of performance impairment that relates the
current level of performance to the individual’s baseline or opti-
mal performance, e.g., the relative mean slowest 10% RT, rather
than an absolute value, such as the number of PVT lapses in a test-
ing session. To show the benefit of using a relative vs. absolute
measure of an individual's performance impairment, plus addi-
tional information derived from the individual’s age, sex, LOTA,
and subjective sleepiness assessment, we compared the ability of
our pattern recognition algorithms to classify performance impair-
ment from a single testing session in data collected from the field
to predictions based not on our algorithm (the feature space of
which includes PVT lapses as a potential predictor), but on abso-
lute PVT lapses only. Although PVT lapses have been accepted as
a potential marker of performance impairment under total sleep
deprivation studies (e.g., Van Dongen et al., 2003), to our knowl-
edge no studies have been conducted to correlate the number of
PVT lapses with a real-world outcome (e.g., X PVT lapses equates to
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Fig. 1. Number of PVT lapses as a function of length of time awake. Twelve subjects
underwent a 50-h sleep deprivation where the PVT was administered every 2 h. The
average number of PVT lapses (RT > 500 ms) was computed over the first, second
and third 16 h of wakefulness for each subject and then across subjects. The number
of PVT lapses for each time awake bin is plotted as mean =+ standard deviation.

Y% increase in motor vehicle accidents). Thus, we chose to designate
the three levels of performance impairment (“1” low, “2” medium
and “3” severe) using cut-off values based on the number of hours
awake. These cut-off values were determined using an indepen-
dent laboratory data set (i.e., laboratory study 3, described above,
which was not included in the laboratory training set) (Fig. 1). The
average number of PVT lapses was computed after 16 and 32 h of
wakefulness: 16 h awake was chosen as the initial cut-off based
on the 2:1 wake:sleep ratio on a normal 24-h day and the fact
that performance has been documented to deteriorate rapidly after
16 h of continuous wakefulness (Jewett and Kronauer, 1999). At
16 h awake, the average number of PVT lapses in all 12 subjects
was ~3; therefore all testing sessions in which the number of PVT
lapses was <3 were classified to group “1”, representing low per-
formance impairment. After 32 h awake, the average number of
PVT lapses observed across these 12 subjects was ~21, and there-
fore all testing sessions with the number of PVT lapses >21 were
predicted as belonging to group “3” representing severe perfor-
mance impairment. All testing sessions with PVT lapses between
3 and 21 were predicted as belonging to group “2” represent-
ing medium performance impairment. Sensitivity, specificity, PPV
and NPV were computed for these classification predictions and
compared to those obtained from using the pattern recognition
algorithms for the field-collected data test sets.

3. Results
3.1. Classification results for laboratory data (training set)

Our first step in using the pattern recognition algorithms
involved choosing optimal parameters for the kNN and Naive Bayes
methods. The optimal value of “k” for the kNN algorithm was deter-
mined using the full feature space (8 dimensions) to classify all the
data in the training set (33 subjects) using a leave-one-out method
and bagging for each value of k. An optimal value of k = 1 was found,
which resulted in 67% correct classification of all the data in the
training set. The optimal Naive Bayes distribution was also deter-
mined using the full feature space (8 dimensions) to classify all the
data in the training set (33 subjects) using a leave-one-out method
for each distribution. The kernel distribution was found to be
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Table 1

Sensitivity, specificity, PPV and NPV results for the optimal kNN and Naive Bayes algorithms found using the laboratory data. The confusion matrix shows the raw values of

the actual vs. predicted classifications from the kNN and Naive Bayes algorithms.

kNN Naive Bayes

Actual Actual

1 2 3 1 2 3
Predicted
1 139 30 2 1 147 34 2
2 36 94 32 2 29 98 32
3 4 32 137 3 3 24 137

kNN Naive Bayes

Impairment Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV
1 0.78 0.71 0.81 0.69 0.82 0.72 0.80 0.73
2 0.60 0.79 0.58 0.80 0.63 0.81 0.62 0.82
3 0.80 0.70 0.79 0.70 0.80 0.73 0.84 0.72

optimal and resulted in 72% correct classification of all data in the
training set. Bagging was not used for the Naive Bayes algorithm
due to the increased computational time, which was ~6s with-
out bagging and over 1 h with bagging. No considerable increase in
classification accuracy was found when bagging was used.

