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An unknown moment-determinate cumulative distribution function or its density function can be recovered
from corresponding moments and estimated from the empirical moments. This method of estimating an
unknown density is natural in certain inverse estimation models like multiplicative censoring or biased
sampling when the moments of unobserved distribution can be estimated via the transformed moments
of the observed distribution. In this paper, we introduce a new nonparametric estimator of a probability
density function defined on the positive real line, motivated by the above. Some fundamental properties of
proposed estimator are studied. The comparison with traditional kernel density estimator is discussed.

Keywords: moment density estimator; mean-squared error; δ-sequence; L1-consistency

AMS 2000 Subject Classifications: Primary: 62G05; Secondary: 62G20

1. Introduction

Goldenshluger and Spokoiny [1] consider the reconstruction of planar convex sets from noisy
observations of its moments. In several indirect estimation models, like biased sampling and
multiplicative censoring, the moments of unobserved distribution of actual interest can be easily
estimated from the transformed moments of the observed distributions [2–4].

Another example where the moments are easily calculated but the target distribution has no
closed form represents the distribution of the finite weighted sum of independent chi-squared
random variables (r.v.’s) (with degree of freedom 1) [5].

It is well known that the moment-determinate probability measure or its cumulative distribution
function (cdf) is uniquely defined by its moments [6–9].

It is not overly hard to construct a density estimator entirely based on estimators of the moments.
One could, for instance, replace the μ(j) in Equation (1) by their estimators and subsequently
differentiate the result. Some applications of a construction similar to Equation (1) have been
demonstrated in the problem of estimating the mixing distribution in Poisson mixture models
and in the problem of estimating the so-called structural distribution function in the multinomial
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scheme with a large number of a rare events (see [10,11], respectively). Although it is our ultimate
purpose to construct and study density estimators when only the estimated moments are available,
it seems expedient to the present authors to first investigate a hybrid form of such a moment density
estimator (MDE). Such a hybrid form is obtained by replacing the underlying cdf in Equation (2)
by its empirical analogue. This means, in particular, that we still assume that a sample from the
unknown density is given.

In this paper, this hybrid form (for brevity still referred to as MDE) will be investigated. The
derived properties are expected to be useful as intermediate results in the study of genuine MDEs,
which is beyond the scope of this paper.

We will focus on some asymptotic properties of MDEs, when the underlying unknown density
has support in the positive half-line R+. The asymptotic normality will inevitably remain restricted
to the local situation because density estimators do not converge weakly in a global sense as is
well known. As it turns out, the convergence rate of the mean integrated square error (MISE) is
the same as that for ordinary kernel type estimator of the density defined on the entire real line
R, but there are some differences regarding the constants appearing in the first order terms.

It is well known that in a standard kernel density estimation approach for positive r.v.’s, the
behaviour of the bias term near the left boundary is larger than in the interior of a support. The
estimator proposed in this paper is free from this type of edge effect. See, also, Chen [12,13]
where the kernel (with varying shape) density estimators (KDE) have been proposed for positive
r.v.’s with the supports [0, 1] and (0, ∞), respectively. These estimators have similar properties
as ours. See, also, Bouezmarni and Rolin [14] where the exact asymptotic constants of uniform
and L1-errors have been derived for the KDE with Beta kernel. Let us mention also that within
the class of non-negative KDEs, our estimator achieves the optimal mean square error (MSE),
MISE.

This paper is organized as follows. The MDE f̂α is constructed in Section 2. In Section 3, the
precise constants in the first-order terms of the expansions for MSE and the limiting distribution
of the proposed estimator are given. The exact and asymptotic upper bounds for biases and the
rates of convergence in L1- and L2-norms are established in Section 4. Finally, in Section 5, we
applied the least-squares cross-validation (CV) technique to address the question of choice of
optimal parameter α in f̂α; the comparison of f̂α with the traditional KDE f̂h is briefly discussed
as well.

2. Construction of MDE and assumptions

Suppose that we are given a random sample X1, . . . , Xn of independent copies of an r.v. X from
cdf F and density f (with respect to Lebesgue measure μ defined on R+ = (0, ∞)). It will be
assumed that all moments of F exist and F is moment-determinate (see [9] for conditions of
moment determination of cdf). Let us define the operator K by

(KF)(j) =
∫ ∞

0
t j dF(t) = μ(j), j = 0, 1, . . .

