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In this article a new nonparametric density estimator based on the sequence of
asymmetric kernels is proposed. This method is natural when estimating an unknown
density function of a positive random variable. The rates of Mean Squared Error, Mean
Integrated Squared Error, and the L1-consistency are investigated. Simulation studies are
conducted to compare a new estimator and its modified version with traditional kernel
density construction.
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1. Introduction

Let us assume that the support of unknown cumulative distribution function (cdf) F is the positive half-lineR+ = (0, ∞).
To avoid an edge effectwhen estimating the density function of F it is common to use kernelswith the same support as that of
the target distribution. Recently, the constructions with asymmetric kernels have been studied for estimating a probability
density function (pdf) defined on R+. Namely, in Chen (2000) and Scaillet (2004) the sequences of gamma kernels, and
inverse and reciprocal inverse gaussian kernels have been used, respectively. See also Mnatsakanov and Ruymgaart (2012),
where another varying kernel approach is suggested. Their method is based on the sequence of gamma pdfs with varying
shapes.

We propose to use a sequence of inverse gamma kernels that represent the δ-sequences in L2- and L1-norms, see
Lemmas 4.1 and 4.2, respectively. The constructions f ∗

α andfα considered in (2.3) and (2.4) (called the varying kernel density
estimators (vKDEs)) are different from the traditional kernel density estimator (KDE) (see, for example, Parzen (1962),
Silverman (1986), and Scott (1992)). They are also different from the ones proposed in Chen (2000) and Scaillet (2004). In the
kernel density estimation the convolution is considered with respect to addition as the group operation on the entire real
line R and with a fixed kernel. Our constructions in (2.3) and (2.4) turns out to be of kernel type provided that convolution
is considered on the space of a positive half-line (R+, dH) equipped with multiplication as a group operation, and with the
Haar measure dH(t) = dt/t (see, for example, (2.7) below). It is worth mentioning that the estimators proposed by Chen
(2000) and by Scaillet (2004) cannot be viewed as convolutions as well as the densities on R+.

In this paper we investigated the Mean Squared Error (MSE) and Mean Integrated Squared Error (MISE) rates of
convergence for proposed estimators f ∗

α andfα . Note that the shape of an inverse gamma density varies according to the
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position of a point x at which the pdf f (x) is estimated. This allows automatic changing the ‘‘smoothing’’ degree around the
point x. Another feature of the constructions (2.3) and (2.4) are that they have no boundary effects (see Figs. 1 and 2) and they
achieve the optimal rate of convergence for MSE and for MISE within the class of non-negative kernel density estimators.
Similar results have been derived in papers: Chen (2000) and Scaillet (2004). There are differences regarding the constants
appearing in the first order terms only. It is worth mentioning that in contrast with KDE, the asymptotic variances of f ∗

α (x)
andfα(x) have the same form n−4/5f (x)/(2x

√
π), as α = n2/5 (see (3.6) in Section 3), that becomes smaller as x increases.

Finally, note that in the case of asymmetric gamma kernels (see Chen (2000)), the corresponding variance has the form
n−4/5f (x)/(2

√
xπ). In Mnatsakanov and Ruymgaart (2012), the construction similar to (2.1) has been used, and, as a result,

another, the so-called moment-density estimate has been proposed, and its asymptotic properties were studied as well.
The paper is organized as follows. In Section 2 the assumptions and the construction of the vKDE are introduced. In

Section 3 theMSE of f ∗
α andfα are derived, while in Section 4 theMISE and L1-consistency offα are investigated. In Section 5

we conducted the simulation study and compared the performances of the estimatorsfα , f ∗
α and the traditional KDEfh.

2. Preliminaries and assumptions

In this section we outline the main idea that yields vKDEs f ∗
α andfα in (2.3) and (2.4), respectively. Assume we would

like to recover (approximate) the moment-identifiable distribution F given only the sequence of its moments. About the
conditions necessary and sufficient for F to be the moment-identifiable distribution, see, for example, Stoyanov (2000) and
references therein. Suppose that all negative order moments of F are finite. Define the operator M by

(MF)(j) =


∞

0
t−jdF(t) = µj, j = 0, 1, . . .

and introduce the sequence of operators M−1
α :

(M−1
α µ)(x) = 1 −

α
k=0

(αx)k

k!

