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Fungal hemolysins
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Hemolysins are a class of proteins defined by their ability to lyse red cells but have been
described to exhibit pleiotropic functions. These proteins have been extensively studied
in bacteria and more recently in fungi. Within the last decade, a number of studies have
characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins.
The purpose of this review is to provide a synopsis of the known fungal hemolysins with
an emphasis on those belonging to the aegerolysin protein family. New insight and per-
spective into fungal hemolysins in biotechnology and health are additionally presented.
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Introduction

Hemolysins have been classically defined as exotoxins that
are capable of lysing red blood cells as well as nucleated
cells. Current knowledge suggests that hemolysins are
pore-forming toxins that interact with specific ligands on
the surface of various target cells [1]. Although extensively
studied in various bacterial species [1,2], hemolysins have
also been reported in fungi [3,4], plants [5], invertebrates
[6-8], and mammals (perforins) [9]. Bacterial hemolysins
have been well characterized due to the role of these pro-
teins in pathogenesis and, their structural details, mecha-
nisms of hemolysis, ligand differences on target cells, and
diagnostic potential have been described [2,10-19]. In con-
trast, less is known about fungal hemolysins. In this review,
we aim to describe the structural and biochemical features
and the pleiotropic functions of these fungal proteins, with
emphasis on aegerolysins. Furthermore, we identify cur-
rent issues with the isolation and characterization of these
proteins and provide perspectives into the possible role for
these proteins in fungal biology, health, and biotechnology.
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In addition, we will discuss comparisons to bacterial hemo-
Iytic proteins that share sequence homology to fungal
hemolysins.

Hemolysins were first reported in higher fungi in 1907
and 1911 by W. W. Ford while studying various basidiomy-
cete genera including Amanita, Entoloma, Lactarius, and
Inocybe [20,21]. In 1939, Henrici, a microbiologist at
University of Minnesota in Minneapolis, reported the first
hemolytic activity in filamentous fungi while investigating
the pathogenic ascomycete species, Aspergillus fumigatus
and Aspergillus flavus [22]. The authors reported that
extracts collected from the mycelium of the fungus grown
for 2-4 days were heat sensitive, hemolytic, and produced
necrosis and edema when introduced in experimental ani-
mals. Further studies by Salvin in 1951 at the Rocky
Mountain Laboratory in Hamilton, Montana, led to the
identification of similar hemolytic activity in the endemic
fungal pathogens, Histoplasma capsulatum and Blastomy-
ces dermatidis, as well as the opportunistic pathogens,
including Candida albicans and Cryptococcus neoformans
[23]. This was the first report that suggested the existence
of more than one fungal hemolysin. To date, hemolysins
have been identified and partially characterized from a
wide variety of fungal species and these are summarized
in Table 1.

During the last decade, the study of fungal hemolysins
has benefitted from efforts to sequence the genomes of
medically and biotechnologically important fungal species
[24-29]. Using bioinformatic approaches, these databases
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Fungal hemolysins

have enabled investigators to identify homologous hemo-
Iytic proteins from other fungal species. One cluster of these
proteins, including hemolytically active representatives has
been identified as the Aegerolysin family (IPR009413,
Pfam: PF06355; Table 1) [30], with Aa-Pril (aegerolysin)
as the prototype. Aegerolysins form the largest group of
fungal hemolysins that have been characterized. They are
generally small in size (15-20 kDa) with a B-sheet structure,
conserved cysteine residues, and characterized by a large
number of aromatic and acidic residues. These proteins are
stable over a wide range of pH but are heat labile above
temperatures of 60—-65°C. Interestingly, aegerolysins have
also been identified in plants such as Selaginella moellen-
dorffii [31], insects like Chrysodeixis includens, and the
dsDNA virus Trichoplusia ni ascovirus 2c [32,33].
However, proteins from other families have also been
implicated in hemolysis. The genomic data derived from
fungi has also aided in the identification of homologous
proteins in bacterial species including Pseudomonas
aeruginosa, Clostridium bifermentans, Burkholderia
glumae, Vibrio cholerae as well as some others [34-37].