To recover F from the moments μ(j), we will use the operators

(K−1
α μ)(x) =

∑
k≤α−2

1

k!
(α

x

)k
∞∑

j=k

1

(j − k)!
(
−α

x

)j−k

μ(j), (1)

where α ≥ 2 and α = α(n) → ∞, as n → ∞, at a rate to be specified below. Without explicit
reference, it will be assumed henceforth that this parameter will be integer-valued:

α = α(n) ∈ N, for each n = 1, 2, . . .
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A minor modification of an argument in Mnatsakanov and Ruymgaart [2] yields

Fα(x) = (K−1
α KF)(x) −→w F(x), as n −→ ∞,

where the convergence is at each continuity point ofx, i.e. for eachx under the present assumptions.
In passing it can be seen that

Fα(x) =
∫ ∞

0

∫ ∞

αλ/x

1

(α − 2)! t
α−2 exp(−t) dt dF(λ)

and has density

fα(x) = F ′
α(x) =

∫ ∞

0

α − 1

x

1

(α − 1)!
(α

x
λ
)α−1

exp
(
−α

x
λ
)

dF(λ), x > 0. (2)

Expression (2) suggests an estimator of f by replacing F by the empirical cdf

F̂n(t) = 1

n

n∑
i=1

1[0,t](Xi), t ∈ R+.

This yields the MDE on R+:

f̂α(x) = 1

n

n∑
i=1

1

x
· 1

�(α − 1)

(α

x
Xi

)α−1
exp

(
−α

x
Xi

)
=

∫ ∞

0

1

x
Lα

(τ

x

)
f (τ) dF̂n(τ ),

with Lα(u) = (αu)α−1 exp(−αu)/�(α − 1), u ∈ R+. Of course, f̂α(x) ≥ 0 for each x > 0 and
since it is easily seen that

∫ ∞
0 f̂α(x) dx = 1, the estimator f̂α is itself a probability density. But it

is mathematically convenient to replace this estimator with

f̂α(x) = 1

n

n∑
i=1

α

x
· 1

(α − 1)!
(α

x
Xi

)α−1
exp

(
−α

x
Xi

)

= 1

n

n∑
i=1

1

Xi

· 1

(α − 1)!
(α

x
Xi

)α

exp
(
−α

x
Xi

)
= 1

n

n∑
i=1

1

Xi

Kα

(
x

Xi

)
= 1

n

n∑
i=1

Mi, (3)

where Kα(u) = (α/u)α exp(−α/u)/�(α), u ∈ R+. It is worth to note that f̂α = (α − 1)f̂α/α for
any α > 1.

Remark 2.1 The problem of estimation of a cdf F when only the empirical moments

μ̂(j) = 1

n

n∑
i=1

X
j

i , j ∈ N,

of F are available can be solved by using the construction (1) with μ̂ instead of μ. Some asymptotic
properties of the so-called moment-empirical cdf, defined as P̂n = K−1

α μ̂, with α = n, have been
studied in Mnatsakanov and Ruymgaart [2]. In the framework of Hausdorff moment problem,
Mnatsakanov [15] investigated the asymptotic properties of moment-recovered density function
derived directly from its assigned moments. The asymptotic properties of corresponding MDE
given the estimated moments of f will be studied in the forthcoming paper. Recently, applying
the expansion of f by means of the Legendre polynomials in [−1, 1], Ngoc [16] obtained the
MISE rate of estimate of f given the noisy observations of moments.
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Remark 2.2 Note that the construction (3) is different from the traditional KDE (see, e.g. [17]
or [18]). Namely, in the kernel density estimation, the convolution is considered with respect to
addition as the group operation on the entire real line R and with a fixed kernel. Our estimator f̂α

from Equation (3) turns out to be of kernel type with asymmetric and varying kernel that is the
probability density function (pdf) of Gamma(·, shape = α, scale = x/α), provided that convolu-
tion is considered on the space of positive half-line (R+, dH) equipped with the multiplication as
a group operation and with the Haar measure dH(t) = dt/t . This does not seem to be unnatural
when densities on the positive half-line R+ are to be estimated. Note that the mean of f̂α(x) can
be written as the convolution operator

fα(x) = Ef̂α(x) =
∫ ∞

0
Kα

(x

t

)
f (t) dH(t), x ∈ R+.

In Theorem 4.2 (see Equations (20)–(22)) and in Lemma 4.1 (see Section 4), it is proved that the
sequence of functions {Kα(·/t)/t, t ∈ R+, α ∈ N} with Kα(·) introduced in Equation (3) forms
the δ-sequences in L2- and L1-norms defined on L2(R+, dμ) and L1(R+, dμ), respectively, where
μ is the Lebesgue measure on R+.

3. Local properties: MSE and asymptotic normality

Let us study at first the local properties of f̂α(x). Without explicit reference, it will be assumed in
this section that the following conditions are satisfied. Namely, we will assume that the underlying
density satisfies

f ∈ C(2)(R+), with sup
t>0

|f ′′(t)| = M < ∞. (4)

Throughout this section, the MDE will be considered at a fixed point x > 0, where

f (x) > 0.