∞
j=k

(−αx)j−k

(j − k)!
µj, x ∈ R+. (2.1)

Here µ = {µj, j = 0, 1, . . .} and α → ∞ at a rate to be specified later.
In analysis, the transform (MF)(1 − z), where z is a complex variable, is known as the Mellin transform. There is

extensive literature investigating the problem of recovering a function from its Mellin transform. See, for instance, Tagliani
(2001), Klauder et al. (2001) and Sneddon (1974), among others. In Gzyl and Tagliani (2010), and Mnatsakanov (2008a,b)
the problem of recovering the cdf and corresponding density function given the moment sequence of positive orders of
underlying distribution has been studied. The investigation of the properties of approximation M−1

α in (2.1) is beyond the
scope of this article and will be conducted in a separate investigation.

To construct the density estimate, at first, let us approximate F by means of M−1
α . A minor modification of an argument

in Mnatsakanov and Ruymgaart (2003) yields

Fα = M−1
α MF →w F , as α → ∞. (2.2)

Here by →w we denote the weak convergence of corresponding cdfs.
Now, suppose we are given a sequence X1, . . . , Xn of independent and identically distributed positive random variables

from the absolutely continuous distribution function F (with pdf f = F ′). To estimate F , let us first estimate its negative j-th
order moments µj, j ≥ 1. Namely, based on (2.2), let us construct the estimate F∗

α of F by replacing the moment µj in (2.1)
by its empirical counterpart

µ̂j =


∞

0
t−jdF̂n(t), j = 0, 1, . . . , with F̂n(t) =

1
n

n
i=1

I{Xi ≤ t}.

Here F̂n is the empirical cdf of the sample X1, . . . , Xn. After a simple algebra, we derive

F∗

α (x) = 1 −
1
n

n
i=1

α
k=0

1
k!


α

Xi
x
k

exp


−
α

Xi
x


, x ∈ R+.

To compare F∗
α with the empirical cdf F̂n, note that F∗

α (x) ∼ F̂n(x) as long as α is large. This follows from the fact that for a
given Xi and large α:

α
k=0

1
k!


α

Xi
x
k

exp


−
α

Xi
x


∼ I{Xi > x}.

Note also that F∗
α (x) is a continuous function of x, hence, to estimate the density f (x) one can take the derivative of F∗

α (x):

f ∗

α (x) =
1
n

n
i=1

1
Xi

·
1

Γ (α)


α

Xi
x
α

exp


−
α

Xi
x


, (2.3)
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and choose α = α(n) → ∞ as n → ∞. The problem of optimal choice of parameter α will be specified later. Of course
f ∗
α (x) ≥ 0 for each x > 0, and since it is easily seen that


∞

0 f ∗
α (x)dx =1, the estimator is itself a probability density. The

statements similar to the ones obtained in Sections 3 and 4 are valid for f ∗
α as well (see for example, Theorem 3.2). To

simplify the calculations below and to reduce the bias of f ∗
α , let us use the modified version of f ∗

α . Namely, let us increase
the shape parameter of the inverse gamma kernel presented in the right hand side of (2.3) by one. Denote Si,x :=

1
Xi
Lα( x

Xi
),

where Lα(u) = (αu)α+1/Γ (α + 1) exp(−αu), u ∈ R+, and consider

fα(x) =
1
n

n
i=1

1
Xi

Lα


x
Xi


=

1
n

n
i=1

Si,x. (2.4)

Throughout the proposed estimator will be considered at a fixed point x > 0, where f (x) > 0. Also, we will assume that
F(0) = 0, and the underlying density satisfies

f ∈ C (2)(R+), with sup
t>0

|f ′′(t)| = M < ∞. (2.5)

Besides, let us denote by g(·, ak, bk) the inverse gamma density with the shape ak = k(α + 2) − 1 and the rate bk = k αx
parameters, respectively. Namely

g(t; ak, bk) =
1
t2

·
bakk

 1
t

ak−1
e−

bk
t

Γ (ak)
, t > 0. (2.6)

The mean ξk and variance σ 2
k of g(·; ak, bk) have the following expressions, respectively:

ξk =
bk

ak − 1
=

kαx
k(α + 2) − 2

,

σ 2
k =

b2k
(ak − 1)2 · (ak − 2)

=
k2α2x2

{k(α + 2) − 2}2 · {k(α + 2) − 3}
.

