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Applications of Nanotechnology in Dermatology

Lisa A. Delouise'?

What are nanoparticles and why are they important
in dermatology? These questions are addressed by
highlighting recent developments in the nano-
technology field that have increased the potential
for intentional and unintentional nanoparticle skin
exposure. The role of environmental factors in the
interaction of nanoparticles with skin and the poten-
tial mechanisms by which nanoparticles may influ-
ence skin response to environmental factors are
discussed. Trends emerging from recent literature
suggest that the positive benefit of engineered
nanoparticles for use in cosmetics and as tools for
understanding skin biology and curing skin disease
outweigh potential toxicity concerns. Discoveries
reported in this journal are highlighted. This review
begins with a general introduction to the field of
nanotechnology and nanomedicine. This is followed
by a discussion of the current state of understanding
of nanoparticle skin penetration and their use in
three therapeutic applications. Challenges that must
be overcome to derive clinical benefit from the
application of nanotechnology to skin are discussed
last, providing perspective on the significant oppor-
tunity that exists for future studies in investigative
dermatology.
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NANOTECHNOLOGY AND NANOMEDICINE

Nanoparticles are defined as any material with at least one
dimension that is <100nm in size (Dowling et al., 2004).
Nanoparticles have many shapes (spheres, rods, dendritic)
and they can be soft or hard, soluble or insoluble. Natural
sources of nanoparticles include viruses (Baker et al., 1991;
Dubina and Goldenberg 2009), allergens (Menetrez et al.,
2001), and particulates produced in high-temperature
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processes such as volcanic eruptions (Buzea et al., 2007).
Unintentional man-made sources include atmospheric auto-
mobile or industrial exhaust, coal mining, and cigarette
smoke (Buzea et al., 2007). Nanopatrticles present in the dust
created in the 11 September 2001 attacks on the World Trade
Center are being investigated as a contributing factor to the
adverse health effects suffered by recovery workers (Altman
et al., 2010; Cone and Farfel, 2011). In the laboratory,
nanoparticles are created via the deliberate manipulation
of materials at the atomic, molecular, and macromolecular
scales. