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Using multiple imputation to assign pesticide use for
non-responders in the follow-up questionnaire in the

Agricultural Health Study

Sonya L. Heltshe'?, Jay H. Lubin’, Stella Koutros', Joseph B. Coble’, Bu-Tian Ji', Michael C.R. Alavanja', Aaron Blair', Dale P. Sandler?,
Cynthia J. Hines*, Kent W. Thomas>, Joseph Barker®, Gabriella Andreotti', Jane A. Hoppin® and Laura E. Beane Freeman'

The Agricultural Health Study (AHS), a large prospective cohort, was designed to elucidate associations between pesticide use
and other agricultural exposures and health outcomes. The cohort includes 57,310 pesticide applicators who were enrolled
between 1993 and 1997 in lowa and North Carolina. A follow-up questionnaire administered 5 years later was completed by
36,342 (63%) of the original participants. Missing pesticide use information from participants who did not complete the second
questionnaire impedes both long-term pesticide exposure estimation and statistical inference of risk for health outcomes.
Logistic regression and stratified sampling were used to impute key variables related to the use of specific pesticides for 20,968
applicators who did not complete the second questionnaire. To assess the imputation procedure, a 20% random sample of
participants was withheld for comparison. The observed and imputed prevalence of any pesticide use in the holdout dataset
were 85.7% and 85.3%, respectively. The distribution of prevalence and days/year of use for specific pesticides were similar
across observed and imputed in the holdout sample. When appropriately implemented, multiple imputation can reduce bias
and increase precision and can be more valid than other missing data approaches.
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INTRODUCTION

Missing data is a common problem in epidemiological studies and
the statistical implications of ignoring missing data are well
known, including loss of statistical power and potentially biased
estimates of association. The multiple imputation technique’ is an
approach whereby the investigator replaces each missing value
with several plausible values sampled from a probability distribu-
tion, conducts multiple analyses for replicate datasets built from
each plausible value, then combines the multiple results to
account for the fact that the replacement data were imputed.
Multiple imputation has been widely accepted and has been used
to account for missing data in large national surveys and studies,
including NHANES 1II> National Assessment of Educational
Progress,> Children’s Mental Health Initiative,* and the Framing-
ham Heart Study;5 however, detailed accounts of the application
of multiple imputation and particularly the evaluation and
validation of the methods are not often published. This paper
demonstrates a practical implementation of multiple imputation
and is vital for investigators of the Agricultural Health Study (AHS).

The AHS is a prospective cohort study designed to evaluate the
effect of agriculturally related exposures on health outcomes. The
study includes 57,310 licensed pesticide applicators from lowa and
North Carolina, as well as 32,345 spouses of licensed applicators,

who are not included in this imputation. In lowa, both private
applicators, who are primarily farmers, and commercial applicators
were included. In North Carolina, only private applicators were
enrolled. Cancer incidence and mortality are obtained by annual
linkage to state cancer and mortality registries and to the National
Death Index. Exposure information is collected by questionnaire.
In the Phase 1 enrollment period (1993-97), applicators provided
information on the use of 50 specific pesticides through
completion of two self-administered questionnaires that included
information on demographics, health history, and lifetime farming
and pesticide use practices.®™® The study was approved by the
Institutional Review Boards of the National Institutes of Health
(Bethesda, Maryland) and its contractors. From the enrollment
data, two exposure metrics were developed; the first was lifetime
days of pesticide use, calculated as the product of years of use of
each specific pesticide and average number of days used per year.
The second metric, intensity-weighted lifetime days of use, incor-
porated information about factors that might impact exposure,
such as the use of personal protective equipment, whether the
applicator mixed pesticides, performed equipment repair, and
methods of application.’ Five years later in Phase 2 (1999-2005),
we administered a computer-assisted telephone interview question-
naire that described pesticide use since enrollment. Specifically,
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participants were asked about the last year that they applied
pesticides, which was denoted as the Phase 2 reference year, and
the type and frequency of use of specific pesticides. A total of
36,342 (63%) of the original participants completed the ques-
tionnaire; 8% had died between enrollment and the administra-
tion of Phase 2, 15% refused, and 14% could not be reached.’®
For epidemiological analyses, pesticide use information collected
in Phase 2 was cumulatively added to information collected in
Phase 1 for both aforementioned exposure metrics, using details
of specific pesticide use.

When using pesticide exposure in an analysis, there are several
ways to handle missing Phase 2 information, including omission of
those subjects, simple imputation (e.g., mean value substitution),
or ignoring non-response in Phase 2 and implicitly assume zero
pesticide exposure after Phase 1, which would be erroneous for
most participants who did not complete the Phase 2 question-
naire. To correct for this potential bias, a data-driven multiple
imputation for the 20,968 applicators (37%) who did not complete
the Phase 2 questionnaire was employed. This paper describes the
complex, multi-step process used to impute missing information
on pesticide use from Phase 2 and an evaluation of the imputation
procedure based on a holdout subset of participants with complete
data (i.e,, individuals who completed both Phase 1 and Phase 2).
We also discuss the assumptions and advantages of multiple
imputations.