Note also that the mean offα(x) can be written as the convolution operator on (R+, dH):

fα(x) = Efα(x) =


∞

0
Lα(x/t)f (t)dH(t), x ∈ R+, (2.7)

where dH(t) = dt/t . In Lemmas 4.1 and 4.2, see Section 4, it is proved that the sequence of functions {(1/t) Lα(·/t), t ∈

R+, α ∈ N} with Lα(·) defined in (2.4) forms the δ-sequences in L1- and L2-norms, as α → ∞.

3. Bias and MSE

Without explicit reference it will be assumed that all the conditions in Section 2 are satisfied. Let us study the bias and
the second moment of the estimatorfα . We have

ESki,x =


∞

0

1
{Γ (α + 1)}k


1
t

k αx
t

k(α+1)
exp


−

kαx
t


f (t)dt

=


∞

0

{k(α + 2) − 2}!(αx)k(α+1)

{Γ (α + 1)}k (kαx)k(α+2)−1 g(t; ak, bk)f (t)dt

=


1
αx

k−1
{k(α + 2) − 2}!
{Γ (α + 1)}k

1
kk(α+2)−1


∞

0
g(t; ak, bk)f (t)dt. (3.1)

In particular, for k = 1:

Efα(x) = ESi,x =


∞

0 g(t; a1, b1)f (t)dt = fα(x). (3.2)

This yields for the bias offα(x):

fα(x) − f (x) = Bias{fα(x)} =


∞

0
g(t; a1, b1){f (t) − f (x)}dt

=


∞

0
g(t; a1, b1){f (x) + (t − x)f ′(x) +

1
2
(t − x)2f ′′(t̃) − f (x)}dt

=
1
2


∞

0
(t − x)2g(t; a1, b1)f ′′(x)dt +

1
2


∞

0
(t − x)2g(t; a1, b1){f ′′(t̃) − f ′′(x)}dt

=
1
2

·
x2

α − 1
· f ′′(x) + o


1
α


, as n → ∞. (3.3)
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For the variance we have

Var{fα(x)} =
1
n
Var Si,x =

1
n
{E S2i,x − f 2α (x)}. (3.4)

Applying (3.1) for k = 2 and Bα = α−1 2−(2α+3)Γ (2α + 3)[Γ (α + 1)]−2
∼ α1/2/(2

√
π), as α → ∞, yields

E S2i,x =
1
αx

·
Γ (2α + 3)
{Γ (α + 1)}2

·
1

22(α+2)−1
·


∞

0
g(t; a2, b2) f (t)dt

=
Bα

x


∞

0
g(t; a2, b2)f (t)dt ∼

1

αx
√
2π

·
e−2(α+1)

{2(α + 1)}2(α+1)+1/2

e−2α · α2α+1
·

1
22α+3

×


∞

0
g(t; a2, b2)f (t)dt ∼

1

αx
√
2π

α3/2

√
2


∞

0
g(t; a2, b2)f (t)dt

=

√
α

2x
√

π
{f (x) + o(1)} =

√
α

2
√

π

f (x)
x

+ o(
√

α). (3.5)

Inserting (3.3) and (3.5) in (3.4) we obtain

Var{fα(x)} =
1
n


1

2
√

π

√
α

x
f (x) + o(

√
α) −


f (x) + O


1
α

2


=

√
α

2n
√

π

f (x)
x

+ o
√

α

n


. (3.6)

Finally, combining (3.3) and (3.6) leads to theMSE offα(x):

MSE{fα(x)} = Var{fα(x)} + Bias2{fα(x)} =

√
α

2n
√

π

f (x)
x

+
1
4

x4

(α − 1)2
{f ′′(x)}2 + o

√
α

n


+ o


1
α2


. (3.7)

For optimal rates we may take

α = α(n) = n2/5. (3.8)

By substitution (3.8) into (3.7) we find

MSE{fα(x)} = n−4/5


f (x)
2x

√
π

+
x4{f ′′(x)}2

4


+ o(n−4/5). (3.9)

Here we have assumed that the pdf f has a continuous and bounded second derivative f ′′ (condition (2.5)). The following
statement is valid.