Mechanism of hemolysis

Fungal hemolysins are typically found in a 3-sheet con-
formation, barring the exception of nigerlysin [30,38—
40]. An in silico secondary structure analysis of protein
sequences suggests that all the proteins belonging to the
aegerolysin family are B-sheet proteins. The aegerolysins
are pore-forming proteins that aggregate on the cell sur-
face after recognition of distinct membrane components.
The process of pore formation is dependent on protein
conformation and unfolding as for all pore-forming tox-
ins [1]. Experimentally, ostreolysin was found to bind in
a B-sheet conformation and then unfold into an o-helical
structure following permeabilization of target vesicles
[41]. Similarly, unfolding of ostreolysin from a B-sheet
conformation to o-helical structure prior to interacting
with target cells resulted in the loss of lytic activity [38].
These studies demonstrate that the B-sheet conformation
is an important prerequisite for initial ligand recognition
on target cells that results in eventual permeabilization.

Bacterial B-sheet hemolysins have been characterized
as small 3-pore forming toxins such as aerolysin (Aeromo-
nas hydrophila) and o-toxins (Staphylococcus aureus and
Clostridium septicum), cholesterol dependent cytolysins
(CDCs) such as streptolysin O (Streptococcus pyogenes)
and listeriolysin O (Listeria monocytogenes) or AB toxins
such as the diphtheria toxin (Corynebacterium diphthe-
riae) [1]. Current knowledge of fungal hemolysin structure
does not provide enough information for similar categori-
zation. Fungal hemolysins such as ostreolysin have been
reported to form pores 4 nm in size [41], slightly larger
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than that reported for aerolysin (2 nm) [42]. Elsewhere, in
the two-component hemolysin system of Pleurotus ostrea-
tus, pleurotolysin A and B form pores of 3.8-5 nm in size
[43]. Flammutoxin has been reported to form pores of at
least two different sizes [44]. Collectively, these sizes
reported in these studies are smaller than those typically
observed for other B-pore forming toxins (15-30 nm) and
CDCs (350-500 nm) [45].

Some fungal hemolysins from the aegerolysin family
also appear to act like thiol-activated CDCs in terms of
receptor specificities. Like many CDCs, ostreolysin has
been reported to require interaction with cholesterol rich
domains in the membrane [46]. However, ostreolysin can-
not bind pure cholesterol and only interacts with choles-
terol when it is in association with sphingomyelin. These
observations are similar to those made for the bacterial
cytolysin of Vibrio cholerae [47].

The two component hemolysin system of pleurotolysin
A and B in P. ostreatus appears to have involvement of the
A and B components, but do not behave like the AB toxins
in bacteria [43]. It appears that unlike the B subunit of the
AB toxin in bacteria, which does not insert in the mem-
brane of target cells, both pleurotolysin components appear
to bind to the membrane directly. Based on these experi-
mental findings, fungal hemolysins likely represent a novel
class of B-sheet pore-forming toxins that form pores closer
to the size of small B-pore-forming toxins but rely on inter-
actions with cholesterol rich domains like CDCs.

Lectin-based hemolytic activity has also been reported
in the parasitic basidiomycete, Laetiporus sulphureus [48].
This hemolysin has structural similarities to o toxin from
Clostridium septicum and the mosquitocidal toxin (MTX2)
derived from Bacillus sphaericus [49]. The hemolytic pro-
tein designated as LSL (Laetiporus sulphureus lectin) is
composed of two domains with different functions. The
N-terminal domain recognizes carbohydrate epitopes, while
the C-terminal domain is required for oligomerization.
Interestingly, the C-terminal domain is very similar in struc-
ture to aerolysin (A. hydrophila) [50] and the removal of
this domain in mutagenesis studies completely removed
hemolytic activity. These findings are consistent with the
principle that oligomerization on the surface of target cells
is an essential step prior to pore formation. More detailed
information on LSL can be found elsewhere [51].

