

## **Assessment of Nanoparticle Measurement Instruments**

**Patrick T. O'Shaughnessy**

*Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA*

A typical industrial hygiene analysis of workplace dust exposure does not include instrumentation to detect particles in the nanometer size range. One of the goals of this research project is to compare a suite of aerosol measurement instruments for the purpose of demonstrating their differences and similarities to more effectively evaluate workplaces that may have a nanoparticle aerosol. The instruments analyzed include a scanning mobility particle sizer, portable condensation particle counter, surface area monitor, photometer, and optical particle counter. The measurements made by these instruments were compared to mass concentration measurements made by gravimetric analysis, and count concentration and size distribution made by transmission electron microscopy. All instruments are connected via ports attached to a 20 L sealed chamber acting as a plenum through which dilution air flowed at 25-L/min. Prior to this work, an assessment of various methods for aerosolizing nanoparticles from the bulk powder were compared. These methods included both dry powder dispersers and nebulization of a liquid suspension and involved powders consisting of titanium dioxide, iron oxide, silicon dioxide, and single-walled carbon nanotubes. Polystyrene latex spheres with diameters less than 100 nm also were tested as a control for particles with known geometry and size distribution. Multiple trials of each dust type were conducted, and t-tests were used to perform pair-wise comparisons of instrument output for instruments that were directly comparable. Conversions were made to some measurements to compare, for example, count measurements with surface area measurements. The results indicate a need to apply a shape factor to make direct correlations between instruments, especially when comparing between instruments with different units—count, surface area, or mass concentrations. This information will be useful for comparing results obtained by different instruments and for choosing an appropriate instrument for evaluation of nanoparticles in the workplace.

*NIOSH Grant Number: R01 OH008806*

## Assessment Methods for Nanoparticles in the Workplace

Patrick O'Shaughnessy

Department of Occupational and Environmental Health  
College of Public Health

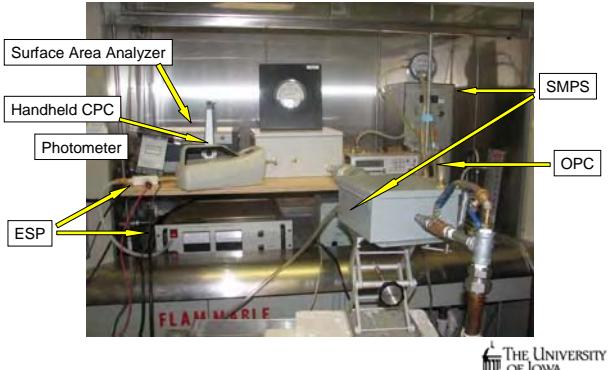


### Overall Research Objectives

1. Identify and evaluate methods to measure airborne nanoparticle concentrations.
2. Characterize nanoparticles to assess their surface and bulk physical and chemical properties.
3. Determine the collection efficiency of commonly-used respirator filters when challenged with nanoparticles.



### Instrument Comparison


Department of Occupational and Environmental Health  
College of Public Health



### Comparison Apparatus



### Instruments Compared



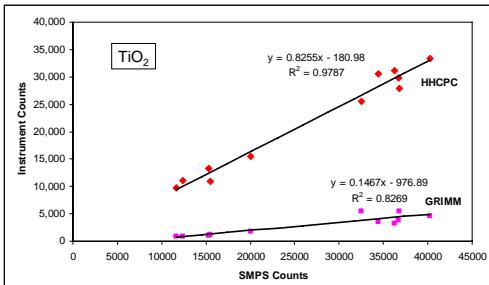
### Instrument Specifications

| Instrument       | Model  | Application  | Measured Unit                    | Limits                             | Particle Size Range, nm |
|------------------|--------|--------------|----------------------------------|------------------------------------|-------------------------|
| TSI Handheld CPC | 3007   | Count        | #/cm <sup>3</sup>                | 0 - 10 <sup>5</sup>                | 10 - 1000               |
| TSI CPC          | 3010   | Count        | #/cm <sup>3</sup>                | 10 <sup>-4</sup> - 10 <sup>4</sup> | 10 - 3000               |
| TSI DMA          | 3071   | Count/Diam   | #/cm <sup>3</sup>                | NA                                 | 5 - 1000                |
| GRIMM OPC        | 1.108  | Count        | #/1000 cm <sup>3</sup>           | 0 - 2x10 <sup>6</sup>              | 300 - 20,000            |
| Matter Inst. SAA | LQ1-DC | Surface Area | μm <sup>2</sup> /cm <sup>3</sup> | 0 - 2000                           | 10 - 80                 |