MATERIALS AND METHODS
Imputation Strategy

An overarching principal of multiple imputation is to model the response of
interest, in this case the use of pesticides in the interim period between the
administration of the Phases 1 and 2 questionnaires. We used covariates
from participants with complete data from both phases, and then applied
that model to participants missing Phase 2 to obtain estimates of the
missing data. Our specific multiple imputation procedure imputes four
primary AHS exposure metric variables of interest: (1) use (yes/no) of any
pesticide in the interim period between Phases 1 and 2; (2) use (yes/no) of
50 specific pesticides in the interim period (see Table 1); (3) number of days
of use for a specific pesticide during Phase 2; and (4) last year of application
of any pesticides within the 5-year period between Phases 1 and 2 (Phase 2
reference year). Phase 2 respondents report use of many pesticides that
were not specifically on the Phase 1 questionnaires; however, we limit this
imputation to the subset of 50 pesticides that were chosen as the focus in
Phase 1. The value of days of use per year on the Phase 2 questionnaire is a
discrete count variable that was collapsed into categories and therefore
skewed, and reference year is an ordinal variable. We use logistic regression
and stratified sampling to impute the 102 variables (any use of pesticides:
reference year of use, and for 50 specific pesticides: any use, and days per
year) from Phase 2 that are needed to construct the pesticide-exposure
metrics in the AHS.

We withheld a randomly selected subset (20%, n =7269) of participants
from both Phase 1 and Phase 2 data to assess the proposed imputation
method. We compared true and imputed percent usage and days/year of
pesticide use within this subset using graphical displays and calculated the
Brier score and Brier skill score’™'® — measures of prediction accuracy.
After assessment, the complete data were used to generate the final
imputed datasets; nothing was withheld. All analyses were based on AHS
data releases P1REL201005.00 and P2REL201007.00 and performed using
SAS Version 9.1.

Use of any Pesticide

The first step in the imputation process was to impute the use of any
pesticides since Phase 1 using subjects who completed both Phase 1 and 2
questionnaires. Both the enrollment and the take-home portions of the Phase
1 questionnaire were used in the modeling process. The use of any pesticides
was a binary variable, and we therefore used logistic regression to model its
probability based on Phase 1 responses. We considered all variables from
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Table 1. Phase 2 (1999-2005) pesticide usage in the AHS: observed
and imputed.
Prevalence estimates (%)
Observed and
Observed Imputed® imputed®
(N=36,342) (N=20,968) (N=57,310)
Personally mix/load/apply 85.21 82.82 84.33
any pesticides
METHYL BROMIDE 0.51 0.49 0.51
ALUMINUM PHOSPHIDE 0.79 0.84 0.81
CARBON TETRACHLORIDE/ 0.00 0.00 0.00
DISULFIDE
ETHYLENE-DIBROMIDE 0.03 0.02 0.03
BENOMYL 0.40 0.30 0.36
CHLOROTHALONIL 2.53 2.75 261
CAPTAN 237 1.65 2.1
MANEB/MANCOZEB 0.18 0.14 0.16
METALAXYL 2.52 2.60 255
ZIRAM 0.10 0.08 0.10
ATRAZINE 31.16 25.86 29.22
DICAMBA 19.35 15.31 17.87
CYANAZINE 1.64 1.44 1.57
CHLORIMURON-ETHYL 3.24 3.19 3.22
METOLACHLOR 14.74 13.03 14.11
EPTC 0.35 0.30 0.33
ALACHLOR 2.81 249 2.69
METRIBUZIN 1.96 1.62 1.84
PARAQUAT 2.08 2.19 2.12
PETROLEUM OIL/PETROL. 0.58 0.41 0.52
DISTILLATES
PENDIMETHALIN 11.71 10.77 11.37
IMAZETHAPYR 8.16 6.68 7.62
GLYPHOSATE 51.82 43.98 48.95
SILVEX 0.00 0.00 0.00
BUTYLATE 0.09 0.08 0.09
TRIFLURALIN 11.10 9.13 10.38
24-D 37.32 29.54 34.47
24,5-T 0.14 0.11 0.13
PERMETHRIN (for crops) 3.17 2.73 3.01
PERMETHRIN (for animals) 3.12 229 2.82
TERBUFOS 3.79 347 3.67
FONOFOS 0.17 0.17 0.17
TRICHLORFON 0.20 0.19 0.20
LINDANE 1.31 0.92 1.17
CARBOFURAN 1.35 1.21 1.30
CHLORPYRIFOS 8.93 7.97 8.58
MALATHION 12.78 10.00 11.76
PARATHION 0.00 0.00 0.00
CARBARYL 9.06 6.63 8.17
DIAZINON 291 242 2.73
ALDICARB 1.67 231 1.91
PHORATE 0.72 0.82 0.75
ALDRIN 0.00 0.00 0.00
CHLORDANE 0.05 0.00 0.03
DIELDRIN 0.00 0.00 0.00
DDT 0.00 0.00 0.00
HEPTACHLOR 0.01 0.00 0.00
TOXAPHENE 0.01 0.00 0.01
COUMAPHOS 0.44 0.28 0.38
DICHLORVOS 0.61 0.47 0.56
“Imputed prevalence is average of five imputations.