Very few studies have examined the kinetics of fungal
hemolysin binding to target cells [52,53]. Colloid-osmotic
mechanisms have been proposed as the principle mechanism
associated with hemolysis [30,41,54]. This mechanism has
been reported in bacteria for -toxin of Bacillus thuringien-
sis, ©-toxin of Clostridium perfringens and the hemolysins
of Vibrio vulnificus and Moraxella bovis [55-58]. For fungal
hemolysins, both ostreolysin and aegerolysin show the typi-
cal sigmoidal curve of hemolysis, which is characterized
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by an initial lag phase followed by rapid lysis of target cells
[4]. The lag phase is characteristic of colloid-osmotic mech-
anism for lysis and likely represents the time required for
monomer binding and oligomerization on the surface of tar-
get cells followed by the gradual influx of ions and water.
This leads to swelling and eventually results in the lysis of
the target cells.

Secretion of hemolysins

In contrast to bacterial hemolysins that are secreted, the
destination of fungal hemolysins remains unclear and has
not been characterized. Initial studies on the secretion of
fungal hemolytic factors reported contradicting observa-
tions due to the limitations associated with extract prepara-
tion [22,59-62].

In a study characterizing asp-hemolysin, polyclonal
antibodies were generated to a recombinant asp-
hemolysin and used to demonstrate the hemolysin in the
supernatant of A. fumigatus cultures [63]. Proteomic
analysis of A. fumigatus and A. nidulans demonstrated
that asp-hemolysin and its homologue (Accession No.
CAK37181) are present in fractions secreted from grow-
ing hyphae [64-66]. Furthermore, asp-hemolysin was
recently reported as the 4th most abundant protein in the
A. fumigatus secretome [66].

Studies that utilized A. fumigatus glycophosphati-
dylinositol (GPI) mutants showed that asp-hemolysin was
absent from the secreted fraction of afpig-a mutants [67].
This suggests a possible role for GPI proteins in contribut-
ing to secretion of hemolysins, however this possibility is
currently not well understood.

These findings were recently supported during in vitro
studies of A. terreus putative hemolysin expression by
Nayak and colleagues [3,39], in which the authors pro-
duced recombinant terrelysin and developed specific
monoclonal antibodies that were used to quantify the native
protein in hyphal and secreted fractions grown in liquid
culture at various temporal intervals. In these studies, it
was observed by ELISA that the highest concentrations of
terrelysin were found in the culture supernatant during
early phases of A. terreus hyphal growth [3] when com-
pared to later time points where hyphal growth and apical
elongation were reduced. It was further observed using
immunohistochemistry that terrelysin was localized to the
apical regions of the hyphae. Since terrelysin lacks a signal
peptide, it was proposed that terrelysin might either diffuse
out or be actively secreted during initial hyphal growth
(i.e., apical elongation) through other yet uncharacterized
processes. The rapid diffusion of proteins and enzymes
from apical regions of hyphal tips is well characterized
[68-73].

In contrast to these observations, proteomic studies of
A. flavus and A. terreus revealed that their homologous
hemolysins may not be secreted [74,75]. One of the pos-
sible reasons for this discrepancy could be that these stud-
ies used broad proteomics-based analyses that are less
sensitive than monoclonal antibody-based assays. To date,
the kinetics of hemolysin expression from other filamen-
tous fungal species remains to be characterized.

