
In addition, we will discuss comparisons to bacterial hemo-

lytic proteins that share sequence homology to fungal 

hemolysins. 

 Hemolysins were fi rst reported in higher fungi in 1907 

and 1911 by W. W. Ford while studying various basidiomy-

cete genera including  Amanita ,  Entoloma ,  Lactarius , and 

 Inocybe  [20,21]. In 1939, Henrici, a microbiologist at 

University of Minnesota in Minneapolis, reported the fi rst 

hemolytic activity in fi lamentous fungi while investigating 

the pathogenic ascomycete species,  Aspergillus fumigatus  

and  Aspergillus fl avus  [22]. The authors reported that 

extracts collected from the mycelium of the fungus grown 

for 2 – 4 days were heat sensitive, hemolytic, and produced 

necrosis and edema when introduced in experimental ani-

mals. Further studies by Salvin in 1951 at the Rocky 

Mountain Laboratory in Hamilton, Montana, led to the 

identifi cation of similar hemolytic activity in the endemic 

fungal pathogens,  Histoplasma capsulatum  and  Blastomy-
ces dermatidis , as well as the opportunistic pathogens, 

including  Candida albicans  and  Cryptococcus neoformans  

[23]. This was the fi rst report that suggested the existence 

of more than one fungal hemolysin. To date, hemolysins 

have been identifi ed and partially characterized from a 

wide variety of fungal species and these are summarized 

in Table 1. 

 During the last decade, the study of fungal hemolysins 

has benefi tted from efforts to sequence the genomes of 

medically and biotechnologically important fungal species 

[24 – 29]. Using bioinformatic approaches, these databases 
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 Hemolysins are a class of proteins defi ned by their ability to lyse red cells but have been 
described to exhibit pleiotropic functions. These proteins have been extensively studied 
in bacteria and more recently in fungi. Within the last decade, a number of studies have 
characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. 
The purpose of this review is to provide a synopsis of the known fungal hemolysins with 
an emphasis on those belonging to the aegerolysin protein family. New insight and per-
spective into fungal hemolysins in biotechnology and health are additionally presented.  

  Keywords   fungi  ,   hemolysins  ,   aegerolysins   

  Introduction 

 Hemolysins have been classically defi ned as exotoxins that 

are capable of lysing red blood cells as well as nucleated 

cells. Current knowledge suggests that hemolysins are 

pore-forming toxins that interact with specifi c ligands on 

the surface of various target cells [1]. Although extensively 

studied in various bacterial species [1,2], hemolysins have 

also been reported in fungi [3,4], plants [5], invertebrates 

[6 – 8], and mammals (perforins) [9]. Bacterial hemolysins 

have been well characterized due to the role of these pro-

teins in pathogenesis and, their structural details, mecha-

nisms of hemolysis, ligand differences on target cells, and 

diagnostic potential have been described [2,10 – 19]. In con-

trast, less is known about fungal hemolysins. In this review, 

we aim to describe the structural and biochemical features 

and the pleiotropic functions of these fungal proteins, with 

emphasis on aegerolysins. Furthermore, we identify cur-

rent issues with the isolation and characterization of these 

proteins and provide perspectives into the possible role for 

these proteins in fungal biology, health, and biotechnology. 
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have enabled investigators to identify homologous hemo-

lytic proteins from other fungal species. One cluster of these 

proteins, including hemolytically active representatives has 

been identifi ed as the Aegerolysin family (IPR009413, 

Pfam: PF06355; Table 1) [30], with Aa-Pri1 (aegerolysin) 

as the prototype. Aegerolysins form the largest group of 

fungal hemolysins that have been characterized. They are 

generally small in size (15 – 20 kDa) with a  β -sheet structure, 

conserved cysteine residues, and characterized by a large 

number of aromatic and acidic residues. These proteins are 

stable over a wide range of pH but are heat labile above 

temperatures of 60 – 65 ° C. Interestingly, aegerolysins have 

also been identifi ed in plants such as  Selaginella moellen-
dorffi i  [31], insects like  Chrysodeixis includens , and the 

dsDNA virus Trichoplusia ni ascovirus 2c [32,33]. 