Theorem 3.1. Under the assumption (2.5) the bias of fα(x) satisfies

Bias{fα(x)} =
x2f ′′(x)

2 · (α − 1)
+ o


1
α


, as α and n → ∞.

For theMSE of fα(x) we have the expression in (3.9), provided that we choose α = α(n) ∼ n2/5.

One can check very easily that the variance of vKDE f ∗
α defined in (2.3) has the same formwe have in the right-hand side

of (3.6), while the bias of f ∗
α has additional term containing f ′. Applying the similar argument used in derivations of (3.3),

(3.5) and (3.6), we obtain the following statement.

Theorem 3.2. Under the assumption (2.5), the bias andMSE of f ∗
α (x) have the following expressions

Bias{f ∗

α (x)} =
xf ′(x)
α − 1

+
x2f ′′(x)

2
×

α2

(α − 1)2(α − 2)
+ o


1
α


,

MSE{f ∗

α (x)} =

√
α

2n
√

π

f (x)
x

+
x2{f ′(x)}2

(α − 1)2
+

x4{f ′′(x)}2α4

4(α − 1)4(α − 2)2
+ o

√
α

n


+ o


1
α2


,

as α and n → ∞. For the optimalMSE of f ∗
α (x) we have

MSE{f ∗

α (x)} = n−4/5


f (x)
2x

√
π

+ x2{f ′(x)}2 +
x4{f ′′(x)}2

4


+ o(n−4/5),

provided that we choose α = α(n) ∼ n2/5.
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4. MISE and L1-consistency offα
4.1. MISE rate of convergence

Throughout this section again F concentrates mass 1 on (0, ∞) but it is also supposed to have a sufficiently smooth
density. Let us consider the following conditions:

∞

0

f (x)
x

dx = C0 < ∞ and, (4.1)
∞

0
{x2f ′′(x)}2dx = C1 < ∞. (4.2)

One can very easily obtain the optimal rate n−4/5 for MISE{fα} as α, n → ∞ by integrating the terms on the right-hand
side of (3.7). Namely, the following statement is true.

Theorem 4.1. Under the assumptions (2.5), (4.1) and (4.2) we have

MISE{fα} =


∞

0
Var{fα(x)}dx +


∞

0
Bias2{fα(x)}dx ∼

C0
√

α

2n
√

π
+

C1

4α2
,

as α, n → ∞. While for optimalMISE we have

MISE{fα} ∼ n−4/5

5
4


·


C0

2
√

π

4/5

C1/5
1 , as α, n → ∞,

provided that we choose α = α(n) = n2/5(2 C1
√

π/C0)
2/5.

One canweaken the conditions on f and show that the corresponding rate is n−2/3 under the requirement of integrability
of {xf ′(x)}2. Indeed, let us denote again by Bα = α−1 2−(2α+3) Γ (2α + 3) [Γ (α + 1)]−2 and consider the following condition
(instead of (4.2)):

∞

0
{x f ′(x)}2dx = C2 < ∞. (4.3)

Consider the L1- and L2-norms of a function φ : R+ → R by

∥φ∥L1 =


∞

0
|φ(x)|dx, ∥φ∥L2 =


∞

0
|φ(x)|2dx

1/2

,

respectively.

Lemma 4.1. If f ′ is bounded and condition (4.3) is satisfied, then

∥fα − f ∥L2 ≤
1
α


C2(α + 1).

Proof of the Lemma 4.1. Let us denote by ηα the r.v. with pdf Lα(t)/t, t ∈ R+. Note also that the r.v. x/ηα has pdf Lα(x/t)/t
and 

∞

0
Lα(x/s)

1
s
ds = 1, E[(1/ηα)] = 1, Var[(1/ηα)] =

1
α − 1

, (4.4)

f (x/ηα) − f (x) =

 x/ηα

x
f ′(y)dy.