The next step was to determine the best combination of the 8
available features to use for our final feature space using forward
feature selection. For the kNN algorithm, feature selection resulted
in an optimal feature space consisting of PVT lapses, LOTA, TOD, KSS
and sex, with a 73% correct classification rate. For the Naive Bayes
classifier, feature selection resulted in the same optimal feature
space, with a 75% correct classification rate.

Sensitivity, specificity, PPV and NPV results were computed sep-
arately for each of the groups 1, 2, and 3 for the optimal feature
space for each method. These results are presented in Table 1.
Table 1 also shows the “confusion matrix” of the raw values of
actual vs. predicted classifications for each group for each method.
kNN and Naive Bayes produce similar predictions across all three
classification groups.

It is possible to estimate probabilities of future susceptibility
given current status. Only one of the 33 subjects in the training
set was labeled with low performance impairment (“1”) on all test
sessions. For the remaining 32 subjects, once a session was labeled
as a “2” or a “3” (starting anywhere from 2 h to 26 h after wake),
84% of subsequent testing sessions for that wake episode were also
labeled as “2” or “3”.

3.2. Classification of real world data (test set)
3.2.1. Intern data set

For the intern data set with Q3 and IV schedules, age, sex, PVT
mean fastest 10% RTs, medians, and lapses, LOTA and TOD data were

available; KSS was not. As naps were allowed in this field study,
LOTA was determined by computing the length of time since any
sleep episode >30 min. The optimal feature spaces derived above
from the laboratory training set were used in the kNN and Naive
Bayes algorithms to classify testing sessions from the Q3 and IV
schedules; KSS was omitted from the feature space because it was
not collected in these test sets.

In post hoc analysis of data from the intern Q3 (standard) sched-
ule, 329 out of the 940 sessions across the 34 subjects were labeled
as ‘1’ using our labeling criteria described above (i.e., derived from
relative mean slowest 10% RTs), whereas 409 were labeled as ‘2’ and
202 as ‘3’. In post hoc analysis of data from the intern IV (interven-
tion) schedule, 319 out of the 865 PVT trials across 34 subjects were
labeled as ‘1’, while 431 were labeled as ‘2’ and 115 were labeled as
‘3. The sensitivity, specificity, PPV and NPV results for both the kNN
and the Naive Bayes methods for both the Q3 and the IV schedules
are presented in Table 2. The kNN algorithm correctly classified 49%
of all test sessions on the Q3 schedule and 51% of all sessions on the
IV schedule; the Naive Bayes classifier correctly classified 51% of
all sessions on the Q3 schedule and 51% of all sessions on the IV
schedule. Using PVT lapses alone to classify the data, based on the
cut-off values discussed above in Section 2.3, 52% of sessions on Q3
and 56% of sessions on IV were classified correctly. Both methods,
either employing one of the algorithms (kNN or Naive Bayes) or
the classification based on PVT lapse cut-offs, were most effective
at correctly classifying testing sessions labeled as “1”, and consid-
erably underestimated testing sessions labeled as “2” and “3”. The
confusion matrices for the kNN and Naive Bayes algorithms are pre-
sented in Table 3. Confusion matrices for the classification based on
PVT lapses are presented in Table 4.

Since our optimal feature space used in the kNN and Naive
Bayes algorithms was based on classification of laboratory data, we

Table 2
Sensitivity, specificity, PPV and NPV results for the test sessions collected from the Q3 and IV medical intern schedules and the Phoenix Mars non-24-h schedule.
kNN Naive Bayes
Impairment Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV
Intern Q3 schedule
1 0.94 0.24 0.50 0.46 0.96 0.27 0.52 0.49
2 0.33 0.61 0.45 0.50 0.33 0.65 0.45 0.54
3 0.06 0.60 0.59 0.48 0.14 0.61 0.76 0.50
Intern IV schedule
1 0.98 0.23 0.48 0.60 0.97 0.24 0.49 0.58
2 0.24 0.77 0.58 0.49 0.27 0.75 0.56 0.50
3 0.19 0.56 0.71 0.50 0.13 0.57 0.79 0.51
Phoenix Mars non-24 h-schedule
1 0.80 0.23 0.23 0.44 0.87 0.15 0.23 0.34
2 0.34 0.31 0.41 0.28 0.14 0.38 0.28 0.27
3 0.10 0.46 0.68 0.30 0.17 0.33 0.43 0.24
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Table 3
Confusion matrix results for the intern Q3 and IV schedules and Phoenix Mars non-24 h-schedule from the kNN and Naive Bayes algorithms using optimal feature spaces
derived from laboratory data.