 However, proteins from other families have also been 

implicated in hemolysis. The genomic data derived from 

fungi has also aided in the identifi cation of homologous 

proteins in bacterial species including  Pseudomonas 
aeruginosa ,  Clostridium bifermentans ,  Burkholderia 
glumae ,  Vibrio cholerae  as well as some others [34 – 37].   

 Mechanism of hemolysis 

 Fungal hemolysins are typically found in a  β -sheet con-

formation, barring the exception of nigerlysin [30,38 –

 40]. An  in silico  secondary structure analysis of protein 

sequences suggests that all the proteins belonging to the 

aegerolysin family are  β -sheet proteins. The aegerolysins 

are pore-forming proteins that aggregate on the cell sur-

face after recognition of distinct membrane components. 

The process of pore formation is dependent on protein 

conformation and unfolding as for all pore-forming tox-

ins [1]. Experimentally, ostreolysin was found to bind in 

a  β -sheet conformation and then unfold into an  α -helical 

structure following permeabilization of target vesicles 

[41]. Similarly, unfolding of ostreolysin from a  β -sheet 

conformation to  α -helical structure prior to interacting 

with target cells resulted in the loss of lytic activity [38]. 

These studies demonstrate that the  β -sheet conformation 

is an important prerequisite for initial ligand recognition 

on target cells that results in eventual permeabilization. 

 Bacterial  β -sheet hemolysins have been characterized 

as small  β -pore forming toxins such as aerolysin ( Aeromo-
nas hydrophila ) and  α -toxins ( Staphylococcus aureus  and 

 Clostridium septicum ), cholesterol dependent cytolysins 

(CDCs) such as streptolysin O ( Streptococcus pyogenes ) 

and listeriolysin O ( Listeria monocytogenes ) or AB toxins 

such as the diphtheria toxin ( Corynebacterium diphthe-
riae ) [1]. Current knowledge of fungal hemolysin structure 

does not provide enough information for similar categori-

zation. Fungal hemolysins such as ostreolysin have been 

reported to form pores 4 nm in size [41], slightly larger 

than that reported for aerolysin (2 nm) [42]. Elsewhere, in 

the two-component hemolysin system of  Pleurotus ostrea-
tus , pleurotolysin A and B form pores of 3.8 – 5 nm in size 

[43]. Flammutoxin has been reported to form pores of at 

least two different sizes [44]. Collectively, these sizes 

reported in these studies are smaller than those typically 

observed for other  β -pore forming toxins (15 – 30 nm) and 

CDCs (350 – 500 nm) [45]. 

 Some fungal hemolysins from the aegerolysin family 

also appear to act like thiol-activated CDCs in terms of 

receptor specifi cities. Like many CDCs, ostreolysin has 

been reported to require interaction with cholesterol rich 

domains in the membrane [46]. However, ostreolysin can-

not bind pure cholesterol and only interacts with choles-

terol when it is in association with sphingomyelin. These 

observations are similar to those made for the bacterial 

cytolysin of  Vibrio cholerae  [47]. 

 The two component hemolysin system of pleurotolysin 

A and B in  P. ostreatus  appears to have involvement of the 

A and B components, but do not behave like the AB toxins 

in bacteria [43]. It appears that unlike the B subunit of the 

AB toxin in bacteria, which does not insert in the mem-

brane of target cells, both pleurotolysin components appear 

to bind to the membrane directly. Based on these experi-

mental fi ndings, fungal hemolysins likely represent a novel 

class of  β -sheet pore-forming toxins that form pores closer 

to the size of small  β -pore-forming toxins but rely on inter-

actions with cholesterol rich domains like CDCs. 

 Lectin-based hemolytic activity has also been reported 

in the parasitic basidiomycete,  Laetiporus sulphureus  [48]. 

This hemolysin has structural similarities to  α  toxin from 

 Clostridium septicum  and the mosquitocidal toxin (MTX2) 

derived from  Bacillus sphaericus  [49]. The hemolytic pro-

tein designated as LSL ( Laetiporus sulphureus  lectin) is 

composed of two domains with different functions. The 

N-terminal domain recognizes carbohydrate epitopes, while 

the C-terminal domain is required for oligomerization. 