Then after simple algebra combined with application of the Cauchy–Schwarz’s inequality we obtain

∥fα − f ∥2
L2 =


∞

0
Bias2{fα(x)}dx =


∞

0


∞

0
{f (s) − f (x)}Lα(x/s)

1
s
ds

2

dx

=


∞

0
[E(f (x/ηα) − f (x))]2dx =


∞

0


E

 x/ηα

x
f ′(s)ds

2

dx

≤ E


∞

0

 x/ηα

x
(f ′(s))2dsx(η−1

α − 1)

dx
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= E

I[ηα≤1]


∞

0


(f ′(s))2

 s

sηα

x(η−1
α − 1)dx


ds + I[ηα≥1]


∞

0


(f ′(s))2

 sηα

s
x(1 − η−1

α )dx

ds


= E


I[ηα≤1]


∞

0
(f ′(s))2

1
2
s2(1 − η2

α) (η−1
α − 1)ds + I[ηα≥1]


∞

0
(f ′(s))2

1
2
s2(η2

α − 1), (1 − η−1
α )ds


=

1
2
E


(ηα − 1)2(ηα + 1)

ηα

 
∞

0
{sf ′(s)}2ds. (4.5)

But

E


(ηα − 1)2(ηα + 1)
ηα


=


∞

0

(u − 1)2(u + 1)
u

Lα(u)
1
u
du

=


∞

0
(u − 1)2 (u + 1) ·

αα+1uα−1

Γ (α + 1)
e−αudu =

2 (α + 1)
α2

. (4.6)

Combination of (4.5) and (4.6) gives

∥fα − f ∥2
L2 =


∞

0
Bias2{fα(x)}dx ≤

α + 1
α2


∞

0
{sf ′(s)}2ds. (4.7)

Lemma 4.1 is proved. �

Theorem 4.2. If f ′ is bounded and the conditions (4.1) and (4.3) are satisfied, then

MISE{fα} ≤
BαC0

n
+

C2

α
+

C2

α2
, α > 1,

MISE{fα} ≤
C0

√
α

2n
√

π
+

C2

α
+ o


1
α


,

as α, n → ∞. While for optimalMISE we have

MISE{fα} ≤ n−2/3 3
22/3

·


C0

2
√

π

2/3

C1/3
2 + o(n−2/3), as n → ∞,

provided that we choose α = α(n) = n2/3(4 C2
√

π/C0)
2/3.

Proof. Let us study the variance term. According to the definitions of the inverse gamma g(·, ak, bk) in (2.6) and gamma
h(·, shape, rate) densities, we have

∞

0

1
x
g(t; a2, b2)dx =

1
t


∞

0
h(x, 2α + 3, 2α/t)dx =

1
t
.

So that integration of the both sides of the first equation in (3.5) combined with Bα ∼ α1/2/(2
√

π), as α → ∞, yields

1
n


∞

0
ES2i,xdx =

Bα

n


∞

0

1
x


∞

0
g(t; a2, b2)f (t)dt


dx

=
Bα

n


∞

0
f (t)


∞

0

1
x
g(t; a2, b2)dx


dt

=
Bα

n


∞

0

f (t)
t

dt ∼

√
α

2n
√

π


∞

0

f (t)
t

dt, as α → ∞. (4.8)

Hence, it is proved
∞

0
Var{fα(x)}dx ≤


∞

0

1
n
{E S2i,x}dx ∼

√
α

2n
√

π


∞

0

f (t)
t

dt, (4.9)

as n, α → ∞. Finally, from (4.7)–(4.9) we obtain the statements of Theorem 4.2. �

4.2. L1-consistency

In this subsection let us consider the condition
∞

0
x2|f ′′(x)|dx = C3 < ∞. (4.10)
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Consider the L1-distance ∥fα − f ∥L1 between fα and f (with respect to the Lebesguemeasure λ on R+). Here fα(x) = Efα(x) =

E f (x/ηα) with ηα defined in the proof of Lemma 4.1. One can show that the functions {(1/t) Lα(·/t), t > 0} form a δ-
sequence in L1-norm as well, as α → ∞. Namely, the following statement is true.

Lemma 4.2. If f ′′ is bounded and the condition (4.10) is satisfied, then

∥fα − f ∥L1 ≤ C3


1
α

+
1
α2


.