Writing

Mi = Mn,x,i = 1

Xi

· 1

(α − 1)!
(α

x
Xi

)α

exp
(
−α

x
Xi

)
= 1

Xi

Kα

(
x

Xi

)
,

with Kα(u) = (α/u)α exp(−α/u)/�(α), u ∈ R+, we have E Mi = fα(x) for each n and

f̂α(x) − fα(x) =
n∑

i=1

1

n
{Mi − fα(x)}

are the averages of i.i.d. r.v.’s centred at 0.

Theorem 3.1 Under the assumptions (4), the bias of f̂α satisfies

fα(x) − f (x) = x2f ′′(x)

2 · α
+ o

(
1

α

)
, as n −→ ∞. (5)

For the MSE, we have

MSE{f̂α(x)} = n−4/5

[
f (x)

2
√

πx
+ x4{f ′′(x)}2

4

]
+ o(n−4/5), (6)

provided that we choose α = α(n) ∼ n2/5.
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Remark 3.1 Since the magnitude of the bias{f̂α(x)} = fα(x) − f (x) is of the same order
O(α−1) near the origin and in the interior of the support of F , the MDE f̂α is free from the
bias effect. Note also that under the condition

∫ ∞
0 {x2 f ′′(x)}2 dx < ∞ (see Equation (17) in

Section 4), the expression x2f ′′(x) tends towards zero as x → ∞, i.e. the bias becomes smaller
when x increases. Our simulations proved this phenomenon as well (Figure 1).

Proof of Theorem 3.1 Let us note that for each k ∈ N and x ∈ R+, the function

hα,x,k(u) = 1

{k(α − 1)}!
(

kα

x

)k(α−1)+1

uk(α−1) exp

(
−kα

x
u

)
, u ≥ 0, (7)

is a gamma density with mean {k(α − 1) + 1}x/(kα) and variance {k(α − 1) + 1}x2/(kα)2. For
each k ∈ N, moreover, these densities form as well a delta sequence as n → ∞ (and consequently
α → ∞). In addition, for k = 1 we have Mi = hα,x,1(Xi) and∫ ∞

0
u hα,x,1(u) du = x,

∫ ∞

0
(u − x)2hα,x,1(u) du = x2

α
.

For each k ∈ N we have

EMk
i =

∫ ∞

0

1

{(α − 1)!}k
(α

x

)k (α

x
u
)k(α−1)

exp

(
−kα

x
u

)
f (u) du,

=
∫ ∞

0

{k(α − 1)}!
{(α − 1)!}k

(α

x

)kα ( x

kα

)k(α−1)+1
hα,x,k(u)f (u) du,

=
(α

x

)k−1 {k(α − 1)}!
{(α − 1)!}k

1

kk(α−1)+1

∫ ∞

0
hα,x,k(u)f (u) du. (8)

In particular, for k = 1

fα(x) = Ef̂α(x) = EMi =
∫ ∞

0
hα,x,1(u)f (u) du. (9)

This yields for the bias (μ = x, σ 2 = x2/α)

fα(x) − f (x) =
∫ ∞

0
hα,x,1(u){f (u) − f (x)} du,

=
∫ ∞

0
hα,x,1(u){f (x) + (u − x)f ′(x) + 1

2
(u − x)2f ′′(ũ) − f (x)} du,

= 1

2

∫ ∞

0
(u − x)2hα,x,1(u)f ′′(x) du

+ 1

2

∫ ∞

0
(u − x)2hα,x,1(u){f ′′(ũ) − f ′′(x)} du,

= 1

2

x2

α
f ′′(x) + o

(
1

α

)
, as α −→ ∞.

For the variance we have

Varf̂α(x) = 1

n
VarMi = 1

n
{EM2

i − f 2
α (x)}. (10)
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Applying Equation (8) with k = 2 and Bα = 2−(2α−1)α�(2α − 1)/[�(α)]2 yields

EM2
i = 1

x

α�(2α − 1)

[�(α)]2

1

22α−1

∫ ∞

0
hα,x,2(u)f (u) du,

= Bα

x

∫ ∞

0
hα,x,2(u)f (u) du,

∼ α

x

1√
2π

e−2(α−1){2(α − 1)}2(α−1)+1/2

e−2(α−1){(α − 1)}2(α−1)+1

1

22(α−1)+1

∫ ∞

0
hα,x,2(u)f (u) du,

= 1√
2π

α

x

1√
2

1√
α − 1

∫ ∞

0
hα,x,2(u)f (u) du = α√

α − 1

1

2
√

π

1

x
{f (x) + o(1)},

=
{√

α + O

(
1√
α

)}
1

2
√

π

1

x
{f (x) + o(1)},

= 1

2
√

π

√
α

x
f (x) + o(

√
α), as α −→ ∞. (11)