Hemolysins as virulence factors

Based on a number of mechanistic and characterization
studies, several fungal hemolysins have been proposed as
virulence factors [76,77]. Hemolysins lyse red blood cells
resulting in the release of iron, an important growth factor
for microbes especially during infection [78]. The require-
ment of iron in fungal growth is necessary for metabolic
processes and as a catalyst for various biochemical pro-
cesses and has been reviewed in detail elsewhere [79].
Expression of a hemolytic protein with capabilities to
lyse red blood cells has also been suggested to provide a
survival strategy for fungi during opportunistic infections.
For example, in Candida, the secretion of hemolysin cou-
pled with iron uptake facilitates hyphal invasion during
disseminated candidiasis [80]. Fungal hemolysins have
been reported as a potential cause of hemorrhage in several
investigations [60,81,82]. Ostreolysin has been shown to
possess cytolytic and cardiotoxic potential in vitro and in
vivo [83-86]. Similarly, non-aegerolysin family hemo-
lysins such as phallolysin, rubescenlysin, flammutoxin and
others have been identified, purified and extensively char-
acterized for their cytolytic and cardiotoxic activities [87—
100]. Most studies on the role of hemolysins in disease
have used purified or partially purified proteins. For many
of these studies, concentrations of the proteins used
to determine toxic effects have not been studied from a
physiologically relevant perspective. A recent research article
on A. fumigatus that used asp-hemolysin mutants showed
that the hemolysin concentrations might have been overes-
timated and may not be physiologically relevant during
infection [66]. Mutation of asp-hemolysin as well as the
related asp-hemolysin-like protein did not show any sig-
nificant reduction in hemolytic and cytotoxic activities of
the fungus. In this same study, mutants of asp-hemolysin
did not exhibit any attenuation of virulence by A. fumigatus.
Interestingly, a strain with mutations for both hemolysins
was slightly hypervirulent. These data suggest that the
previous interpretations of the role of hemolysins in
A. fumigatus and other fungal virulence may be overestimated.
In view of these recent observations, the hemolytic and
cytolytic activity appears to be only coincidental to a yet
uncharacterized intracellular or extracellular function.
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Role in fungal biology

The likelihood that fungi evolved hemolysins for the sole
purpose of lysing red blood cells in vivo to improve growth
is highly unlikely. Most fungi exist in the environment as
saprophytes. In some cases, the fungus may grow on or in
living tissues especially in an immune suppressed indi-
vidual. This may provide an opportunity for colonization
and infection. For fungi, animal hosts are a rich source of
organic material.

As noted above, recent studies of A. fumigatus, cause
one to question whether fungal hemolysins have any
demonstrable role in pathogenesis [66]. A more likely
function for this family of proteins would be in the normal
physiological processes and raises a valid question regard-
ing the role of these proteins in fungal biology.

Perhaps a clue to understanding hemolysins in relation
to fungal biology comes from the basidiomycetes where
ostreolysin (Pleurotus ostreatus) and aegerolysin (Agro-
cybe aegerita) are expressed during the initiation of fruit-
ing bodies [4,101]. It is believed that these hemolysins
have a functional role in hyphal aggregation, although the
specific mechanisms remain uncharacterized [4,102].
Ostreolysin transcripts have been detected in the fruiting
bodies of P. ostreatus [4] and the addition of the protein
has been reported to enhance fruiting initiation in P. ostrea-
tus [103]. These data suggest that the functional role of the
protein is in the promotion of primordial formation, an
early stage in the development of the mushroom, especially
during hyphal aggregation.

One recent paper does not support this hypothesis [104].
Lakkireddy et al. (2011) recently proposed that lectins,
aegerolysins and other molecules involved in hyphal aggre-
gation and fruiting body formation are not consistently
present in members of closely related mushrooms. Since
primordial formation and hyphal aggregation are funda-
mental processes for growth and development, it is unlikely
that a set of proteins with inconsistent distribution would
play a significant role. The authors acknowledged that
hemolysins interact with specific receptors (most likely
lipid rafts) that may indirectly play a role in hyphal aggre-
gation by influencing the frequency of cap formation.