Phase 1 that had the potential to be associated with either missingness or
pesticide use (see Table 2 for candidate covariates). We first conducted a
univariate analysis of Phase 1 variables, except the pesticide-specific variables.
The variables most strongly predictive of use of any pesticide on the Phase 2
questionnaire were sex, marital status, farm ownership, farm size, days/year
mixing pesticides, percent time personally mixing pesticides, percent time
personally applying pesticides, and application of any pesticide in the prior
year. Covariates associated with non-response to Phase 2 were continuous
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Table 2. Phase 1 candidate covariates to predict use of any pesticide
in Phase 2 (1999-2005) of AHS.

Demographics
Age (AGE_AT_ENROLLMENT)?
Sex (GENDER)?
State (SITE)®
County (COUNTY)
Professional/private license type (APP_TYPE)®
Marital status / family size (AMARITAL)?
Education (ASCHOOL, collapsed)?

Farm characteristics
Owner (AOWNFARM)?
Farm size (AACRES)?

Pesticide use

Years mixing pesticides (AYRSMIX)?

Days/year mixing pesticides (AMIXDPY)?

Percent Mix (APCTMIX)?

Percent Apply (APCTAPPL)?

Application Methods (AAPMTH1 - AAPMTH21)
Do not personally apply (AAPMTH 1)P
Hand spray gun application (AAPMTH 4)°
Backpack spray application (AAPMTH 5)°
In furrow or banded application (AAPMTH 8)°

Application Uses (APSTAP1 - APSTAP17)
Rodent control (APSTAP2)®
Highway right-of-way weed control (APSTAP6)?
Herbicide (weed killers) applications to farm crops (APSTAP9)®
Insecticide applications to farm animals/animal shelters
(APSTAP12)®
Fungicides (chemicals for controlling disease on crops)
(APSTAP16)°
Fumigants (gases or liquids that turn into gas when released)
(APSTAP17)°
Application in past 12 mos (APSTAP18)?

Personal Protective Equipment (APROTEQ1- APROTEQS8)
Chemical resistant gloves (APROTEQ?7)°

Crops and Amimals (ACRPAN1 - ACRPANS)
No Crops or animals (ACRPAN2)P

Medical conditions
Diagnosis of various conditions and diseases (A_MEDCONDS5 -
A_MEDCOND56)
Ever diagnosed with other chronic lung disease
(A_MEDCOND10)°
Ever diagnosed with Diabetes (A_MEDCOND16E)°

Covariates forced into the model.
PCovariates selected for the final model in step-wise selection process.

age, education, state, applicator type, and years mixing chemicals.'® These
variables and covariates were forced into the logistic regression model. Other
potential covariates from Phase 1 (Table 2) were included or excluded based
on the SAS step-wise regression procedure, with entrance and removal
criteria of P<0.001 and P> 0.01, respectively. Strict criteria were set because
the dataset of individuals with complete data was so large. See Table 2 for
final covariates in the model.

We used the aforementioned logistic model with covariates based on
Phase 1 data to compute a predicted probability of the use of any
pesticides for each individual who did not complete Phase 2 (p;,
i=1,...,20,968). For the i" individual, we imputed use (yes/no) of any
pesticides as follows. With p;between 0 and 1, we generated five uniform
random variables between 0 and 1, Zj, j=1,...,5. If Z; < p;, then we
assigned U; = 1, otherwise we assigned U;; =0, where U, ..., Us were the
imputed values for use of any pesticides in Phase 2.

For each individual and each imputation with an imputed “no” (U; = 0),
the 50 pesticide-specific use variables (yes/no) and the 50 chemical-
specific days/year variables in Phase 2 (Table 1) were set to zero. For each
individual and each imputation with an imputed “yes” to use of any
pesticide (U; = 1), the 50 missing chemical specific use variables and days/
year were then imputed.
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Use of Specific Pesticides

Using data from participants who completed both Phase 1 and 2
questionnaires, we applied the same process to generate a model for the
probability of use of a specific pesticide in the interim period between
Phases 1 and 2. However, we forced pesticide-specific covariates from
Phase 1 (use of the specific chemical in the past year, ever mixed or applied
the chemical in the past, number of years using the chemical, and days per
year using the chemical) into the logistic model in addition to the 13
covariates for the model of use of any pesticide (see Table 2). The stepwise
procedure in SAS identified other meaningful covariates for each pesticide,
based on the entrance and removal criteria and likelihood ratio statistics.
For each participant missing Phase 2 information for whom we imputed a
“yes” to use of any pesticide, U;j =1, we generated a predicted probability
for the use of a specific pesticide and randomly imputed five binary
responses based on a uniform random number generator. Five responses
(yes/no) were imputed for each of the 50 specific pesticides, Vi with
k=1, ...,50. For those with Phase 1 and 2 data, it was not uncommon for
participants to indicate applying or mixing of pesticides in Phase 2, while
providing no affirmative response for any of 50 specific pesticides
considered. This could suggest use of other pesticides or the inability to
recall a specific pesticide. For that reason, we did not require that at least 1
specific pesticide be imputed as “yes”, nor did we reverse the order by first
imputing the 50 pesticides and then infer overall usage.