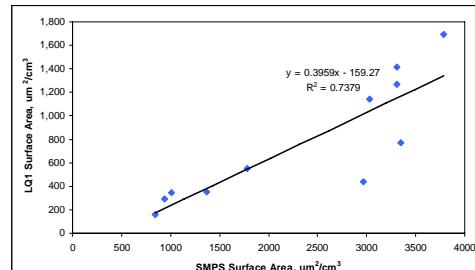


## Powder Types Analyzed

- Iron Oxides:
  - High Concentration
  - Medium Concentration
- Titanium Dioxides
  - High Concentration
  - Medium Concentration
  - Low Concentration
- Single Walled Carbon Nanotubes




## TiO<sub>2</sub> Comparison


| Trial Sets | Geometric Mean (nm) | GSD | SMPS Average Count (#/cm <sup>3</sup> ) | GRIMM Average Count (#/cm <sup>3</sup> ) | CPC Average Count (#/cm <sup>3</sup> ) | LQ1 (μm <sup>2</sup> /cm <sup>3</sup> ) | Average SMPS Surface Area (μm <sup>2</sup> /cm <sup>3</sup> ) |
|------------|---------------------|-----|-----------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------------------------------|
| AVG I      | 89.2                | 2.5 | 13,120                                  | 915                                      | 11,363                                 | 264                                     | 930                                                           |
| AVG II     | 118.3               | 2.1 | 17,735                                  | 1,500                                    | 13,197                                 | 450                                     | 1,782                                                         |
| AVG III    | 129.1               | 1.9 | 35,571                                  | 3,754                                    | 30,197                                 | 1,205                                   | 3,171                                                         |
| AVG IV     | 151.4               | 1.6 | 34,624                                  | 5,480                                    | 26,696                                 | 1,556                                   | 3,548                                                         |
| AVG V      | 104.7               | 2.4 | 38,252                                  | 3,925                                    | 32,282                                 | 604                                     | 3,157                                                         |