Studies of filamentous fungi have reported a correlation
between the kinetics of hemolysin expression and fungal
growth and development. In studies of the ascomycete spe-
cies A. terreus, detectable quantities of terrelysin are present
extracellularly, especially during the early stages of germi-
nation and hyphal development [3]. Asp-hemolysin tran-
scripts were detected from the stages of conidial germination
to hyphal extension and branching in A. fumigatus; how-
ever, deletion of asp-hemolysin in mutant strains of A.
Sfumigatus did not alter the phenotype (microscopic and
macroscopic) or growth characteristics of the fungus [66].
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In yeasts, contradicting observations have been reported on
expression of hemolysins. In B. dermatitidis, the hemolytic
activity was highest in the yeast phase of growth, while in
C. albicans, it was in hyphal stage of growth accompanied
with secretion of the hemolysin [23,105]. Elsewhere, in C.
glabrata, phase switching in the fungus was associated with
changes in the transcript levels of the hemolysin-coding
gene HLP [106]. Investigating the role of hemolysins during
the early stages of growth, especially in filamentous fungi
could provide valuable information regarding the functional
role of these proteins. It does not appear that these proteins
are critical for fungal growth but based on these observa-
tions, it is probable that these proteins have a role in regulat-
ing fungal growth. In M. anisopliae, upregulation of the
hemolysin gene was observed with fungal morphological
instability or ageing [107]. This suggests a likely function
for the product of this gene during fragmentation and apop-
tosis at least in M. anisopliae.

Another interesting aspect related to the role of these
proteins in fungal biology is the presence of variable num-
bers of aegerolysin proteins in unrelated fungal taxa (Table
1). A. fumigatus possesses two aegerolysin hemolysins that
belong to the aegerolysin family of proteins, and a third
hemolysin that has been identified as an asp-hemolysin-
like protein. In members of the order Eurotiales, A. niger
expresses two proteins that belong to the aegerolysin fam-
ily, while P. chrysogenum possesses sequences for five
homologous proteins (Table 1). Multiple hemolysins have
also been reported in basidiomycetes including P. ostreatus
and M. perniciosa [4,108-112]. In M. perniciosa, one
hemolysin peaked during primordial formation, while
another peaked during basidiocarp formation. Expression
of a homologous protein to pleurotolysin B, peaked in
mycelium and primordia, but reduced in the basidiocarp.
Similarly, studies in A. fumigatus reported that the expres-
sion of asp-hemolysin and the asp-hemolysin-like protein
especially in the secreted fractions was different at differ-
ent growth phases [66]. Currently, the biological relevance
of having multiple hemolysins remains unclear.

Interestingly, a report from the USDA laboratories
that examined gene expression in the phytopathogen,
Alternaria gaisen, reported differential expression of the
aegerolysin genes in dark and light conditions [113].
Here, significantly higher transcripts were reported from
fungi exposed to light than those exposed to dark condi-
tions. Future studies are needed to characterize the
underlying mechanisms that govern expression of these
proteins during different nutrient, temperature, light, and
pH regimens.

Although hemolysins may not be virulence factors,
another important function of these proteins may be related
to their ecological niche. Fungi exist in the environment in
competition with other fungi, bacteria and insects. Expres-
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sion of a protein that can lyse a competitor’s cells could
help provide a survival advantage for the fungal species.
In nature, especially in basidiomycetes, it has been
proposed that hemolysins have a functional role as insec-
ticides [114]. Homologous hemolysins derived from sev-
eral bacterial species including Clostridium bifermentans
have been reported to have insecticidal properties
[35,115,116]. To date, insecticidal activity has not been
identified for ostreolysin nor has it been reported in fila-
mentous fungi. Interestingly, eryngeolysin from P. eryngii
exhibited antibacterial activity against Bacillus species but
not with bacteria from other species [110]. Fungi com-
monly share their local environment with Bacillus species
in various phylosphere and rhizosphere ecosystems. Secre-
tion of hemolytic proteins that specifically lyse bacteria
may provide an opportunity to outcompete bacteria for
available nutrients and resources.