Days Per Year Use of Specific Pesticides

For each individual with an imputed “yes” to use of a specific pesticide,
Viie= 1, we next developed a procedure to impute days/year of use. Because
the Phase 2 question for days/year had an ordinal response and because
data were skewed and sparse, we implemented a stratified sampling
scheme using participants who completed both Phase 1 and 2 and who
reported the number of days/year they used the pesticide of interest. For
those missing Phase 2 data and imputed to have used a specific pesticide,
we randomly selected days/year of use from the empirical frequency
distribution derived from those with Phase 1 and 2 data who used the
pesticide and who were in an appropriate stratum. The first step in this
process was to identify an informative stratification. Table 1 indicates that
the prevalence of the use of specific pesticides in Phase 2 ranged from 0%
(pesticide use was discontinued) to > 50%. For infrequently used pesticides,
which were the majority, we could use only a limited number of Phase 1
stratification variables. By contrast, for widely used pesticides (e.g., 2,4-
dichlorophenoxyacetic acid (2,4-D)), we could potentially use many
stratification variables. However, to maintain consistency of methods across
variables, we selected only variables most strongly associated with Phase 2
days/year use as stratification factors. After considering several possible
stratification variables (age, state, applicator type, Phase 1 days use, and
others; data not shown), we based the imputation of Phase 2 days/year of
use of a specific pesticide on a stratification by Phase 1 days/year of use of a
specific pesticide. Thus, for an applicator missing Phase 2 days/year of use of
a specific pesticide, we identified the Phase 1 days/year of use category,
then randomly sampled (with replacement) a value from the frequency
distribution for Phase 2 days/year of use that corresponded to the same
Phase 1 days/year of use category.

Finally, for those missing Phase 2 data, we also needed to impute the
most recent year of farming activity. This year (see questions 10 and 13 of
the private and commercial Phase 2 Questionnaires,” respectively at
www.aghealth.org/questionnaires.html) was critical for calculating cumu-
lative exposure to pesticides. Because reference year is an integer with a
12-year range (1993-2004), we again employed stratified sampling with
replacement. The primary stratification variable was the use of any
pesticide in Phase 2. If the imputed value for use of any pesticide was “no”,
then we defined 10 strata (applicator type [commercial or private] by
enrollment year [1993-1997]). If the imputed value for use of any pesticide
was “yes”, then we defined 50 strata (applicator type by enrollment year by
age at AHS enrollment in quintiles). For each stratum, we computed the
frequency distribution of the most recent year of farming activity from
those with complete Phase 1 and 2 data. We constrained the imputed
reference year to occur after the enrollment year and, when an individual
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was known to have died, before the year of death. If the enrollment year
was equal to or within 1year of death, we set the reference year to the
enrollment year.

RESULTS
Imputation Assessment

We assessed the imputation method by holding out a randomly
selected subset (20%, n=7269) of the observed complete data
and imputing multiple values for Phase 2 as though the data were
missing. The “true” use of any pesticides in this subset was 85.68%
with standard error 0.41%. The average of the five imputations
indicated a prevalence of 85.25% with imputation adjusted
standard error of 0.59%. This indicates that the logistic regression
model underpinning the multiple imputation procedure did
indeed preserve essential features of the data. Recall, the
modeling process we used first generated a probability of use
(the use of any pesticide, or the use of a specific pesticide) for each
individual, p;. To assess the accuracy of the implemented
prediction model, and how it compares with a “naive” reference
prediction (e.g., change prediction based on observed preva-
lence), we calculated the Brier'" and Brier skill scores,'? commonly
utilized in atmospheric probability forecasting and risk prediction
modeling. In the holdout set, let X; be the observed use
of any pesticides, X;=0 or 1, i=1,...,n, for the i individual
in the holdout data. Let p; be the predicted probability

of use from the logistic model. The Brier score estimator is
n

B=1/nx ;(x, —p)?
iz
error of prediction; the smaller the value the better the prediction.
To assess the utility of any prediction model, it can be compared
to a naive prediction using the skill score, SS=1—B/Bgy, where Bgs
is the Brier score estimator using a reference, or naive forecast, p’
in place of the model p; prediction. In this evaluation, we use the
observed Phase 2 prevalence of pesticide use in the complete
data (N=36,342) less the holdout observations (n=7269) as the
reference prediction, p’ = 1/n'x "7, X;, where n’ = N—n. For use
of any chemicals, B=0.1092, Bz=0.1227, for a S$=0.1103, an
11% improvement in accuracy using the predictive model over
simple prediction based on observed Phase 2 usage. Parker and
Davis'® proposed a similar metric to the skill score, which was the
sum of sensitivity and specificity, whereby the sum must be >1
for the observed accuracy to be larger than chance. Figure 1 is a
plot of Brier skill score versus the sum of sensitivity and specificity

and is equivalent to the mean squared
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Figure 1. Scatterplot of Brier skill score versus sensitivity + specificity

for commonly used pesticides (P> 0.05%).
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(pooling all five imputations for calculations) for overall pesticide
use and commonly used pesticides (percent usage >0.05%). The
two metrics are highly correlated (r=0.925) and essentially
measure the same thing, proportional improvement of prediction
model over naive/chance prediction.