kNN Naive Bayes
Actual Actual
1 2 3 1 2 3
Intern Q3 schedule
1 309 267 46 1 315 263 23
Predicted 2 19 134 143 2 14 137 151
3 1 8 13 3 0 9 28
Intern IV schedule
1 312 318 22 1 311 309 16
Predicted 2 6 105 71 2 8 118 84
3 1 8 22 3 0 4 15
Phoenix Mars non-24 h-schedule
1 163 349 183 1 177 400 191
Predicted 2 40 193 240 2 7 80 202
3 0 23 48 3 19 85 78

Table 4
Confusion matrix results for the intern Q3 and IV schedules and Phoenix Mars non-24 h-schedule for classification based on number of PVT lapses.
Actual
1 2 3
Intern Q3 schedule
1 309 232 7
Predicted 2 20 167 180
3 0 10 15
Intern IV schedule
1 308 261 3
Predicted 2 11 161 97
3 0 9 15
Phoenix Mars non-24 h-schedule
1 201 469 116
Predicted 2 2 96 353
3 0 0 2

Table 5
Confusion matrix results for the intern Q3 and IV schedules and Phoenix Mars non-24 h-schedule from the kNN and Naive Bayes algorithms using optimal feature spaces
derived from the field-collected data. The optimal feature space used to derive each confusion matrix for each method is included for reference.

Intern Q3 schedule

kNN: lapses, mean fastest 10% RT Naive Bayes: lapses, age
Actual Actual
1 2 3 1 2 3
Predicted 1 287 235 11 1 310 233 7
2 41 146 135 2 19 158 153
3 1 28 56 3 0 18 42

Intern IV schedule

kNN: median RT, lapses, TOD gender Naive Bayes: lapses
Actual Actual
1 2 3 1 2 3
1 273 234 18 1 308 261 3
Predicted 2 46 161 61 2 10 146 74
3 0 36 36 3 1 24 38
Phoenix Mars non-24 h-schedule
kNN: median RT, KSS Naive Bayes: age, gender
Actual Actual
1 2 3 1 2 3
1 144 295 183 1 118 215 102
Predicted 2 56 203 142 2 57 213 174

3 3 67 146 3 28 137 195
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considered the possibility that different features may be optimal for
classifying field-collected data. By forward feature selection using
laboratory data for training on the kNN algorithm, we found the
optimal feature space for classifying the Q3 data included lapses
and mean fastest 10% RTs only, and the optimal feature space
for classifying the IV data included median, lapses, TOD and sex.
Similarly, a different optimal feature space emerged for the Naive
Bayes algorithm, including only lapses and age for the Q3 data
and lapses only for the IV data. Using these optimal feature spaces
improved the overall percentage correctly classified by only 1-5%,
but considerably decreased the number of test sessions for which
performance impairment was underestimated. Table 5 shows the
results of these feature spaces found post hoc from the intern data.