Interestingly, the C-terminal domain is very similar in struc-

ture to aerolysin ( A. hydrophila ) [50] and the removal of 

this domain in mutagenesis studies completely removed 

hemolytic activity. These fi ndings are consistent with the 

principle that oligomerization on the surface of target cells 

is an essential step prior to pore formation. More detailed 

information on LSL can be found elsewhere [51]. 

 Very few studies have examined the kinetics of fungal 

hemolysin binding to target cells [52,53]. Colloid-osmotic 

mechanisms have been proposed as the principle mechanism 

associated with hemolysis [30,41,54]. This mechanism has 

been reported in bacteria for  δ -toxin of  Bacillus thuringien-
sis ,  θ -toxin of  Clostridium perfringens  and the hemolysins 

of  Vibrio vulnifi cus  and  Moraxella bovis  [55 – 58]. For fungal 

hemolysins, both ostreolysin and aegerolysin show the typi-

cal sigmoidal curve of hemolysis, which is characterized 
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by an initial lag phase followed by rapid lysis of target cells 

[4]. The lag phase is characteristic of colloid-osmotic mech-

anism for lysis and likely represents the time required for 

monomer binding and oligomerization on the surface of tar-

get cells followed by the gradual infl ux of ions and water. 

This leads to swelling and eventually results in the lysis of 

the target cells.   

 Secretion of hemolysins 

 In contrast to bacterial hemolysins that are secreted, the 

destination of fungal hemolysins remains unclear and has 

not been characterized. Initial studies on the secretion of 

fungal hemolytic factors reported contradicting observa-

tions due to the limitations associated with extract prepara-

tion [22,59 – 62]. 

 In a study characterizing asp-hemolysin, polyclonal 

antibodies were generated to a recombinant asp-

hemolysin and used to demonstrate the hemolysin in the 

supernatant of  A. fumigatus  cultures [63]. Proteomic 

analysis of  A. fumigatus  and  A. nidulans  demonstrated 

that asp-hemolysin and its homologue (Accession No. 

CAK37181) are present in fractions secreted from grow-

ing hyphae [64 – 66]. Furthermore, asp-hemolysin was 

recently reported as the 4th most abundant protein in the 

 A. fumigatus  secretome [66]. 

 Studies that utilized  A. fumigatus  glycophosphati-

dylinositol (GPI) mutants showed that asp-hemolysin was 

absent from the secreted fraction of  afpig-a  mutants [67]. 

This suggests a possible role for GPI proteins in contribut-

ing to secretion of hemolysins, however this possibility is 

currently not well understood. 

 These fi ndings were recently supported during  in vitro  

studies of  A. terreus  putative hemolysin expression by 

Nayak and colleagues [3,39], in which the authors pro-

duced recombinant terrelysin and developed specifi c 

monoclonal antibodies that were used to quantify the native 

protein in hyphal and secreted fractions grown in liquid 

culture at various temporal intervals. In these studies, it 

was observed by ELISA that the highest concentrations of 

terrelysin were found in the culture supernatant during 

early phases of  A. terreus  hyphal growth [3] when com-

pared to later time points where hyphal growth and apical 

elongation were reduced. It was further observed using 

immunohistochemistry that terrelysin was localized to the 

apical regions of the hyphae. Since terrelysin lacks a signal 

peptide, it was proposed that terrelysin might either diffuse 

out or be actively secreted during initial hyphal growth 

(i.e., apical elongation) through other yet uncharacterized 

processes. The rapid diffusion of proteins and enzymes 

from apical regions of hyphal tips is well characterized 

[68 – 73]. 

 In contrast to these observations, proteomic studies of 

 A. fl avus  and  A. terreus  revealed that their homologous 

hemolysins may not be secreted [74,75]. One of the pos-

sible reasons for this discrepancy could be that these stud-

ies used broad proteomics-based analyses that are less 

sensitive than monoclonal antibody-based assays. To date, 

the kinetics of hemolysin expression from other fi lamen-

tous fungal species remains to be characterized.   

 Hemolysins as virulence factors 

 Based on a number of mechanistic and characterization 

studies, several fungal hemolysins have been proposed as 

virulence factors [76,77]. Hemolysins lyse red blood cells 

resulting in the release of iron, an important growth factor 

for microbes especially during infection [78]. The require-

ment of iron in fungal growth is necessary for metabolic 

processes and as a catalyst for various biochemical pro-

cesses and has been reviewed in detail elsewhere [79]. 