Inserting Equation (11) in Equation (10), we obtain

Varf̂α(x) = 1

n

[
1

2
√

π

√
α

x
f (x) + o(

√
α) −

{
f (x) + O

(
1

α

)}2
]

,

=
√

α

2n
√

π

f (x)

x
+ o

(√
α

n

)
, as α, n −→ ∞. (12)

Finally, this leads to the MSE of f̂α(x):

MSE{f̂α(x)} = Varf̂α(x) + bias 2{f̂α(x)}, =
√

α

2n
√

π

f (x)

x
+ 1

4

x4

α2
{f ′′(x)}2

+ o

(√
α

n

)
+ o

(
1

α2

)
, as α, n −→ ∞. (13)

For the optimal rate, we may take

α = α(n) ∼ n2/5, (14)

assuming that n is such that α(n) is an integer. By substituting α = n2/5 in Equation (13), we find
Equation (6). �

To derive the limiting distribution of f̂α, let us first prove the following.

Theorem 3.2 Under the assumptions (4) and choosing α = α(n) ∼ nδ for any 0 < δ < 2, we
have

f̂α(x) − fα(x)√
Varf̂α(x)

−→d Normal (0, 1), (15)

as n → ∞.

Proof of Theorem 3.2 In this proof, let 0 < C < ∞ denote a generic constant whose value may
differ from line to line, but which does not depend on n. For arbitrary k ∈ N, the ‘cr -inequality’
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entails that E|Mi − fα(x)|k ≤ CEMk
i , in view of Equations (8) and (9). For an arbitrary k > 2,

we thus obtain from Equations (8) and (12)∑n
i=1 E|(1/n){Mi − fα(x)}|k

{Varf̂α(x)}k/2
≤ C

n1−kk−1/2αk/2−1/2

(n−1α1/2)k/2

= C
1√
k

αk/4−1/2

nk/2−1
−→ 0, as n −→ ∞,

for α ∼ nδ, 0 < δ < 2. Apparently Lyapunov’s condition for the central limit theorem is fulfilled
and Equation (15) follows. �

Theorem 3.3 Under the assumptions (4), we have

n1/2

α1/4
{f̂α(x) − f (x)} −→d Normal

(
0,

f (x)

2x
√

π

)
,

as n → ∞, provided that we take α = α(n) ∼ nδ for some 2
5 < δ < 2.

Proof of Theorem 3.3 This is immediate from Equations (12) and (15), and because Equation (5)
entails that n1/2α−1/4{fα(x) − f (x)} = O(n1/2α−5/4) = o(1), as n → ∞, for the present
choice of α. �

4. Global properties

4.1. MISE rate of convergence

Throughout this section again F concentrates mass 1 on (0, ∞) but it is also supposed to have a
sufficiently smooth density. Let us consider the following conditions:∫ ∞

0

f (x)

x
dx = C0 < ∞, (16)

and ∫ ∞

0
{x2 f ′′(x)}2 dx = C1 < ∞. (17)

One can very easily obtain the optimal rate n−4/5 for MISE {f̂α} as α, n → ∞ by integrating the
terms on the right-hand side of Equation (13). Namely, the following statement is true.

Theorem 4.1 Under the assumptions Equations (4), (16), and (17), we have

MISE{f̂α} =
∫ ∞

0
Varf̂α(x) dx +

∫ ∞

0
bias2{f̂α(x)} dx

∼ C0
√

α

2n
√

π
+ C1

4α2
,

as α, n → ∞. While for optimal MISE, we have

MISE{f̂α} ∼ n−4/5

(
C0

2
√

π

)4/5

· 5C
1/5
1

4
, as α, n −→ ∞,

provided that we choose α = α(n) = n2/5(2C1
√

π/C0)
2/5.
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Actually we can weaken the conditions on f and obtain the exact upper bound for MISE{f̂α}
and show that the corresponding asymptotic rate is n−2/3. Indeed, let us denote again by Bα =
2−(2α−1)α�(2α − 1)/[�(α)]2 and consider the following condition (instead of Equation (17)):

∫ ∞

0
{xf ′(x)}2 dx = C2 < ∞. (18)

Theorem 4.2 Under the assumptions (16) and (18), we have

MISE{f̂α} ≤ BαC0

n
+ C2α

(α − 1)(α + 1)
, α > 1,

MISE{f̂α} ≤ C0
√

α

2n
√

π
+ C2

α
+ o

(√
α

n

)
+ o

(
1

α

)
, (19)

as α, n → ∞. While for optimal MISE, we have

MISE{f̂α} ≤ n−2/3

(
C0

2
√

π

)2/3

· 3C
1/3
2

22/3
+ o(n−2/3), as n −→ ∞,

provided that we choose α = α(n) = n2/3(4 C2
√

π/C0)
2/3.