Use of Specific Pesticides

Table 3 gives the observed (“true”) and imputed prevalence for
the 38 pesticides where observed prevalence >0.05%. The mean
and standard error of a variable that includes multiply imputed
values is well known." Therefore, for any chemical, let X; be the
observed use of the pesticide of interest, X;=0or 1,i=1,...,n for
the /™ individual in the holdout data. The estimated mean and

variance of the percent usage (prevalence) in the holdout data is:
p=(1/n)x Zn:)(i and s*>=p x (1—p)/n, respectively. It follows that
the usual sté:n1dard error of the estimated prevalence p, is s. The
prevalenge from one of the m multiply imputed datasets is p; =
(1/n)x 3" Xij where Xj = 0 or 1, the imputed use of the pesticide

of inte’re1st for individual i. Then, the overall prevalence

estimate and its variance from the m (in this case 5) imputed
m

datasets are p = (1/m)><J§[),- and $2 =17 (p; — [3)2, where 57 =

(1/n)xp;x (1 — p;) and Sis the standard error of p.

As expected, the multiple imputation estimates of the standard
error are slightly higher than the “true” standard error because
the variability of the random imputations are included in the
estimates, and pesticides with the highest prevalence (eg.,
atrazine, 31.47%) have the largest standard errors while rarely
used pesticides (e.g., methyl bromide, 0.41%) have little variability.
Imputed prevalence is generally lower than observed both in
Table 1 (across Phase 2 responders and non-responders) and
Table 3 (the validation set). The Brier skill scores in Table 3 show a
range of improvement from none to 25% over the naive, or
reference prediction model. Models for aldicarb and chlorothalonil
appear to perform the best (SS of 0.256 and 0.214, respectively),
while the majority of pesticides fall between SS=0.05 and 0.20,
including 2,4-D and atrazine with an 18% improvement in
accuracy over naive predictions. Some of the least prevalent
pesticides did not benefit much from the implemented modeling
scheme, and some of their skill scores were slightly negative (e.g.,
EPTC, phorate, benomyl, fonofos, and trichlorphon). The variability
corresponding to rare event predictions can be large relative to
the naive estimates, and can yield negative skill scores. Skill scores
close to zero (negative or positive) indicate that the predictive
model was of limited additional value for these pesticides.

Figure 2 is a plot of the relative errors of the imputed
prevalence estimate, p to their respective true estimate, p, i.e.,
e=(p—p)/p, for the 38 pesticides with >0.05% use. Relative
errors, ¢, are centered about zero, and mostly fall within +0.20.
For only a few of the rare pesticides (< 1.0% usage) used in Phase
2 does the imputed prevalence differ from the “true” prevalence
by more than 20% (e.g., petroleum oil/petroleum distillates,
methyl bromide, maneb/mancozeb, trichlorfon, metalaxyl, dichlor-
vos, coumaphos, and phorate).

Days Per Year Use of Specific Pesticides

We imputed days per year for a specific pesticide by sampling
with replacement from the observed Phase 2 data stratified by
Phase 1 days use of that pesticide. Figure 3 shows the box plots of
the observed data from the validation dataset alongside the
imputed data for days/year for three pesticides. Alachlor, diazinon,
and 2,4-D were chosen for illustration because they were widely
used and represent common usage patterns in the AHS cohort.
The distributions of the imputed values for the three pesticides
were very similar to those of the “true” data. The means (solid
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Table 3. Prevalence, standard error and Brier scores of pesticide use in holdout dataset (N =7269) of the AHS.
Observed
Pesticide name Reference Brier  Brier score  Brier skill score
Prevalence (%) Standard error  Prevalence (%) Standard error
METHYL BROMIDE 043 0.08 0.56 0.12 0.004 0.004 —0.001
ALUMINUM PHOSPHIDE 0.59 0.09 0.71 0.13 0.006 0.005 0.149
BENOMYL 0.37 0.07 0.29 0.08 0.004 0.004 —0.007
CHLOROTHALONIL 2.39 0.18 2.33 0.26 0.023 0.018 0.214
CAPTAN 2.12 0.17 2.11 0.28 0.021 0.020 0.053
MANEB/MANCOZEB 0.15 0.05 0.18 0.06 0.002 0.002 —0.020
METALAXYL 2.66 0.19 2.09 0.23 0.026 0.023 0.124
ZIRAM 0.12 0.04 0.11 0.05 0.001 0.001 0.090
ATRAZINE 31.85 0.55 27.64 0.69 0.217 0.177 0.185
DICAMBA 19.16 0.46 17.39 0.48 0.155 0.128 0.177
CYANAZINE 1.75 0.15 1.50 0.21 0.017 0.017 0.029
CHLORIMURON-ETHYL 293 0.20 293 0.36 0.028 0.027 0.050
METOLACHLOR 14.87 0.42 13.23 0.55 0.127 0.113 0.109
EPTC 0.30 0.06 0.30 0.09 0.003 0.003 —0.003
ALACHLOR 2.82 0.19 243 0.32 0.027 0.026 0.052
METRIBUZIN 2.19 0.17 1.75 0.22 0.021 0.021 0.022
PARAQUAT 1.91 0.16 1.88 0.22 0.019 0.017 0.086
PETRO. OIL/PETRO. DISTILLATES 047 0.08 0.60 0.13 0.005 0.005 —0.006
PENDIMETHALIN 11.24 0.37 10.36 0.48 0.100 0.093 0.068
IMAZETHAPYR 7.76 0.31 7.36 0.39 0.072 0.067 0.070
GLYPHOSATE 52.73 0.59 45.42 0.83 0.249 0.225 0.097
TRIFLURALIN 10.58 0.36 10.21 0.58 0.095 0.080 0.157
2,4-D 36.92 0.57 33.30 0.86 0.233 0.190 0.184
PERMETHRIN (for crops) 3.36 0.21 2.71 0.24 0.032 0.031 0.036
PERMETHRIN (for animals) 3.05 0.20 2.83 0.33 0.030 0.028 0.061
TERBUFOS 3.80 0.22 3.38 0.33 0.037 0.033 0.095
FONOFOS 0.17 0.05 0.15 0.07 0.002 0.002 —0.009
TRICHLORFON 0.17 0.05 0.13 0.05 0.002 0.002 —0.028
LINDANE 1.39 0.14 1.07 0.18 0.014 0.013 0.046
CARBOFURAN 1.36 0.14 1.14 0.24 0.013 0.013 0.014
CHLORPYRIFOS 8.87 0.33 7.90 0.46 0.081 0.074 0.081
MALATHION 12.88 0.39 11.50 049 0.112 0.103 0.083
CARBARYL 9.34 0.34 7.69 0.65 0.085 0.079 0.072
DIAZINON 2,94 0.20 2.71 0.28 0.029 0.028 0.027
ALDICARB 1.66 0.15 1.57 0.18 0.016 0.012 0.256
PHORATE 0.59 0.09 0.69 0.17 0.006 0.006 —0.024
COUMAPHOS 0.56 0.09 0.33 0.10 0.006 0.005 0.056
DICHLORVOS 0.65 0.09 0.48 0.12 0.006 0.006 0.010