 Expression of a hemolytic protein with capabilities to 

lyse red blood cells has also been suggested to provide a 

survival strategy for fungi during opportunistic infections. 

For example, in  Candida , the secretion of hemolysin cou-

pled with iron uptake facilitates hyphal invasion during 

disseminated candidiasis [80]. Fungal hemolysins have 

been reported as a potential cause of hemorrhage in several 

investigations [60,81,82]. Ostreolysin has been shown to 

possess cytolytic and cardiotoxic potential  in vitro  and  in 
vivo  [83 – 86]. Similarly, non-aegerolysin family hemo-

lysins such as phallolysin, rubescenlysin, fl ammutoxin and 

others have been identifi ed, purifi ed and extensively char-

acterized for their cytolytic and cardiotoxic activities [87 –

 100]. Most studies on the role of hemolysins in disease 

have used purifi ed or partially purifi ed proteins. For many 

of these studies, concentrations of the proteins used 

to determine toxic effects have not been studied from a 

physiologically relevant perspective. A recent research article 

on  A. fumigatus  that used asp-hemolysin mutants showed 

that the hemolysin concentrations might have been overes-

timated and may not be physiologically relevant during 

infection [66]. Mutation of asp-hemolysin as well as the 

related asp-hemolysin-like protein did not show any sig-

nifi cant reduction in hemolytic and cytotoxic activities of 

the fungus. In this same study, mutants of asp-hemolysin 

did not exhibit any attenuation of virulence by  A. fumigatus . 

Interestingly, a strain with mutations for both hemolysins 

was slightly hypervirulent. These data suggest that the 

previous interpretations of the role of hemolysins in 

 A. fumigatus  and other fungal virulence may be overestimated. 

In view of these recent observations, the hemolytic and 

cytolytic activity appears to be only coincidental to a yet 

uncharacterized intracellular or extracellular function.   
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  Fungal hemolysins   9

 Role in fungal biology 

 The likelihood that fungi evolved hemolysins for the sole 

purpose of lysing red blood cells  in vivo  to improve growth 

is highly unlikely. Most fungi exist in the environment as 

saprophytes. In some cases, the fungus may grow on or in 

living tissues especially in an immune suppressed indi-

vidual. This may provide an opportunity for colonization 

and infection. For fungi, animal hosts are a rich source of 

organic material. 

 As noted above, recent studies of  A. fumigatus , cause 

one to question whether fungal hemolysins have any 

demonstrable role in pathogenesis [66]. A more likely 

function for this family of proteins would be in the normal 

physiological processes and raises a valid question regard-

ing the role of these proteins in fungal biology. 

 Perhaps a clue to understanding hemolysins in relation 

to fungal biology comes from the basidiomycetes where 

ostreolysin ( Pleurotus ostreatus ) and aegerolysin ( Agro-
cybe aegerita ) are expressed during the initiation of fruit-

ing bodies [4,101]. It is believed that these hemolysins 

have a functional role in hyphal aggregation, although the 

specifi c mechanisms remain uncharacterized [4,102]. 

Ostreolysin transcripts have been detected in the fruiting 

bodies of  P. ostreatus  [4] and the addition of the protein 

has been reported to enhance fruiting initiation in  P. ostrea-
tus  [103]. These data suggest that the functional role of the 

protein is in the promotion of primordial formation, an 

early stage in the development of the mushroom, especially 

during hyphal aggregation. 

 One recent paper does not support this hypothesis [104]. 

Lakkireddy  et   al . (2011) recently proposed that lectins, 

aegerolysins and other molecules involved in hyphal aggre-

gation and fruiting body formation are not consistently 

present in members of closely related mushrooms. Since 

primordial formation and hyphal aggregation are funda-

mental processes for growth and development, it is unlikely 

that a set of proteins with inconsistent distribution would 

play a signifi cant role. The authors acknowledged that 

hemolysins interact with specifi c receptors (most likely 

lipid rafts) that may indirectly play a role in hyphal aggre-

gation by infl uencing the frequency of cap formation. 