## Count Correlations



## Surface Area Correlations



## Aerosol Generation

Department of Occupational and Environmental Health  
College of Public Health



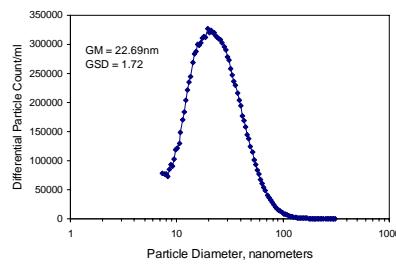
## Collision Nebulizer



Added bulk powder to filtered water  
Nebulized at 20 psi



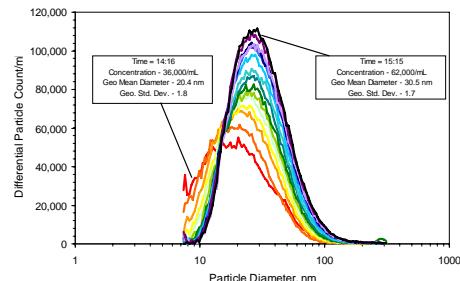
## Instrument Comparison



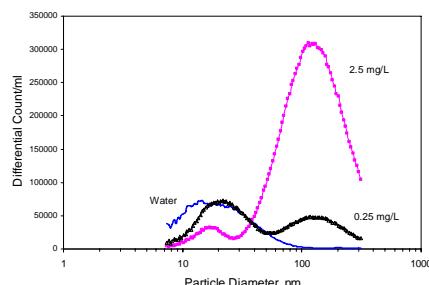

## Water Contamination

Department of Occupational and Environmental Health  
College of Public Health




## Typical Water Only Results

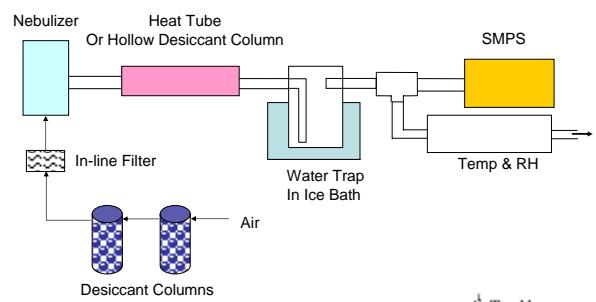



6-jet Collison Nebulizer  
Ultrapure Water from Lab System

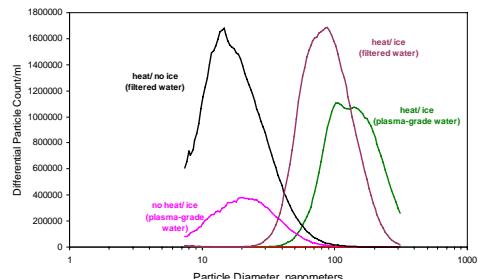


## Water Output over Time




## Nebulizer Output with Powder




6-jet Collison Nebulizer  
Ultrapure Water from Lab System  
20-nm TiO<sub>2</sub> Added and ultra-sonicated



## Water Trials




## Water Trials



Park Work/SMPS File/Dec 15 Water Setup Test/Comparison

THE UNIVERSITY OF IOWA

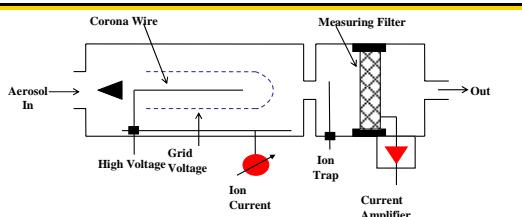
## SEM of Water



THE UNIVERSITY OF IOWA

## SEM-EDS

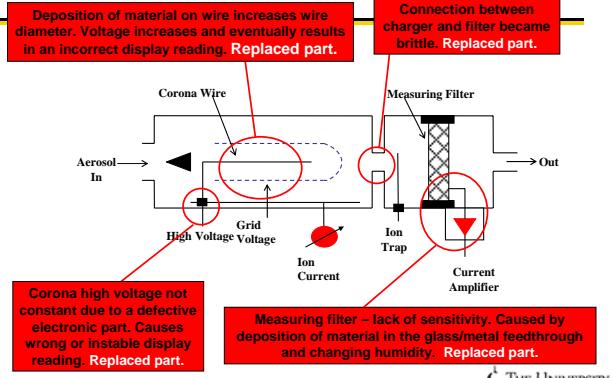
Spectrum: 2hr\_Cfilter 1  
 El AN Series unn. C norm. C Atom. C Error  
 [wt.-%] [wt.-%] [at.-%] [%]  
 -----  
 N 7 K-series 21.95 21.95 30.31 9.0  
 Cu 29 L-series 19.79 19.79 6.02 8.2  
 Na 11 K-series 5.54 5.54 4.66 0.5  
 Cl 17 K-series 2.39 2.39 1.31 0.1  
 P 18 K-series 1.97 1.97 1.23 0.1  
 K 14 K-series 1.37 1.37 0.68 0.1  
 Mg 12 K-series 1.34 1.34 1.07 0.1  
 Si 14 K-series 0.88 0.88 0.61 0.1  
 O 8 K-series 44.77 44.77 54.12 15.2  
 -----  
 Total: 100.00 100.00 100.00


THE UNIVERSITY OF IOWA

## Instrument Issues

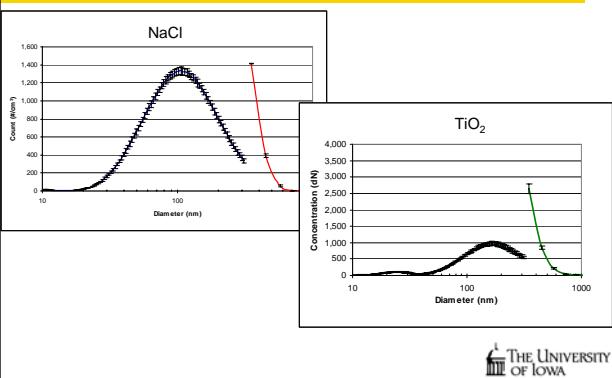
Department of Occupational and Environmental Health  
 College of Public Health

THE UNIVERSITY OF IOWA


## Surface Area Analyzer



- Particles are charged by unipolar diffusion of ions from the corona charger.
- A filter downstream from the charger measures the current of the particles via an electrometer.
- Active surface area (not individual particle surface area) is calculated from the measured current.