“Imputed prevalence is average of five imputations and standard error is calculated via equation in text.

squares) were more sensitive to outliers for the less frequently
used pesticides since fewer than 200 individuals reported use of
those pesticides in the 20% holdout set. Comparing the observed
reference year with its imputed value, Figure 4 indicates that for
90% of participants with reference year 1998 through 2004, the
imputed years were centered around the expected year. When the
“true” reference year is 1994-1997 the sampled imputation values
were higher than expected and indicated bimodality. This was due
to the ordinal nature of reference year and the scheduled pattern
of interviews. The first interviews were conducted between 1993
and 1997 (Phase 1), while the follow-up Phase 2 interviews
occurred between 1999 and 2005. When an individual partici-
pated in Phase 2, the most likely responses for reference year were
1) the year prior to the Phase 2 interview, 2) 5 years prior (year of
Phase 1), or 3) the last year of farming prior to enrollment. This
bimodal behavior seen in approximately 10% of the holdout
dataset tended to occur in individuals who reported “no farming”
or “no pesticide application” in Phase 2, and therefore a reference
year for pesticide use in Phase 2 was irrelevant.

Post-assessment of the holdout dataset, all of the observed data
were used to generate the complete predictive model and
populate the sampling data. The final multiple imputations were
generated and prevalence estimates for the 50 pesticides in the
imputed subset and overall are shown in Table 1.

© 2012 Nature America, Inc.

DISCUSSION

The lifetime exposure of an individual to a specific pesticide or set
of pesticides is the primary quantity of interest in the AHS for
studying the association between exposure and disease out-
comes. A substantial number of AHS participants were non-
responders to a Phase 2 questionnaire used to update lifetime
pesticide use following enrollment. In analyses, imputation is
generally preferable to omitting individuals who did not complete
Phase 2 (in our case, 37% of enrolled individuals) due to possible
selection bias in the subset with complete data and decreased
precision of parameter estimates using only a subset of the
data. This paper illustrates the use of a multi-step, conditional
imputation procedure combining parametric modeling and
sampling from an empirical distribution for several variable types.
Using multiple imputation, the variables necessary to calculate
exposure for those missing Phase 2 data are replaced by five
imputed values. For validation purposes, we estimated prevalence
of pesticide use and showed the form of the variance estimate for
prevalence resulting from multiple imputation. Prevalence esti-
mates for the Phase 2 non-responders were slightly lower than in
the responders and this is likely due to the slightly different
makeup of individuals in each. Logistic regression is known to
perform sub-optimally when modeling rare events,' which may
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PESTICIDE

METHYL BROMIDE
PETROLEUM OIL/DISTILLATES
MANEB/MANCOZEB
ALUMINUM PHOSPHIDE
PHORATE

EPTC
CHLORIMURON-ETHYL  2.93
CAPTAN 2.12

PARAQUAT 1.91
CHLOROTHALONIL  2.39
TRIFLURALIN 10.58
IMAZETHAPYR 7.76
ALDICARB 1.66
PERMETHRIN (For Animals)  3.05
DIAZINON 2.94
PENDIMETHALIN 11.24
ZIRAM  0.12

DICAMBA 19.16

2,4-D 36.92

MALATHION 12.88
CHLORPYRIFOS 8.87
METOLACHLOR 14.87
TERBUFOS  3.81

ATRAZINE 31.85

ALACHLOR 2.82
GLYPHOSATE 52.73
CYANAZINE 1.75

FONOFOS 0.17
CARBOFURAN  1.36
CARBARYL 9.34
PERMETHRIN (For Crops) 3.36
METRIBUZIN  2.19
BENOMYL 0.37

METALAXYL 2.66

LINDANE 1.39
TRICHLORFON  0.17
DICHLORVOS 0.65
COUMAPHOS 0.56 |O

p(%)
0.43
0.47
0.15
0.59
0.59
0.31

-0.4

Figure 2.

explain the low imputed prevalence estimates in the validation
set; the underestimation makes our imputation slightly conserva-
tive, favoring specificity over sensitivity.