 Studies of fi lamentous fungi have reported a correlation 

between the kinetics of hemolysin expression and fungal 

growth and development. In studies of the ascomycete spe-

cies  A. terreus , detectable quantities of terrelysin are present 

extracellularly, especially during the early stages of germi-

nation and hyphal development [3]. Asp-hemolysin tran-

scripts were detected from the stages of conidial germination 

to hyphal extension and branching in  A. fumigatus ; how-

ever, deletion of asp-hemolysin in mutant strains of  A. 
fumigatus  did not alter the phenotype (microscopic and 

macroscopic) or growth characteristics of the fungus [66]. 

In yeasts, contradicting observations have been reported on 

expression of hemolysins. In  B. dermatitidis , the hemolytic 

activity was highest in the yeast phase of growth, while in 

 C. albicans , it was in hyphal stage of growth accompanied 

with secretion of the hemolysin [23,105]. Elsewhere, in  C. 
glabrata , phase switching in the fungus was associated with 

changes in the transcript levels of the hemolysin-coding 

gene  HLP  [106]. Investigating the role of hemolysins during 

the early stages of growth, especially in fi lamentous fungi 

could provide valuable information regarding the functional 

role of these proteins. It does not appear that these proteins 

are critical for fungal growth but based on these observa-

tions, it is probable that these proteins have a role in regulat-

ing fungal growth. In  M. anisopliae , upregulation of the 

hemolysin gene was observed with fungal morphological 

instability or ageing [107]. This suggests a likely function 

for the product of this gene during fragmentation and apop-

tosis at least in  M. anisopliae . 

 Another interesting aspect related to the role of these 

proteins in fungal biology is the presence of variable num-

bers of aegerolysin proteins in unrelated fungal taxa (Table 

1).  A. fumigatus  possesses two aegerolysin hemolysins that 

belong to the aegerolysin family of proteins, and a third 

hemolysin that has been identifi ed as an asp-hemolysin-

like protein. In members of the order Eurotiales,  A. niger  

expresses two proteins that belong to the aegerolysin fam-

ily, while  P. chrysogenum  possesses sequences for fi ve 

homologous proteins (Table 1). Multiple hemolysins have 

also been reported in basidiomycetes including  P. ostreatus  

and  M. perniciosa  [4,108 – 112]. In  M. perniciosa , one 

hemolysin peaked during primordial formation, while 

another peaked during basidiocarp formation. Expression 

of a homologous protein to pleurotolysin B, peaked in 

mycelium and primordia, but reduced in the basidiocarp. 

Similarly, studies in  A. fumigatus  reported that the expres-

sion of asp-hemolysin and the asp-hemolysin-like protein 

especially in the secreted fractions was different at differ-

ent growth phases [66]. Currently, the biological relevance 

of having multiple hemolysins remains unclear. 

 Interestingly, a report from the USDA laboratories 

that examined gene expression in the phytopathogen, 

 Alternaria gaisen , reported differential expression of the 

aegerolysin genes in dark and light conditions [113]. 

Here, signifi cantly higher transcripts were reported from 

fungi exposed to light than those exposed to dark condi-

tions. Future studies are needed to characterize the 

underlying mechanisms that govern expression of these 

proteins during different nutrient, temperature, light, and 

pH regimens. 

 Although hemolysins may not be virulence factors, 

another important function of these proteins may be related 

to their ecological niche. Fungi exist in the environment in 

competition with other fungi, bacteria and insects. Expres-
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sion of a protein that can lyse a competitor ’ s cells could 

help provide a survival advantage for the fungal species. 

In nature, especially in basidiomycetes, it has been 

proposed that hemolysins have a functional role as insec-

ticides [114]. Homologous hemolysins derived from sev-

eral bacterial species including  Clostridium bifermentans  

have been reported to have insecticidal properties 

[35,115,116]. To date, insecticidal activity has not been 

identifi ed for ostreolysin nor has it been reported in fi la-

mentous fungi. Interestingly, eryngeolysin from  P. eryngii  
exhibited antibacterial activity against  Bacillus  species but 

not with bacteria from other species [110]. Fungi com-

monly share their local environment with  Bacillus  species 

in various phylosphere and rhizosphere ecosystems. Secre-

tion of hemolytic proteins that specifi cally lyse bacteria 

may provide an opportunity to outcompete bacteria for 

available nutrients and resources. 

 Research studies have also shown that hemolysins bind 

to membrane lipids on target cells [30,46,84,117 – 120]. 