Proof. Combination of (4.4), (4.10) and the following equations
∞

0
Lα(x/s)

1
s
ds = 1, E[x(η−1

α − 1)] = 0,

f (x/ηα) − f (x) = f ′(x)(x/ηα − x) +

 x/ηα

x
ds

 s

x
f ′′(y)dy,

gives

∥fα − f ∥L1 =


∞

0

 ∞

0
{f (s) − f (x)}Lα(x/s)

1
s
ds

 dx
=


∞

0
|E(f (x/ηα) − f (x))|dx =


∞

0

E  x/ηα

x
ds

 s

x
f ′′(y)dy

 dx
≤


∞

0


EI[ηα<1](x/ηα − x)

 x/ηα

x
|f ′′(y)|dy + EI[ηα>1](x − x/ηα)

 x

x/ηα

|f ′′(y)|dy

dx. (4.11)

Now in a similar way as we did in (4.5) and (4.6), changing the integrations in (4.11) yields

∥fα − f ∥L1 ≤
1
2


∞

0
y2|f ′′(y)|dyE


(ηα − 1)2(ηα + 1)

ηα


=


1
α

+
1
α2

 
∞

0
y2|f ′′(y)|dy.

Lemma 4.2 is proved. �

Theorem 4.3. If f ′′ is bounded and the conditions (4.1) and (4.10) are satisfied, then

E∥fα − f ∥L1 = E


∞

0
|fα(x) − f (x)|dx → 0, as

√
α/n → 0, α, n → ∞. (4.12)

Proof. Under the assumptions (4.10) we have from Lemma 4.2 that ∥fα − f ∥L1 → 0, as α → ∞. Hence, to prove (4.12) it is
sufficient to show

F{An(δ)} = F

x :


∞

0

1
t2

L2α(x/t)f (t) dt ≥ nδ


→ 0,

for any δ > 0 and α, n → ∞ (see, Theorem 1 in Mnatsakanov and Khmaladze (1981)). But F is an absolutely continuous
distribution with respect to Lebesgue measure λ, so, let us establish λ{An(δ)} → 0, for any δ > 0 and α, n → ∞. Indeed,
application of (4.8) yields

λ{An(δ)} ≤
1
nδ


An(δ)

dx


∞

0

1
t2

L2α(x/t)f (t)dt ≤
1
nδ


∞

0
ES2i,xdx =

Bα

nδ


∞

0

f (t)
t

dt

∼

√
α

2nδ
√

π


∞

0

f (t)
t

dt, asα → ∞. (4.13)

The proof of Theorem 4.3 follows from (4.1), (4.13), and
√

α/n → 0. �

Remark 4.1. Taking α = h−2 one can see that the condition
√

α/n → 0 from Theorem 4.3 corresponds to the condition
nh → ∞ in traditional kernel density estimation.
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Table 1
The values of αcv, α

∗
cv , and hcv and corresponding MISEs of vKDEs and KDE.

Log-normal (0, 1) Gamma (2, 1)
n fα [αcv] f ∗

α [α∗
cv]

fh [hcv] fα [αcv] f ∗
α [α∗

cv]
fh [hcv]

200 0.0092 [11] 0.0066 [7] 0.0166 [0.14] 0.0060 [14] 0.0046 [10] 0.0080 [0.30]
400 0.0057 [14] 0.0043 [9] 0.0103 [0.11] 0.0033 [18] 0.0026 [14] 0.0045 [0.25]
600 0.0039 [17] 0.0030 [11] 0.0075 [0.10] 0.0020 [22] 0.0016 [16] 0.0030 [0.22]
800 0.0029 [19] 0.0022 [12] 0.0059 [0.09] 0.0018 [24] 0.0015 [18] 0.0026 [0.19]

5. Simulations

In this section we study the performances of f ∗
α andfα defined in (2.3) and (2.4), respectively. In particular, we compare

them with KDEfh when the kernel function K is assumed to be a standard normal density function. Let us consider the case
when the optimal choice of h, h = hcv, is based on the least-squares cross validation (CV) algorithm that minimizes the
expressionM1(h) defined by Eq. (3.39) in Silverman (1986).