Research studies have also shown that hemolysins bind
to membrane lipids on target cells [30,46,84,117-120].
Ostreolysin has been shown to lyse lipid vesicles generated
from cholesterol/sphingomyelin and to a lesser extent,
ergosterol/sphingomyelin [117]. The specificity of binding
may provide the fungus with the ability to lyse target cells
from plants or animals without causing damage to the fun-
gal cell wall. Hemolysin specificity for certain lipids must
have a relevant biological function. For example, ostre-
olysin binds to and lyses vesicles containing sitosterol, a
phytosterol mainly present in plants [117]. Peanuts contain
large amounts of sitosterol and are very susceptible to
infection from fungi, especially Aspergillus species [121].
The hemolysins may have a functional role in plant patho-
genesis; however, this remains largely uncharacterized and
is the focus of further study.

Applications of aegerolysins

Enzymes and secondary metabolites of fungi have been
utilized in industrial sectors for many years. Secondary
metabolites from Aspergillus species have been identified
as hypolipidemic agents and commercially exploited.
Lovastatin, a polyketide-derived metabolite of A. ferreus,
was one of the first statins approved by the FDA for lower-
ing cholesterol [122]. Binding of fungal hemolysins to
lipids and lipoproteins has been extensively studied for
asp-hemolysin and ostreolysin [41,123,124]. Asp-
hemolysin was characterized for its pharmaceutical poten-
tial in binding to low-density lipoprotein (LDL) and one
of its derivatives, oxidized LDL (Ox-LDL) [125,126]. Asp-
hemolysin was reported to bind specifically to apolipoprotein
B in LDL [123,124], and lysophosphatidylcholine in
Ox-LDL [126-129]. This specific interaction was reported
to interfere with the pathological role of Ox-LDL in vitro
[130-132]. However, no animal studies have been

published that show strong evidence for a pharmaceutical
relevance of this hemolysin. Interestingly, terrelysin was
not found to have any binding activity with serum lipids
(unpublished data). Similarly, ostreolysin and aegerolysin
also do not bind LDL [4]. The basis for binding of LDL
by asp-hemolysin was suggested based on the positioning
of certain acidic amino acids in the homologous repeats in
various loops of the LDL receptor [63]. The critical posi-
tioning of aspartic acid and glutamic acid is absent for the
homologous region in terrelysin and ostreolysin and may
be a likely explanation for the lack of LDL binding. How-
ever, interactions with LDL or its derivatives are not only
limited to fungal hemolysins and have been reported for
other aegerolysin family proteins identified in bacteria.
PAO122, an aegerolysin from P. aeruginosa, has been
reported to bind Ox-LDL; however, no pharmaceutical
potential has been reported [133].

Binding of fungal hemolysins to lipids has been exten-
sively investigated by Sepcic and her colleagues at the Uni-
versity of Ljubljana in Slovenia [30,41,46,117,118]. They
have observed that ostreolysin bound to cholesterol-enriched
raft-like microdomains in the cell membrane [46,118,134].
Due to the importance of these microdomains in biological
processes such as conidial germination, hyphal extension,
signal transduction and pathogen interaction, these hemo-
lysins might be useful tools for characterizing these highly
dynamic structures in the cell membrane [135-138].

Mushrooms have been studied extensively for their bio-
medical properties. Investigations have identified a possible
role for fungal hemolysins on contributing to these proper-
ties. This has generated a considerable interest in under-
standing the contribution made by hemolysins especially as
anti-tumor agents [139]. Schizolysin, (S. commune), eryn-
geolysin (P. eryngii), nebrodeolysin (P. nebrodensis) and
phallolysin (A. phalloides) have been shown to possess
anti-retroviral activity or cytotoxic to tumor cells; however,
more research is needed to determine a physiological
relevance [110,140-142].