Proof of Theorem 4.2 Let us denote by ξ̄α the sample mean of i.i.d. r.v.’s ξ1, . . . , ξα with distri-
bution Exp(1). Then after a simple algebra combined with application of the Cauchy–Schwarz’s
inequality, we obtain

∫ ∞

0
bias2{f̂α(x)} dx =

∫ ∞

0

[∫ ∞

0
{f (s) − f (x)}hα,x,1(s) ds

]2

dx

=
∫ ∞

0

[
E(f (xξ̄α) − f (x))

]2
dx =

∫ ∞

0

[
E

∫ xξ̄α

x

f ′(s) ds

]2

dx

≤ E
∫ ∞

0

[∫ xξ̄α

x

(f ′(s))2 dsx(ξ̄α − 1)

]
dx

= E

{
I[ξ̄α≤1]

∫ ∞

0

[
(f ′(s))2

∫ s/ξ̄α

s

x(1 − ξ̄α) dx

]
ds

+ I[ξ̄α≥1]
∫ ∞

0

[
(f ′(s))2

∫ s

s/ξ̄α

x(ξ̄α − 1) dx

]
ds

}

= E
{
I[ξ̄α≤1]

∫ ∞

0
(f ′(s))2 1

2
s2

(
1

ξ̄ 2
α

− 1

)
(1 − ξ̄α) ds

+ I[ξ̄α≥1]
∫ ∞

0
(f ′(s))2 1

2
s2

(
1 − 1

ξ̄ 2
α

)
(ξ̄α − 1) ds

}

= 1

2
E

(
(ξ̄α − 1)2(ξ̄α + 1)

ξ̄ 2
α

) ∫ ∞

0
{sf ′(s)}2ds. (20)



Statistics 223

But

E
(

(ξ̄α − 1)2(ξ̄α + 1)

ξ̄ 2
α

)

=
∫ ∞

0

(u/α − 1)2(u/α + 1)

(u/α)2
· uα−1

�(α)
e−u du = 1

α�(α)

∫ ∞

0
(u − α)2(u + α)uα−3e−u du

= 2α

(α − 1)(α + 1)
∼ 2

α
, as α −→ ∞. (21)

Combination of Equations (20) and (21) gives∫ ∞

0
bias2{f̂α(x)} dx ≤ α

(α − 1)(α + 1)

∫ ∞

0
s2(f ′(s))2 ds

= 1

α

∫ ∞

0
s2{f ′(s)}2ds(1 + o(1)), as α −→ ∞. (22)

Let the following

g(x, a1, b1) = 1

x2
· b

a1
1 (1/x)a1−1e−b1/x

�(a1)
, t > 0,

denote the inverse gamma density with the shape a1 and the rate b1. According to the definitions
of the inverse gamma g(·, a1, b1) and gamma hα,x,2 density (Equation (7)), we have∫ ∞

0

1

x
hα,x,2(u) dx = 1

u

∫ ∞

0
g(x, a1 = 2α − 1, b1 = 2αu) dx = 1

u
.

So that integration of the both sides of the first equation in Equation (11) combined with Bα ∼
α1/2/2

√
π , as α → ∞, yields

1

n

∫ ∞

0
EM2

n,x,i dx = Bα

n

∫ ∞

0

1

x

[∫ ∞

0
hα,x,2(u) f (u) du

]
dx

= Bα

n

∫ ∞

0
f (u)

[∫ ∞

0

1

x
hα,x,2(u) dx

]
du = Bα

n

∫ ∞

0

f (u)

u
du

∼
√

α

2n
√

π

∫ ∞

0

f (u)

u
du, as α → ∞. (23)

Hence, it is proved∫ ∞

0
Varf̂α(x) dx ≤

∫ ∞

0

1

n
{EM2

n,x,i}dx

∼
√

α

2n
√

π

∫ ∞

0

f (u)

u
du + o

(√
α

n

)
, as n, α −→ ∞. (24)

Finally, from Equations (22) and (24), we obtain the statement (19) of the Theorem 4.2. �

4.2. L1-consistency

Theorem 4.3 establishes the L1-consistency and corresponding optimal rate of MDE f̂α under
the mild conditions on f . In Lemma 4.1, we provide the exact L1-rate for fα = Ef̂α under the
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smoothed conditions on f :

the second derivative f ′′ exists and
∫ ∞

0
x2|f ′′(x)| dx = C3 < ∞. (25)

Denote the L1-distance on L1(R+, dμ) (μ is the Lebesgue measure on R+) as follows:

‖fα − f ‖L =
∫ ∞

0
|fα(x) − f (x)| dμ(x).