Ostreolysin has been shown to lyse lipid vesicles generated 

from cholesterol/sphingomyelin and to a lesser extent, 

ergosterol/sphingomyelin [117]. The specifi city of binding 

may provide the fungus with the ability to lyse target cells 

from plants or animals without causing damage to the fun-

gal cell wall. Hemolysin specifi city for certain lipids must 

have a relevant biological function. For example, ostre-

olysin binds to and lyses vesicles containing sitosterol, a 

phytosterol mainly present in plants [117]. Peanuts contain 

large amounts of sitosterol and are very susceptible to 

infection from fungi, especially  Aspergillus  species [121]. 

The hemolysins may have a functional role in plant patho-

genesis; however, this remains largely uncharacterized and 

is the focus of further study.   

 Applications of aegerolysins 

 Enzymes and secondary metabolites of fungi have been 

utilized in industrial sectors for many years. Secondary 

metabolites from  Aspergillus  species have been identifi ed 

as hypolipidemic agents and commercially exploited. 

Lovastatin, a polyketide-derived metabolite of  A. terreus , 

was one of the fi rst statins approved by the FDA for lower-

ing cholesterol [122]. Binding of fungal hemolysins to 

lipids and lipoproteins has been extensively studied for 

asp-hemolysin and ostreolysin [41,123,124]. Asp-

hemolysin was characterized for its pharmaceutical poten-

tial in binding to low-density lipoprotein (LDL) and one 

of its derivatives, oxidized LDL (Ox-LDL) [125,126]. Asp-

hemolysin was reported to bind specifi cally to apolipoprotein 

B in LDL [123,124], and lysophosphatidylcholine in 

Ox-LDL [126 – 129]. This specifi c interaction was reported 

to interfere with the pathological role of Ox-LDL  in vitro  

[130 – 132]. However, no animal studies have been 

published that show strong evidence for a pharmaceutical 

relevance of this hemolysin. Interestingly, terrelysin was 

not found to have any binding activity with serum lipids 

(unpublished data). Similarly, ostreolysin and aegerolysin 

also do not bind LDL [4]. The basis for binding of LDL 

by asp-hemolysin was suggested based on the positioning 

of certain acidic amino acids in the homologous repeats in 

various loops of the LDL receptor [63]. The critical posi-

tioning of aspartic acid and glutamic acid is absent for the 

homologous region in terrelysin and ostreolysin and may 

be a likely explanation for the lack of LDL binding. How-

ever, interactions with LDL or its derivatives are not only 

limited to fungal hemolysins and have been reported for 

other aegerolysin family proteins identifi ed in bacteria. 

PA0122, an aegerolysin from  P. aeruginosa , has been 

reported to bind Ox-LDL; however, no pharmaceutical 

potential has been reported [133]. 

 Binding of fungal hemolysins to lipids has been exten-

sively investigated by Sepcic and her colleagues at the Uni-

versity of Ljubljana in Slovenia [30,41,46,117,118]. They 

have observed that ostreolysin bound to cholesterol-enriched 

raft-like microdomains in the cell membrane [46,118,134]. 

Due to the importance of these microdomains in biological 

processes such as conidial germination, hyphal extension, 

signal transduction and pathogen interaction, these hemo-

lysins might be useful tools for characterizing these highly 

dynamic structures in the cell membrane [135 – 138]. 

 Mushrooms have been studied extensively for their bio-

medical properties. Investigations have identifi ed a possible 

role for fungal hemolysins on contributing to these proper-

ties. This has generated a considerable interest in under-

standing the contribution made by hemolysins especially as 

anti-tumor agents [139]. Schizolysin, ( S. commune ), eryn-

geolysin ( P. eryngii ), nebrodeolysin ( P. nebrodensis ) and 

phallolysin ( A. phalloides ) have been shown to possess 

anti-retroviral activity or cytotoxic to tumor cells; however, 

more research is needed to determine a physiological 

relevance [110,140 – 142]. 

 In recent times, considerable interest has grown in use 

of fi lamentous fungi and mainly  Aspergillus  species for 

heterologous protein expression [143,144]. This has been 

aided by genome sequencing of many fi lamentous fungi 

and improvements in DNA purifi cation and transformation 

technology. Expression of proteins in fungi is a very attrac-

tive avenue since they provide an effi cient system for secre-

tion of proteins and post-translational modifi cations in an 

inexpensive manner. Very recently in  A. oryzae , the pro-

moter from one of its hemolysin-coding genes (Q2TXT6) 

was identifi ed to possess high promoter activity [145]. 