3.2.1.1. Chronic sleep deprivation effects on PVT performance on the
intern Q3 schedule. Anderson et al. (2012) compared acute vs.
chronic effects of sleep deprivation on RT when subjects were on
the Q3 schedule by comparing the change in RT distributions at
the beginning of the first work shift (Extended Duration Work Shift
or EDWS 1) on Q3 to the end of the first work shift (acute effect)
and PVT performance at the beginning and end (acute effect) of
the sixth work shift (EDWS 6) on Q3, which occurred ~3 weeks
after the first work shift in EDWS 1(chronic effect). They found
a significant acute effect for both shifts (EDWS 1 and EDWS 6)
and a chronic effect between EDWS 1 and EDWS 6. To determine
whether a chronic effect could be observed in our classification
results (Table 3), we grouped the classification results across the
same test sessions included in their analysis. We used only sub-
jects who had an equal number of test sessions in EDWS 1 and
EDWS 6; if extra sessions were recorded in either EDWS, they were
omitted from this analysis. We found that from EDWS 1 to EDWS
6, the number of test sessions classified as 1 was decreased and
that the number of sessions classified as either 2 or 3 increased
(Fig. 2) for both the kNN and the Naive Bayes methods as well as
the classification based on PVT lapses. Using a chi-square test for
goodness-of-fit, assuming a null hypothesis that the proportion of
1, 2 and 3 does not change from EDWS 1 to EDWS 6, we observed
a significant change from EDWS 1 to EDWS 6 (kNN x2=23.79,
p<0.001; Naive Bayes x%=83.73, p<0.001; PVT Lapses x%=43.49,
p<0.001),inaccordance with the results reported in Anderson et al.
(2012).

3.2.2. Non-24-h Phoenix Mars work schedule

For this dataset, age, sex, PVT, LOTA, KSS and TOD data were
available. As in the Q3/IV test data, the optimal feature spaces
derived above from the laboratory training set were used in the
kNN and Naive Bayes algorithms to classify testing sessions and
included lapses, LOTA, TOD, KSS and sex.

In post hoc analysis of the individuals, 203 out of the 1239 ses-
sions across 17 subjects were labeled as “1”, while 565 were labeled
as “2” and 471 as “3”. The sensitivity, specificity, PPV and NPV
results for both the kNN and the Naive Bayes methods are pre-
sented in Table 2. The kNN algorithm correctly classified 33% of all
test sessions on the non-24-h schedule and the Naive Bayes clas-
sifier correctly classified 27% of all sessions. In contrast, classifying
the data using the absolute number of PVT lapses alone, only 24% of
sessions on the non-24-h schedule were classified correctly. Both
the kNN and the Naive Bayes algorithms were more effective at
correctly classifying test sessions labeled as “3” than the classifica-
tion based on PVT lapses. The confusion matrices for the kNN and
Naive Bayes algorithms are presented in Table 3. Table 4 shows
the confusion matrix for classification based on PVT lapses of the
non-24 h-schedule test set.

For this field-collected data set, we again tested the possibility
that a different “optimal” feature space existed than the one based
on laboratory data. For the kNN algorithm, the optimal feature

space for classifying the non-24-h schedule data included median
PVT RTs and KSS, and for the Naive Bayes algorithm only age and
sex were included in the optimal feature space. Using these fea-
ture spaces improved overall classification accuracy to 40% and
42% for the kNN and Naive Bayes algorithms, respectively, and
considerably decreased the number of test sessions for which
performance impairment was underestimated. Table 5 shows the
results of these feature spaces found post hoc from the non-24-h
schedule data.

4. Discussion

Currently, performance impairment is defined by absolute per-
formance of an individual at one point in time compared to
group averages. Such methods do not take into account individ-
ual differences in baseline performance, and impairment is often
detected only after performance has already declined to a danger-
ous level. As performance can deteriorate rapidly depending on the
sleep-wake and circadian history (Cohen et al., 2010), it would be
useful to detect the signature of an individual experiencing relative
impairment to identify individuals that are on the verge of rapid
deterioration in performance before they actually reach dangerous
levels. In this paper, we tested the ability of pattern recognition
algorithms to classify impairment in response to sleep loss, using
features extracted from a single testing session, after being trained
on a separate data set. In order to be able to use individual testing
sessions to classify an individual’s performance impairment, we
first needed to construct an objective classification scheme. There
is significant inter-individual variability in performance, both at
baseline and across sleep deprivation. We chose a classification
scheme that classified individuals on the percent change in mean
slowest 10% RTs on the PVT during sleep deprivation. Each testing
session for each individual was labeled as reflecting low, medium
or severe performance impairment using 25% and 100% relative
increases in mean slowest 10% RT as cut-offs to determine classifi-
cation to each impairment level. We tested two pattern recognition
algorithms, kNN and Naive Bayes classifier. Although both algo-
rithms performed similarly, overall the kNN algorithm is simpler to
implement and computation time is less than for the Naive Bayes
classifier.