Here

fα(x) = Ef̂α(x) =
∫ ∞

0
Kα

(x

t

) 1

t
f (t) dt = E[f (xξ̄α)], x ∈ R+ (26)

with Kα(u) = (α/u)α exp(−α/u)/�(α), u ∈ R+. Recall that the r.v. ξ̄α introduced in the proof
of Theorem 4.2 has pdf K∗

α(u) = (1/u) Kα(1/u), u > 0, with

E(ξ̄α) = 1 and Var(ξ̄α) = 1

α
.

Now let us show that the functions {(1/t)Kα(·/t), t > 0} form a δ-sequence in L1- norm and
establish corresponding rate as α → ∞. Namely, the following statement is true.

Lemma 4.1 Under the assumptions (25), we have

‖fα − f ‖L ≤ C3
1

2
E

(
(ξ̄α − 1)2(ξ̄α + 1)

ξ̄ 2
α

)
= C3 · α

(α − 1)(α + 1)
, α > 1. (27)

Proof of Lemma 4.1 Combination of Equation (26) and the equations∫ ∞

0
Kα(x/s)

1

s
ds = 1, E[x(ξ̄α − 1)] = 0,

f (xξ̄α) − f (x) = f ′(x)(xξ̄α − x) +
∫ xξ̄α

x

ds

∫ s

x

f ′′(y) dy

gives

‖fα − f ‖L =
∫ ∞

0

∣∣∣∣
∫ ∞

0
{f (s) − f (x)}Kα(x/s)

1

s
ds

∣∣∣∣ dx =
∫ ∞

0

∣∣E(f (xξ̄α) − f (x))| dx

=
∫ ∞

0

∣∣∣∣∣E
∫ xξ̄α

x

ds

∫ s

x

f ′′(y) dy

∣∣∣∣∣ dx ≤
∫ ∞

0

[
EI[ξ̄α>1](xξ̄α − x)

∫ xξ̄α

x

|f ′′(y)| dy

+EI[ξ̄α>1](x − xξ̄α)

∫ x

xξ̄α

|f ′′(y)| dy

]
dx. (28)

Now in a similar way as we did in Equation (20), changing the integrations in Equation (28) yields

‖fα − f ‖L ≤ 1

2

∫ ∞

0
y2|f ′′(y)| dy · E

(
(ξ̄α − 1)2(ξ̄α + 1)

ξ̄ 2
α

)
. (29)

Finally, from Equations (21) and (29), we obtain Equation (27). Lemma 4.1 is proved. �
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To prove L1-consistency of MDE f̂α in statement (i), one can very easily apply the result
from Mnatsakanov and Khmaladze [19] where the necessary and sufficient conditions for L1-
consistency of general density estimators are obtained. Besides, under the smooth conditions on
f , we obtain the optimal L1-rate of O(n−2/5) in (ii).

Theorem 4.3 (i) If f is a bounded and continuous function and the condition (16) is satisfied,

then

E‖f̂α − f ‖L −→ 0, (30)

as
√

α/n → 0, α, n → ∞.
(ii) If the condition (25) is satisfied and f (x) ≤ C min(xδ, xε), for some δ > 0, ε > 1, and

some 0 < C < ∞, then

E‖f̂α − f ‖L ≤ C

√
Bα

n
+ C3α

(α − 1)(α + 1)
. (31)

While for optimal L1-error, we have

E‖f̂α − f ‖L ∼ n−2/5 5C4/5

4

(
C3

π

)1/5

, as n −→ ∞,

provided that we choose α = α(n) = n2/54π1/5(C3/C)4/5.

Proof of (i) Recall that f̂α = (α − 1)f̂α/α, where f̂α is defined in Section 2 with

f̂α(x) =
∫ ∞

0

1

x
Lα(τ/x) dF̂n(τ ).

Here Lα(u) = (αu)α−1 exp(−αu)/�(α − 1), u ∈ R+. Also note that Ef̂α(x) represent a PDF on
R+. Hence, combining Lemma 1 from Feller [8, v. II, Ch. 7, p. 219], and the Scheffe’s theorem
(see Theorem 7 in [20, Ch. 2]), we derive ‖Ef̂α − f ‖L → 0 and

‖Ef̂α − f ‖L ≤
∥∥∥∥α − 1

α
Ef̂α − Ef̂α

∥∥∥∥
L

+ ‖Ef̂α − f ‖L = 1

α
+ ‖Ef̂α − f ‖L −→ 0.