In recent times, considerable interest has grown in use
of filamentous fungi and mainly Aspergillus species for
heterologous protein expression [143,144]. This has been
aided by genome sequencing of many filamentous fungi
and improvements in DNA purification and transformation
technology. Expression of proteins in fungi is a very attrac-
tive avenue since they provide an efficient system for secre-
tion of proteins and post-translational modifications in an
inexpensive manner. Very recently in A. oryzae, the pro-
moter from one of its hemolysin-coding genes (Q2TXT6)
was identified to possess high promoter activity [145].
Genes expressed using this promoter overproduced coded
proteins efficiently. More importantly, the promoter acti-
vity remained high in solid-state fermentations as well as
in liquid cultures.
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Another application of fungal hemolysins has been their
use as biomarkers for personal exposure to fungi or species-
specific identification of opportunistic fungal disease. Much
interest in the adverse health effects of fungal hemolysins
was stimulated by initial associations of Stachybotrys char-
tarum with an outbreak of idiopathic pulmonary hemor-
rhage (IPH) in Cleveland, Ohio, USA [146]. Fungal proteins
capable of hemolysis were hypothesized as the causative
agent and stachylysin was proposed as a potential biomarker
for exposure to S. chartarum [81,147,148]. Detection of
hemolysins from A. fumigatus and S. chartarum in sera and
tissues of experimentally exposed animals and in some
humans that worked in heavily contaminated environments
further fueled an interest in utilizing fungal hemolysins as
biomarkers for personal fungal exposure [148—150]. Recent
reports on the detection of terrelysin in the culture superna-
tant of A. terreus [3] and that asp-hemolysin is the 4th most
abundant protein in the secretome of A. fumigatus [66] sug-
gest that hemolysins may be promising biomarkers of per-
sonal exposure. Collectively, there is considerable interest
in the development of diagnostic assays for detecting these
proteins as biomarkers of allergic and disseminated fungal
exposure.

Limitations of fungal hemolysin research

Initial studies of hemolytic activity from different fungi
used crude extracts or partially purified extracts
[22,60,61,151-159]. While these studies were performed
with the experimental and purification methodologies
available at the time, recent studies using recombinant pro-
teins to generate specific antibodies have identified limita-
tions in the previous work. Recently reported studies on
the hemolytic activity of A. terreus, identified some critical
limitations in purification methodologies [3,39,160]. In
these studies, hemolytic fractions were purified from
A. terreus culture supernatant [160] and found to be
enriched with the hemolysin based on the functional acti-
vity, but on further analysis, the preparations were found
to consist of at least two proteases. Using proteomic tech-
niques, sequences for terrelysin could not be identified.
Upon further characterization, the kinetics for expression
of these proteases and terrelysin were found to be com-
pletely different [3,160]. As mentioned above, terrelysin
was identified as being produced very early in culture asso-
ciated with early hyphal growth. The protocols used for
isolating hemolysins based on functional activity involved
much longer culture times and it is probable that at these
later time points (stationary growth phase), little hemolysin
was produced and purification of other proteins such as
proteases with hemolytic activity was occurring.

When asp-hemolysin was initially investigated from A.
fumigatus, it was reported as a 30 kDa protein [62];
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however, further biochemical characterization by the same
group showed that asp-hemolysin is a much smaller protein
[39,63,161]. This discrepancy was not reported when asp-
hemolysin was sequenced for the first time or when it was
expressed as a recombinant protein [63,161]. This raised
the question in the early studies on asp-hemolysin
[62,82,149,162] whether the protein studied was indeed
homogenous. This also questions the interpretation of stud-
ies on the characterization of hemolysins as being impor-
tant for pathogenesis, as later studies clearly provide
evidence against their role as virulence factors [66]. Future
studies on the characterization of hemolytic proteins from
fungi need to identify the hemolysins by immunochemical
or proteomic methods rather than relying on hemolysis as
a functional assay for purification.