It is important to note that the classification of each testing
session takes into account only current information about the indi-
vidual’s behavior. For example, if the pattern recognition algorithm
classifies a test object as “2”, this indicates that the person’s cur-
rent performance level is equivalent to someone with medium
performance impairment relative to their best or optimal perfor-
mance, but does not indicate whether the individual will continue
to respond poorly to subsequent sleep loss. We know from analysis
of our training set data taken from laboratory experiments, how-
ever, that once an individual has a testing session labeled as “2” or
“3”, 84% of their subsequent testing sessions for that wake episode
will also be labeled as “2” or “3”, indicating that they will probably
continue to experience medium to severe performance impairment
without an intervention such as sleep.

One shortcoming of our approach is that we are using PVT mea-
sures both in our feature space and in our classification labels.
Using forward feature selection methods, it was found that PVT
measures combined with additional information (e.g., TOD) were
better than PVT measures alone at predicting performance impair-
ment. Additionally, we used relative mean slowest 10% RTs rather
than an absolute measure such as lapses based on a 500 ms
threshold, because some individuals at baseline who are presum-
ably well-rested may have a similar mean slowest 10% RT score
to individuals who are sleep-deprived. While their baselines are
slower, they are not necessarily at risk of rapid deterioration in
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Fig. 2. Classification of response by time within study for the two different methods. The number of test sessions classified as 1, 2 or 3 were compared between EDWS 1,
the first extended duration work shift of interns on a Q3 schedule, and EDWS 6, the sixth extended duration work shift ~18 days later. Test sessions classified as 1 decreased
from EDWS 1 to EDWS 6 and those classified as 2 or 3 increased across EDWS for both the kNN (lower left panel) and the Naive Bayes (upper right panel) methods as well
as the classification based on PVT lapses (lower right panel). Actual classification, determined post hoc based on relative mean slowest 10% RTs, is presented for comparison

(upper left panel).

performance compared to someone with a faster baseline that is
starting to show relative decline from fatigue. Although the abso-
lute number of PVT lapses for one testing session are a useful
measure to classify performance impairment, as evidenced by its
inclusion in our optimal feature spaces, our analysis here has shown
that the absolute number of PVT lapses over a single testing ses-
sion cannot alone determine an individual’s relative performance
impairment, particularly in our field-collected data when subjects
show severe performance impairment in the mean slowest 10%
RT but not in the number of PVT lapses. This suggests that lapses
may not map onto real-world functioning, since the field-collected
data sets demonstrate that individuals can have a low number of
PVT lapses but still show large decrements in performance based
on other measures. A previous study of medical residents found
that the number of PVT lapses had no significant change between
a light vs. heavy call schedule, but that PVT median RT signifi-
cantly increased (Arnedt et al., 2005). Additionally, the cut-off of
500 ms to define a lapse may not be appropriate for all individuals.
Distribution of reaction times shows large inter-individual differ-
ences, including age and sex effects (Wyatt et al., 2004; Blatter et al.,
2006; Dufty et al., 2009). Furthermore, time to respond on the PVT
depends on whether eyes are open, closed or looking away at the
time of stimulus presentation and a lapse just above 500 ms may
represent a different mechanism of attentional failure than a lapse
of several seconds (Anderson et al., 2010).

We tested our validated feature space and training set from
laboratory data on data collected in two field studies: a popula-
tion of hospital interns who frequently work extended hours or at
night and a population of ground crew working the Phoenix Mars

mission on a 24.65-h Mars sol schedule. Our pattern recognition
method was able to correctly classify subjects labeled as “1” low
performance impairment 80-98% of the time, depending on which
algorithm was used. Our pattern recognition methods were less
successful at predicting “2” medium and “3” severe performance
impairment in the field-collected data sets, and often underpre-
dicted the level of performance impairment. The PVT administered
during the non-24-h Mars sol schedule, however, was the 5-min
version of the task. The 10-min PVT shows a time-on-task effect,
with longer RTs occurring in the later minutes of the task (Paus
et al,, 1997; Tucker et al., 2009). Although the 5-min version of the
PVT has been previously validated (Loh et al., 2004; Lamond et al.,
2005; Roach et al., 2006), a difference in the distribution of RTs
may explain why our training set and classification labels, which
were based on the 10-min version of the PVT, were less successful
in predicting medium and severe performance impairment for the
subjects on the non-24-h Mars sol schedule.