Now to prove Equation (30), it is sufficient to show

F {An(δ)} = F

{
x :

∫ ∞

0

1

x2
L2

α(τ/x)f (τ) dτ ≥ nδ

}
−→ 0,

for all δ and α, n → ∞ (see Theorem 1 in [19]). But F is an absolutely continuous distribution
with respect to Lebesgue measure μ; so, let us establish

μ{An(δ)} −→ 0,

for all δ and α, n → ∞. Indeed, application of the steps similar to Equation (23) with B̃α =
α−12−(2α−1)�(2α − 1)/[�(α − 1)]2 ∼ α1/2/2

√
π instead of Bα yields

μ{An(δ)} ≤ 1

nδ

∫
An(δ)

dx

∫ ∞

0

1

x2
L2

α(τ/x)f (τ) dτ

≤ 1

nδ

∫ ∞

0
dx

∫ ∞

0

1

x2
L2

α(τ/x)f (τ) dτ = B̃α

nδ

∫ ∞

0

f (τ)

τ
dτ

∼
√

α

2nδ
√

π

∫ ∞

0

f (τ)

τ
dτ, as α −→ ∞. (32)

Hence, the proof of (i) follows from Equations (16) and (32) and
√

α/n → 0. �
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Proof of (ii) Throughout, C will be used as a generic constant. Let us introduce a r.v. ηα with
Gamma(2α − 1, 2α) distribution. From Equations (10) and (11), we have

Varf̂α(x) ≤ Bα

nx
Ef (xηα). (33)

Next let us observe that∫ ∞

0

√
Varf̂α(x) dx ≤

∞∑
k=0

∫ k+1

k

√
Bα

n x
Ef (xηα) dx

≤
∞∑

k=0

√∫ k+1

k

Bα

nx
Ef (xηα) dx ≤ C

√
Bα

n

√∫ 1

0

1

x
xδE(ηδ

α) dx

+ C

√
Bα

n

∞∑
k=1

√∫ k+1

k

1

x
x−εE(η−ε

α ) dx

≤ C

√
Bα

n

⎧⎨
⎩

√
E(ηδ

α) + √
E(η−ε

α ) ·
∞∑

k=1

√∫ k+1

k

1

x1+ε
dx

⎫⎬
⎭ ≤ C

√
Bα

n
, (34)

assuming that E(ηr
α) ≈ 1 for r ∈ R, if α is sufficiently large. Finally, note that

E‖f̂α − f ‖L ≤ E
∫ ∞

0
|f̂α(x) − Ef̂α(x)| dx + ‖Ef̂α − f ‖L

≤
[

E
{∫ ∞

0
|f̂α(x) − fα(x)| dx

}2
]1/2

+ ‖fα − f ‖L

=
[∫ ∞

0

∫ ∞

0
E|f̂α(x) − fα(y)||f̂α(y) − fα(x)| dx dy

]1/2

+ ‖fα − f ‖L

≤
[∫ ∞

0

√
Varf̂α(x) dx ·

∫ ∞

0

√
Varf̂α(y) dy

]1/2

+ ‖fα − f ‖L

≤ C

√
Bα

n
+ C3α

(α − 1)(α + 1)
. (35)

The last inequality of Equation (35) is derived according to Equations (34) and (27). �

Remark 4.1 Taking α = h−2, one can see that the condition
√

α/n → 0 from Theorem 4.3
corresponds to the condition nh → ∞ in traditional kernel density estimation.

5. Comparison with KDE

Now let us compare the expressions of the main terms of MSE for MDE f̂α(x) and the KDE
f̂h(x) studied, say, in Silverman [18]. Under the same assumptions as stated in Equation (4), we
have for the traditional kernel estimator

f̂h(x) = 1

nh

n∑
i=1

r

(
x − Xi

h

)
, x ∈ R,
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Figure 1. The simulated ̂MISE for Gamma(2, 1) with sample size (a) n = 200 and N = 50 and (b) n = 600 and N = 50.

with kernel r and bandwidth h:

MSE{f̂h(x)} = 1

nh
f (x)

∫ ∞

−∞
r2(y) dy + o

(
1

nh

)
+ 1

4
h4

{
f ′′(x)

∫ ∞

−∞
y2r(y) dy

}2

+ o(h4).

(36)
For optimal rate, we may take

h = h(n) ∼ n−1/5, (37)

and by substitution, we now obtain

MSE{f̂h(x)} = n−4/5

[{∫ ∞

−∞
r2(y) dy

}
f (x) + 1

4

{∫ ∞

−∞
y2r(y) dy

}2

{f ′′(x)}2

]
+ o(n−4/5).

The differences in the constants for asymptotics of α defined in Equation (14) and h from Equation
(37) would not change the rate of MSE as a function of x.