Rubin’s method of scalar estimands in multiple imputation
procedures'” is generalizable and can be used to calculate standard
errors and confidence intervals for any estimator including risk
ratios, absolute risk, and hazard ratios. We applied fractional hot
deck imputation'® to impute days/year use of a pesticide, for which
other variance estimators have been proposed;'®™'° however, their
utility has not been explored here.

Multiple imputation, in contrast to single imputation, accounts
for the uncertainty of predicting missing data with limited loss
of efficiency (nearly 94% efficient when imputed five times with
35% missing data, as opposed to 74% efficiency with a single
imputation'). The observed data, together with the five imputed
values for missing variables, generate five complete datasets to be
analyzed by standard statistical techniques resulting in five slightly
different results. These results and their variance/covariance
matrices are combined to represent the variability induced by
the imputing process. For simplicity, modeling and sampling were
performed using the single set of observed complete data, as
opposed to first bootstrapping the complete data to perform a
proper imputation, which accounts for variability of regression
parameter estimates used in the imputation.! An assessment
of proper versus improper imputation on a dataset similar to
the AHS shows mixed results.2’ Multiple imputation was chosen
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Relative Error

Relative errors of imputed prevalence or percent usage (p) for commonly used pesticides (P> 0.05%).

for pesticide use in the AHS over other approaches such as
probability weighting or the EM algorithm?' because of its
familiarity and ease of use. Providing a single set of multiply
imputed data will facilitate consistent results in future analyses.

A key assumption of any imputation is that missingness is
independent of the unobserved outcome of interest or
unobservable confounders (i.e.,, missing at random). The reduc-
tion of bias and increase in precision from multiple imputations
is dependent on the covariates associated with both non-
response and the endpoint variable,?* and factors associated
with non-participation, which were included in our imputation
model. For our imputation analysis, the “outcome” of interest is
the missing pesticide use itself; Montgomery et al.'® show
there is little evidence for selection bias in Phase 2 of the AHS,
however missing at random is an untestable assumption without
additional data; thus it is possible that non-responders differ
from responders in variables we have not measured. It is worth
emphasizing that the set of individuals with both Phase 1 and 2
responses had a full range of exposure, including those who
were no longer farming, and therefore our data-driven imputa-
tion approach did not necessitate that non-responders be
imputed as active pesticide users. To implement multiple
imputation, missingness may be conditional on observable
covariates from Phase 1 and our models incorporated covariates
associated with Phase 2 pesticide use in constructing the values
for missing data.

© 2012 Nature America, Inc.
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Figure 3. Box plots of observed and imputed days/year use of 2,4-D, alachlor, and diazinon in the holdout subset of the AHS.
Holdout Observations CONFLICT OF INTEREST
: l Cumulative % The authors declare no conflict of interest.
1994 37 0.5%
1995 67 1.5% ACKNOWLEDGEMENTS
This work is supported by the Intramural Research Program of the National Cancer
1996 108 3.0% Institute at the National Institutes of Health (grant number Z01-CP010119); and the
National Institute of Environmental Health Sciences at the National Institutes of
5 1997 141 5.0% Health (grant number Z01-ES049030). The United States Environmental Protection
L Agency through its Office of Research and Development collaborated in the research
8 1998 032 18% described here. It has been subjected to Agency review and approved for
S publication. The findings and conclusions in this report are those of the authors
% 1999 2541 53% and do not necessarily represent the views of the National Institute for Occupational
o Safety and Health.
[
E 2000 1908 79%
REFERENCES
2001 773 90% 1 Rubin D.B. Multiple Imputation of Nonresponse in Surveys. J.Wiley and Sons: New
! York, NY, 1987.
2002 5 462 95% 2 Schafer J.L, Ezzatti-Rice T.M., Johnson W., Khare M, Little RJ.A, and Rubin D.B. The
! NHANES Il multiple imputation project. Proc Survey Res Methods Section Am Stat
2003 : 126 98% Assoc 1996, 28-37.
' 3 Mislevy R.J., Johnson E.G., and Muraki E. Scaling procedures in NAEP. J Educational
2004 : 172 100% Stat 1992: 17: 131-154.
94 95 96 97 98 99 00 01 02 03 04 4 Stuart E.A, Azur M., Frangalfls C, land Leaf P. MuIt|.pI.e.|n'.1putat|on Wl.th Iarge data
. . sets: a case study of the children’s mental health initiative. Am J Epidemiol 2009:
Imputed Reference Year (one imputation, 11) 169(9): 1133-1139.
Figure 4. Histogram display of the distribution of imputed Phase 2 5 Kang T., Kraft P, Gauderman W.J., and Thomas D. Multiple imputation methods

reference year by true, observed reference year in the holdout
dataset of the AHS.