Genes expressed using this promoter overproduced coded 

proteins effi ciently. More importantly, the promoter acti-

vity remained high in solid-state fermentations as well as 

in liquid cultures. 
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 Another application of fungal hemolysins has been their 

use as biomarkers for personal exposure to fungi or species-

specifi c identifi cation of opportunistic fungal disease. Much 

interest in the adverse health effects of fungal hemolysins 

was stimulated by initial associations of  Stachybotrys char-
tarum  with an outbreak of idiopathic pulmonary hemor-

rhage (IPH) in Cleveland, Ohio, USA [146]. Fungal proteins 

capable of hemolysis were hypothesized as the causative 

agent and stachylysin was proposed as a potential biomarker 

for exposure to  S. chartarum  [81,147,148]. Detection of 

hemolysins from  A. fumigatus  and  S. chartarum  in sera and 

tissues of experimentally exposed animals and in some 

humans that worked in heavily contaminated environments 

further fueled an interest in utilizing fungal hemolysins as 

biomarkers for personal fungal exposure [148 – 150]. Recent 

reports on the detection of terrelysin in the culture superna-

tant of  A. terreus  [3] and that asp-hemolysin is the 4th most 

abundant protein in the secretome of  A. fumigatus  [66] sug-

gest that hemolysins may be promising biomarkers of per-

sonal exposure. Collectively, there is considerable interest 

in the development of diagnostic assays for detecting these 

proteins as biomarkers of allergic and disseminated fungal 

exposure.   

 Limitations of fungal hemolysin research 

 Initial studies of hemolytic activity from different fungi 

used crude extracts or partially purifi ed extracts 

[22,60,61,151 – 159]. While these studies were performed 

with the experimental and purifi cation methodologies 

available at the time, recent studies using recombinant pro-

teins to generate specifi c antibodies have identifi ed limita-

tions in the previous work. Recently reported studies on 

the hemolytic activity of  A. terreus , identifi ed some critical 

limitations in purifi cation methodologies [3,39,160]. In 

these studies, hemolytic fractions were purifi ed from 

 A. terreus  culture supernatant [160] and found to be 

enriched with the hemolysin based on the functional acti-

vity, but on further analysis, the preparations were found 

to consist of at least two proteases. Using proteomic tech-

niques, sequences for terrelysin could not be identifi ed. 

Upon further characterization, the kinetics for expression 

of these proteases and terrelysin were found to be com-

pletely different [3,160]. As mentioned above, terrelysin 

was identifi ed as being produced very early in culture asso-

ciated with early hyphal growth. The protocols used for 

isolating hemolysins based on functional activity involved 

much longer culture times and it is probable that at these 

later time points (stationary growth phase), little hemolysin 

was produced and purifi cation of other proteins such as 

proteases with hemolytic activity was occurring. 

 When asp-hemolysin was initially investigated from  A. 
fumigatus , it was reported as a 30 kDa protein [62]; 

however, further biochemical characterization by the same 

group showed that asp-hemolysin is a much smaller protein 

[39,63,161]. This discrepancy was not reported when asp-

hemolysin was sequenced for the fi rst time or when it was 

expressed as a recombinant protein [63,161]. This raised 

the question in the early studies on asp-hemolysin 

[62,82,149,162] whether the protein studied was indeed 

homogenous. This also questions the interpretation of stud-

ies on the characterization of hemolysins as being impor-

tant for pathogenesis, as later studies clearly provide 

evidence against their role as virulence factors [66]. Future 

studies on the characterization of hemolytic proteins from 

fungi need to identify the hemolysins by immunochemical 

or proteomic methods rather than relying on hemolysis as 

a functional assay for purifi cation. 