In a similar way, one can derive the optimal bandwidth h when minimizing the MISE{f̂h}. In
this case, we have

hopt =
{∫ ∞

−∞
y2r(y) dy

}−2/5 {∫ ∞

−∞
r2(y) dy

}1/5 {∫ ∞

−∞
[f ′′(x)]2 dx

}−1/5

n−1/5.

In our simulation study, we assumed r to be a standard normal density function. We also took the
standard normal bandwidth hopt = 1.06σ̂ n−1/5, where σ̂ is the sample standard deviation of the
sampled data (cf. [18, Ch. 3.4]).

Now to chose the optimal α = α∗, let us use the least-squares CV algorithm [18]. We simulated
the r.v.’s Xi, i = 1, . . . , n, with n = 200k(1 ≤ k ≤ 4) sample sizes from three different distribu-
tions: Gamma(2, 1), Exp(1), and Log-Normal(0, 1). Also we repeated these simulations N = 50
times and studied the performance of MDE f̂α defined in Equation (3) via MISE for different
sample sizes. Let us measure the accuracy of MDE f̂α in terms of the estimated MISE:

M̂ISE := Ê(ISE){f̂α} = 1

N

N∑
j=1

∫ ∞

0
|f̂α,j (x) − f (x)|2 dx. (38)

Here, the expectation Ê is calculated with respect to the empirical cdf of N = 50 values of
ISE’s, while f̂α,j denotes the MDE derived on the j th replication. In other words, the optimal α∗
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minimizes the expression Mn(f̂α), i.e.

α∗ = argminαMn(f̂α) = argminα

[∫ ∞

0
[f̂α(x)]2 dx − 2

∫ ∞

0
f̂α(x) dF̂n(x)

]
, (39)

where α ∈ {4, . . . , 40} for each n = 200k with 1 ≤ k ≤ 4. In the second term of the right-hand
side of Equation (39), let us apply the leave-one-out construction instead of f̂α . This yields the
following expression of

Mn(f̂α) = α�(2α − 1)

n2�2(α)

n∑
i=1

n∑
j=1

(XiXj )
α−1

(Xi + Xj)2α−1

− 2

n(n − 1)�(α)

n∑
i=1

∑
j 
=i

1

Xj

(
αXj

Xi

)α

e−(αXj )/Xi .

In Table 1, we recorded the values of α∗ and corresponding M̂ISE for three different distributions
mentioned above when the sample sizes are n = 200k, 1 ≤ k ≤ 4, and the number of replications
N = 50. The simulations study justifies that M̂ISE is a decreasing function of n when α = α∗. See
also Figure 1(a)–(b) where we plotted two curves of M̂ISE for values of α ∈ {4, . . . , 40} when the
sampled distribution is Gamma(2, 1) with the sample sizes n = 200 and n = 600, respectively.

Table 1. The optimal α∗ and the simulated ̂MISE.

Optimal α∗ and ̂MISE

Model n = 200 n = 400 n = 600 n = 800

Gamma(2, 1) 15 20 24 26
0.00367 0.00241 0.00233 0.00148

Exp(1) 5 7 6 9
0.04965 0.02824 0.02071 0.01416

Log-Normal(0, 1) 12 15 18 20
0.00331 0.00163 0.00150 0.00478
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Figure 2. Estimation of Gamma(2, 1) density function f by (a) f̂α and f̂h with α = n2/5 and bandwidth h = hopt and

(b) f̂α∗ and f̂h with α∗ = 24. In both plots n = 600.
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Figure 3. Estimation of Exp(1) density function f by (a) f̂α and f̂h with α = n2/5 and bandwidth h = hopt and (b) f̂α∗

and f̂h with α∗ = 6. In both plots n = 600.
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Figure 4. Estimation of Log-Normal(0, 1) density function f by (a) f̂α and f̂h with α = n2/5 and bandwidth h = hopt

and (b) f̂α∗ and f̂h with α∗ = 18. In both plots n = 600.

Finally, let us simulate the data Xi, i = 1, . . . , n, from Gamma(2, 1), Exp(1), and Log-
Normal(0, 1) distributions when n = 600. The graphs of estimators f̂α (the dashed curves) with
α = n2/5 and f̂h (the dotted curves) with h = hopt, respectively, are plotted in Figures 2(a)–4(a),
while in Figures 2(b)–4(b), we plotted the graphs of estimators f̂α and f̂h for α = α∗ and h = hopt,
respectively. The corresponding sampled pdfs f (the solid curves) are plotted as well. Based on
graphical illustrations of the MDE and KDE estimators for three underlying distributions, we
conclude that the performance of f̂α is improved (except for Exp(1)) when α = α∗ is used instead
of α = n−2/5.
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