As was done for information collected from participants who
completed the Phase 2 questionnaire, for epidemiologic analyses,
the imputed pesticide use information has been cumulatively
added to information collected in Phase 1. This multiple
imputation will allow for bias reduction and improved efficiency
in future analyses of the AHS.

© 2012 Nature America, Inc.

for longitudinal blood pressure measurements from the Framingham Heart Study.
BMC Genet 2003: 4(suppl 1): S43.

Alavanja M.C,, Sandler D.P., McMaster S.B., Zahm S.H.,, McDonnell CJ, and Lynch
CF. etal. The Agricultural Health Study. Environ Health Perspect 1996: 104: 362-369.
National Cancer Institute, National Institutes of Health. Agricultural Health Study
(AHSQ). Full Text of Questionnaires. 2010. ( www.aghealth.org/questionnaires.
html). (Accessed November 8, 2010).

Tarone R.E, Alavanja M.C, Zahm S.H,, Lubin J.H., Sandler D.P., and McMaster S.B.,
et al. The Agricultural Health Study: factors affecting completion and return of
self-administered questionnaires in a large prospective cohort study of pesticide
applicators. Am J Ind Med 1997: 31: 223-242.

(o))

~N

[o2)

Journal of Exposure Science and Environmental Epidemiology (2012), 409-416


www.aghealth.org/questionnaires.html
www.aghealth.org/questionnaires.html

Multiple imputation in the Agricultural Health Study
Heltshe et al

416

O

Dosemeci M., Alavanja M.C., Rowland A.S., Mage D., Zahm S.H., and Rothman N.,
et al. A quantitative approach for estimating exposure to pesticides in the
agricultural health study. Ann Occup Hyg 2002: 46(2): 245-260.

Montgomery M.P., Kamel F., Hoppin J.A,, Beane Freeman L.E.,, Alavanja M.C, and
Sandler D.P. Effects of self-reported health conditions and pesticide exposures on
probability of follow-up in a prospective cohort study. Am J Ind Med 2010: 53:
486-496.

Brier G.W. Verification of forecasts expressed in terms of probability. Monthly
Weather Rev 1950: 78(1): 1-3.

Murphy S.H. Hedging and skill scores for probability forecasts. J Appl Meteor 1973:
12(1): 215-223.

Parker R.A. and Davis R.B. Evaluating whether a binary decision rule operates
better than chance. Biom J 1999: 41: 25-31.

King G., and Zeng L. Logistic regression in rare events data. Political Anal 2001: 9:
137-163.

Little RJ.A., and Rubin D.B. Statistical Analysis with Missing Data, 2nd edn J.Wiley
and Sons: New York, NY, 2002.

Kim J.K., and Fuller W.A. Fractional hot deck imputation. Biometrics 2004: 91(3):
559-578.

Rao JN.K, and Shao J. Jackknife variance estimation with survey data under hot
deck imputation. Biometrika 1992: 79: 811-822.

Rubin D.B., and Schenker N. Multiple imputation for interval estimation from
simple random samples with ignorable nonresponse. J Am Stat Assoc 1986: 81:
366-374.

19 Tollefson M., and Fuller W.A. Variance estimation for samples with random

20

2

=

22

Journal of Exposure Science and Environmental Epidemiology (2012), 409-416

imputation. American Statistical Association Proceedings of the Section of Survey
Research Methods 1992: 15: 758-763.

Heitjan D.F., and Little R.J.A. Multiple imputation for the fatal accident reporting
system. Appl Stat 1991: 40: 13-29.

Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete
data via the EM algorithm. J R Stat Soc Ser B 1977: 39(1): 1-38.

Spratt M., Carpenter J.,, Sterne J.A,, Carlin J.B,, Heron J.,, and Henderson J., et al.
Strategies for multiple imputation in longitudinal studies. Am J Epidemiol 2010:
172(4): 478-487.

© 2012 Nature America, Inc.



	Using multiple imputation to assign pesticide use for non-responders in the follow-up questionnaire in the Agricultural Health Study
	Introduction
	Materials and Methods
	Imputation Strategy
	Use of any Pesticide

	Table 1 Phase 2 (1999-2005) pesticide usage in the AHS: observed and imputed.
	Use of Specific Pesticides
	Days Per Year Use of Specific Pesticides

	Table 2 Phase 1 candidate covariates to predict use of any pesticide in Phase 2 (1999-2005) of AHS.
	Results
	Imputation Assessment
	Use of Specific Pesticides
	Days Per Year Use of Specific Pesticides

	Figure 1 Scatterplot of Brier skill score versus sensitivity+specificity for commonly used pesticides (Pgt0.05percnt).
	Discussion
	Table 3 Prevalence, standard error and Brier scores of pesticide use in holdout dataset (N=7269) of the AHS.
	Figure 2 Relative errors of imputed prevalence or percent usage (p) for commonly used pesticides (Pgt0.05percnt).
	Conflict of interest
	CONFLICT OF INTEREST
	REFERENCES
	Figure 3 Box plots of observed and imputed dayssolyear use of 2,4-D, alachlor, and diazinon in the holdout subset of the AHS.
	Figure 4 Histogram display of the distribution of imputed Phase 2 reference year by true, observed reference year in the holdout dataset of the AHS.