Using recombinant proteins to characterize the func-
tional activity of hemolysins is not without technical con-
cerns. Bacterial aegerolysins in Clostridium bifermentans
and Pseudomonas aeruginosa were expressed in Escheri-
chia coli as well as Bacillus thuringiensis expression sys-
tems; however, no hemolytic activity was observed with
the purified proteins [35,133,163]. It is unclear as to why
recombinant hemolysins expressed in bacterial expression
systems are not functionally active. Several studies have
aimed at expression of recombinant fungal hemolysins in
E. coli also failed to produce functionally active hemo-
lysins [39,161,164]. In the case of asp-hemolysin, the pro-
tein was expressed as a fusion protein with maltose binding
protein (MBP) [161]. It is possible that MBP, which is
almost three times the size of asp-hemolysin, could inter-
fere with the structural conformation of the protein
and thus affect the hemolytic activity of the protein. For
flammutoxin, the removal a 20-amino acid region in the
C-terminal domain was necessary to restore hemolytic
activity [164]. In addition, when these proteins are
expressed in the cytoplasm of the various expression sys-
tems, reducing conditions may inhibit the folding of the
protein to its appropriate functional conformation.

Some studies have reported that these hemolysins pos-
sibly consist of multiple components and this concept is
gaining more credence in recent times [43,111,165]. Previ-
ously, two component hemolysins have been reported in
bacteria [166,167]. It has been suggested that two individual
components interact with each other and this association is
essential for hemolysis [165]. Aegerolysin proteins such as
asp-hemolysin, ostreolysin, terrelysin, and other homolo-
gous proteins may interact with a larger subunit to form a
functionally active two-component hemolysin. Based on
sequence information available for the larger subunits, we
could not identify a homologous protein in A. terreus.

The described limitations highlight the need to re-
evaluate the term ‘hemolysin’ as it pertains to mycology.
A comprehensive review of the literature on fungal
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hemolysins suggests that the definition of hemolysis is
vague and requires refinement based on characterization
of mechanisms underlying hemolysis. Initial studies
focused on relatively crude or partially purified hemolytic
preparations. Functionally, hemolysis was observed but
these studies were confounded by the presence of other
proteins, more specifically proteases. As mentioned earlier,
at least two proteases were identified that were co-purified
in these crude preparations [160]. This was further cor-
roborated in a study characterizing A. fumigatus strains
lacking the protease transcription factor PrtT [168]. PrtT
mutant strains showed loss of secreted protease activity
and demonstrate very low levels of hemolytic activity.
Fungi are known to secrete phospholipases that interact
with host cell membranes and result in lysis [77]. In the
study of asp-hemolysin mutants with reduced asp-hemo-
Iytic activity, extracts did not show a significant reduction
in the total hemolytic activity of the fungus [66]. These
studies demonstrate that while asp-hemolysin may contrib-
ute to hemolysis, specific proteases may be more important
to the functional activity that is followed in the hemolysin
purification protocols.

Finally, non-protein components of fungi with hemo-
Iytic activity have also been reported [169,170]. Prelimi-
nary characterization of hemolysis in Wallemia sebi, a
xerotolerant basidiomycete, identified unsaturated fatty
acids responsible for hemolytic activity, while the hemo-
lysin of R. nigricans was characterized as a lipoprotein.
These observations suggest that the role of other macro-
molecules and secondary metabolites may show hemolysis
during initial characterization and further highlights issues
with extraction and purification.

Summary

Fungal hemolysins belonging to the aegerolysin protein
family are characterized by pleiotropic functions. These
proteins were first identified for their role in pathogenesis
as virulence factors; however, biochemical characterization
studies highlight their function in other aspects of fungal
biology. The ability of these proteins to bind to unique
microdomains in the cell membrane opens a new area for
research and serves as an essential tool in the characteriza-
tion of the membrane lipids. Additionally, early studies on
the detection of hemolysins during fungal infections and
recent studies on secretion in vitro demonstrate their utility
as putative biomarkers for fungal exposures. Finally, the
wealth of information on the function of these proteins in
fungal biology suggests a more important role for these
proteins in fungal growth and regulation. The continued
research in this area should provide additional insights into
these unique proteins and provides an impetus for future
research.
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