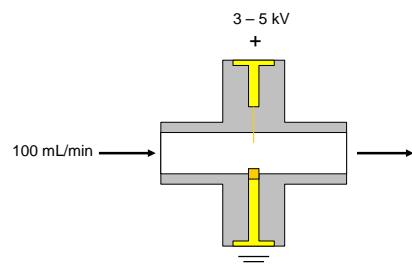

THE UNIVERSITY OF IOWA

## Areas of Degradation



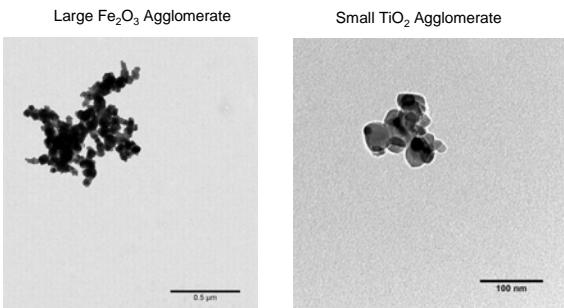
THE UNIVERSITY OF IOWA

## SMPS and GRIMM Size Distributions




## Microscopic Sizing

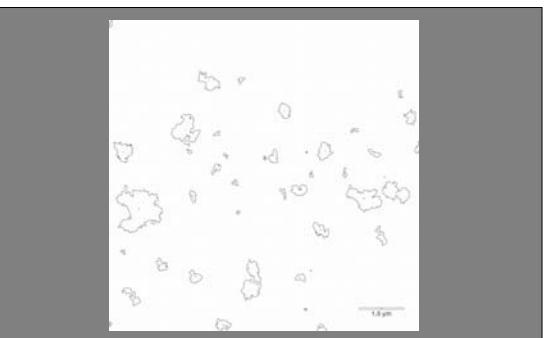
Department of Occupational and Environmental Health  
College of Public Health




## ESP



THE UNIVERSITY OF IOWA


## TEM Imaging/Counting



Captured on TEM grid via ESP collector

THE UNIVERSITY OF IOWA

## TEM Imaging/Counting



THE UNIVERSITY OF IOWA

## Particle Characterization

Department of Occupational and Environmental Health  
College of Public Health



## Characterization Techniques

| Technique             | Information                                                              |
|-----------------------|--------------------------------------------------------------------------|
| XPS                   | Elemental Composition                                                    |
| XRD <sup>†</sup>      | Crystallinity                                                            |
| SEM<br>TEM            | Shape, homogeneity, tube size, size distribution, and surface morphology |
| BET                   | Surface area                                                             |
| Raman<br>spectroscopy | Tube diameter, conductivity, purity                                      |
| AFM <sup>†</sup>      | Tube length, diameter                                                    |

## \* Future work



## TiO<sub>2</sub> Analysis

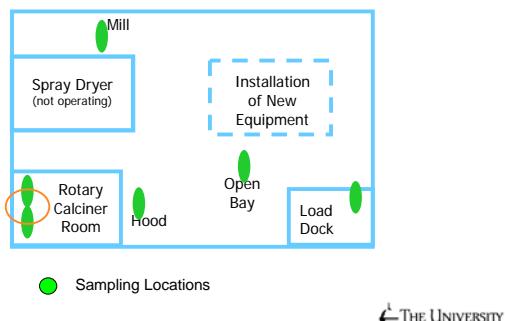
|                                      |                              |
|--------------------------------------|------------------------------|
| Crystalline or Amorphous             | Crystalline                  |
| Phase                                | Anatase                      |
| Primary Particle Diameter (nm)       | $4 \pm 1$                    |
| BET Surface Area (m <sup>2</sup> /g) | $266 \pm 3$                  |
| Surface Functionalization            | O, O-H, and H <sub>2</sub> O |
| Aerosol Aggregate Size               | $100 \pm 50$ nm              |