A possible limitation of the training set used here to optimize
parameters and feature spaces of our pattern recognition algo-
rithms is that it comes from laboratory data in which subjects were
not allowed any substances including caffeine, nicotine or alco-
hol, whereas in both the intern and non-24-h schedules subjects
had free access to stimulants and many reported using them. Using
laboratory data, therefore, to quantify performance impairment in
populations which have access to performance-altering substances
may not always be appropriate. These differences may also explain
why different feature spaces were found to be better predictors
when applied to the field-collected data compared to the feature
spaces derived from the laboratory data. Our analysis suggests that
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features that are important indicators of performance impairment
in a laboratory setting (e.g., LOTA, TOD) may not be important indi-
cators of impaired performance under real-world conditions. For
example, the TOD as a proxy for circadian phase as defined in this
analysis (i.e., six 4-h bins over a 24-h cycle) is an inappropriate mea-
sure for the non-24-h Phoenix Mars schedule because the majority
of subjects were in phase with their work schedule, which moved
forward 0.65-h per day (Barger et al., 2012). Unfortunately, “opti-
mal” feature spaces must be determined a priori from existing data,
and therefore more work should be done to identify features that
are robust predictors of performance impairment both in the labo-
ratory and in the field. Future work should also develop training sets
that include laboratory and non-laboratory data, indicating data in
which caffeine and other stimulants were used.

Another limitation of the current training set is that it includes
only data collected from one type of objective performance test.
Although there are other neurobehavioral tasks administered in
the laboratory, many of these cannot be administered easily in the
field. A benefit of using pattern recognition algorithms is that there
is no limit on the amount or type of data that can be included in the
feature space. It may therefore be possible to include in the feature
space other types of measurements that can be collected in a field
setting to improve further the classification results that we have
reported here. The percentage of eyelid closure time (PERCLOS),
for example, has been shown as a potentially effective predictor of
low vigilance (Abe et al., 2011).

In conclusion, we have presented pattern recognition algo-
rithms that make use of data from laboratory studies to classify
performance impairment in response to sleep loss in other individ-
uals working at their jobs using data from a single collection period.
We have shown that this method can be used in conjunction with
administration of the PVT and subjective assessments of sleepi-
ness in non-laboratory conditions to predict when individuals have
low performance impairment; however, more analysis is necessary
to improve the algorithms to predict more accurately when indi-
viduals reach medium and severe performance impairment levels,
particularly under real-world conditions. The ability to accurately
classify low impairment is useful, however, as individuals that are
not in this classification can be flagged as a potential safety concern,
and limited resources may be devoted to more direct supervision of
their actual job responsibilities to judge safety of their performance
or to choose another individual to perform the task. Furthermore,
while our definitions of medium and severe performance impair-
ment reflect increases in RT of ~90 ms and ~360 ms, respectively, it
is not clear how such an increase in RT translates to the risk of acci-
dents and errors in operational settings; more work in this area is
needed to correlate objective measures of performance impairment
such as the PVT with such outcomes.

Once the algorithms have been improved, it would be advanta-
geous to implement these methods in a software device that could
be used in a real-world setting to decide which individuals may not
be safe to continue working. An important open question is what
steps to take once an individual has been classified into a medium or
severe performance impairment category. An ideal scenario would
be to remove that individual from further work (and replace them
with another individual if available) until adequate sleep could be
obtained, although in operational settings this option may not be
safe or feasible. Future work, therefore, should focus on interpreting
the results of these algorithms in conjunction with existing fatigue
management scheduling tools and mathematical models which
predict levels of neurobehavioral performance and alertness under
different sleep/wake and circadian phase combinations. These tools
can be used to predict the relative effectiveness of various coun-
termeasures, such as naps, caffeine or light, in an individual given
their current level of performance impairment. Once a countermea-
sure has been given, the algorithm can be implemented again to

determine whether the countermeasure has improved perfor-
mance and alertness to an acceptable level.
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