 Using recombinant proteins to characterize the func-

tional activity of hemolysins is not without technical con-

cerns. Bacterial aegerolysins in  Clostridium bifermentans  

and  Pseudomonas aeruginosa  were expressed in  Escheri-
chia coli  as well as  Bacillus thuringiensis  expression sys-

tems; however, no hemolytic activity was observed with 

the purifi ed proteins [35,133,163]. It is unclear as to why 

recombinant hemolysins expressed in bacterial expression 

systems are not functionally active. Several studies have 

aimed at expression of recombinant fungal hemolysins in 

 E. coli  also failed to produce functionally active hemo-

lysins [39,161,164]. In the case of asp-hemolysin, the pro-

tein was expressed as a fusion protein with maltose binding 

protein (MBP) [161]. It is possible that MBP, which is 

almost three times the size of asp-hemolysin, could inter-

fere with the structural conformation of the protein 

and thus affect the hemolytic activity of the protein. For 

fl ammutoxin, the removal a 20-amino acid region in the 

C-terminal domain was necessary to restore hemolytic 

activity [164]. In addition, when these proteins are 

expressed in the cytoplasm of the various expression sys-

tems, reducing conditions may inhibit the folding of the 

protein to its appropriate functional conformation. 

 Some studies have reported that these hemolysins pos-

sibly consist of multiple components and this concept is 

gaining more credence in recent times [43,111,165]. Previ-

ously, two component hemolysins have been reported in 

bacteria [166,167]. It has been suggested that two individual 

components interact with each other and this association is 

essential for hemolysis [165]. Aegerolysin proteins such as 

asp-hemolysin, ostreolysin, terrelysin, and other homolo-

gous proteins may interact with a larger subunit to form a 

functionally active two-component hemolysin. Based on 

sequence information available for the larger subunits, we 

could not identify a homologous protein in  A. terreus . 

 The described limitations highlight the need to re-

evaluate the term  ‘ hemolysin ’  as it pertains to mycology. 

A comprehensive review of the literature on fungal 
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hemolysins suggests that the defi nition of hemolysis is 

vague and requires refi nement based on characterization 

of mechanisms underlying hemolysis. Initial studies 

focused on relatively crude or partially purifi ed hemolytic 

preparations. Functionally, hemolysis was observed but 

these studies were confounded by the presence of other 

proteins, more specifi cally proteases. As mentioned earlier, 

at least two proteases were identifi ed that were co-purifi ed 

in these crude preparations [160]. This was further cor-

roborated in a study characterizing  A. fumigatus  strains 

lacking the protease transcription factor PrtT [168]. PrtT 

mutant strains showed loss of secreted protease activity 

and demonstrate very low levels of hemolytic activity. 

Fungi are known to secrete phospholipases that interact 

with host cell membranes and result in lysis [77]. In the 

study of asp-hemolysin mutants with reduced asp-hemo-

lytic activity, extracts did not show a signifi cant reduction 

in the total hemolytic activity of the fungus [66]. These 

studies demonstrate that while asp-hemolysin may contrib-

ute to hemolysis, specifi c proteases may be more important 

to the functional activity that is followed in the hemolysin 

purifi cation protocols. 

 Finally, non-protein components of fungi with hemo-

lytic activity have also been reported [169,170]. Prelimi-

nary characterization of hemolysis in  Wallemia sebi , a 

xerotolerant basidiomycete, identifi ed unsaturated fatty 

acids responsible for hemolytic activity, while the hemo-

lysin of  R. nigricans  was characterized as a lipoprotein. 

These observations suggest that the role of other macro-

molecules and secondary metabolites may show hemolysis 

during initial characterization and further highlights issues 

with extraction and purifi cation.   

 Summary 

 Fungal hemolysins belonging to the aegerolysin protein 

family are characterized by pleiotropic functions. These 

proteins were fi rst identifi ed for their role in pathogenesis 

as virulence factors; however, biochemical characterization 

studies highlight their function in other aspects of fungal 

biology. The ability of these proteins to bind to unique 

microdomains in the cell membrane opens a new area for 

research and serves as an essential tool in the characteriza-

tion of the membrane lipids. Additionally, early studies on 

the detection of hemolysins during fungal infections and 

recent studies on secretion  in vitro  demonstrate their utility 

as putative biomarkers for fungal exposures. Finally, the 

wealth of information on the function of these proteins in 

fungal biology suggests a more important role for these 

proteins in fungal growth and regulation. The continued 

research in this area should provide additional insights into 

these unique proteins and provides an impetus for future 

research.      
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