In our simulation studies we plotted the curves of vKDEsfα and f ∗
α , when the optimal α = αcv and, respectively, α = α∗

cv,
are chosen via the least-squares CV algorithm as well (cf. with Mnatsakanov and Ruymgaart (2012)), and compared them
with corresponding curve of KDEfh, when h = hcv (see Figs. 1 and 2). In particular, we simulated the r.v.’s Xi, i = 1, . . . , n,
from two different distributions: Log-normal (0, 1) and Gamma (2, 1) with different sample sizes n = 200k, 1 ≤ k ≤ 4.
In addition, we repeated these simulations N = 500 times and studied the performances offα , f ∗

α , andfh using the MISE.
Namely, we used the estimatedMISE:

MISE := Ê(ISE){f } =
1
N

N
j=1


∞

0
|f(j)(x) − f (x)|2dx.

Here the expectation Ê is calculated with respect to the empirical cdf of N = 500 values of ISEs, whilef(j) denotes the vKDEs
or KDE used on the j-th replication. The optimal α = αcv minimizes the expressionM2(α), i.e.

αcv = argminαM2(α) = argminα


∞

0
[fα(x)]2dx − 2


∞

0

fα(x)dF̂n(x)


, (5.1)

where α ∈ {1, . . . , 40} for each n = 200k, 1 ≤ k ≤ 4. In the second term of the right hand side of (5.1) let us apply the
leave-one-out construction instead offα . This yields the following expression of

M2(α) =
Γ (2α + 3)

n2αΓ 2(α + 1)

n
i=1

n
j=1

(XiXj)
α+1

(Xi + Xj)2α+3
−

2
n(n − 1)Γ (α + 1)

n
i=1


j≠i

1
Xj


αXi

Xj

α+1

e
−

α Xi
Xj .

In the case of vKDE f ∗
α , we choose the optimal CV parameter α = α∗

cv that minimizes the function

M3(α) =
Γ (2α + 1)
n2αΓ 2(α)

n
i=1

n
j=1

(XiXj)
α

(Xi + Xj)2α+1
−

2
n(n − 1)Γ (α)

n
i=1


j≠i

1
Xj


αXi

Xj

α

e
−

αXi
Xj .

During the simulation study, we found out that MISEs of vKDEs are decreasing functions of n when the parameters
α = αcv, α = α∗

cv, and α = n2/5. In Table 1, we recorded the values of αcv, α
∗
cv, and hcv and corresponding MISE for Log-

normal (0, 1) and Gamma (2, 1) distributions for four different sample sizes. We see that the values of MISE for f ∗
α are

smaller than corresponding values of MISE forfα andfh. To illustrate the performances of vKDEs graphically, we plotted the
graphs of estimatorsfαcv (the dashed curves) with αcv = 11 and 24 andfh (the dotted curve) with h = hcv, in Fig. 1(a) and
2(a) when the sampled distributions are Log-normal (0, 1) (with n = 200) and Gamma (2, 1) (with n = 800), respectively.
For the same samples, in Fig. 1(b) and 2(b) we plotted the graphs of estimators f ∗

α∗
cv
(the dashed curve) andfh when α∗

cv = 7
and 18 and h = hcv, respectively. In each model the sampled pdf f (the solid curve) is plotted as well. Based on the records
in Table 1, we conclude that the performances of vKDEs are better compared to the one based on KDEfhcv . After conducting
many simulations we can say that the asymptotic behavior of f ∗

α∗
cv
and its modified versionfαcv are similar to each other, and

their performances around the origin and on the right tail are much better than that of KDEfhcv . For the small sample sizes
we suggest to usefαcv instead offhcv and f ∗

α∗
cv
.
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Fig. 1. Estimation of Log-normal(0, 1) density function f (solid curve) byfhcv with hcv = 0.14 and by (a)fαcv with αcv = 11; (b) f ∗

α∗
cv

with α∗
cv = 7. In both

plots n = 200.

Fig. 2. Estimation of Gamma(2, 1) density function f (solid curve) byfhcv with hcv = 0.19 and by (a)fαcv with αcv = 24; (b) f ∗

α∗
cv

with α∗
cv = 18. In both

plots n = 800.
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