# Carbon Nanotube Analysis

|                                  | <b>SWNT</b>    | <b>DWNT</b>    |
|----------------------------------|----------------|----------------|
| Average Diameter (nm)            | $4.5 \pm 3$    | $2.8 \pm 2$    |
| Surface Area (m <sup>2</sup> /g) | $457 \pm 4$    | $575 \pm 10$   |
| Catalyst Contamination           | Co < 0.2%      | Not detectable |
| Conductivity                     | Semiconducting | Semiconducting |

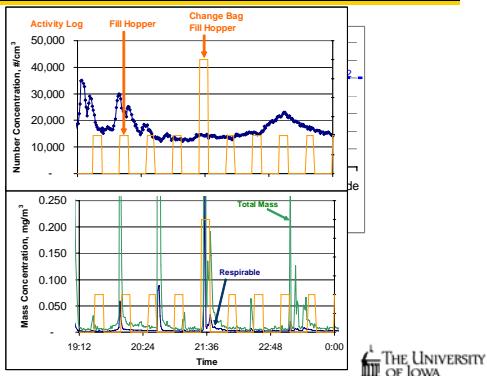



## Field Sampling

## Nano-structured Lithium Titanate Facility

Department of Occupational and Environmental Health  
College of Public Health




## Facility Schematic



## Rotary Calciner



## Real-time Measurements



## Conclusions

- Material handling of lithium titanate disperses large particles ( $>1 \mu\text{m}$ )
- Ultrafine particles likely associated with forklifts, welding, grinding



## Acknowledgements

### Faculty

- Thomas Peters
  - Field Assessments
- William Heitbrink
  - Filtration Expertise
- Vicki Grassian
  - Particle Characterization

### Funding

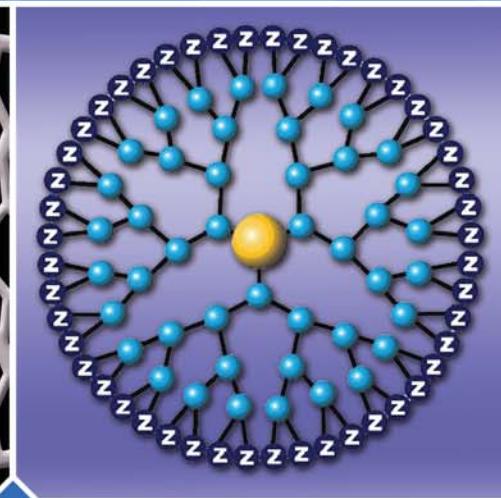
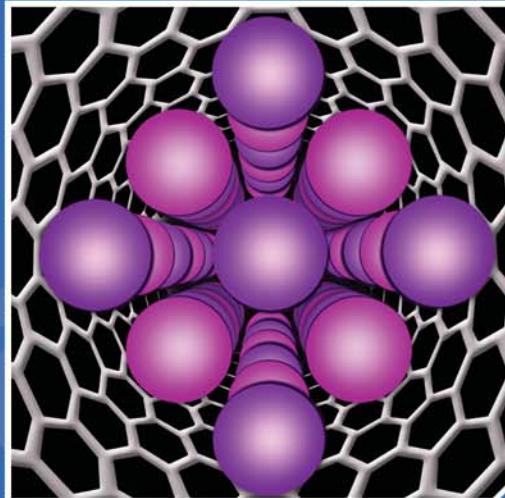


### Students

- Linda Schmoll – PhD
  - Instrument Comparison
  - Filtration Studies
- Sherrie Elzey - PhD
  - Particle Characterization
- Hyun Ju Park – MS
  - Water Contamination & TEM/SEM
- Ron Johnson – MS
  - Field Sampling

### Staff

- Jonas Baltrusaitis
  - SEM & TEM Analysis




United States  
Environmental Protection  
Agency

# Proceedings of the Interagency Workshop on the Environmental Implications of Nanotechnology

SEPTEMBER 5 - 7, 2007  
WASHINGTON, DC

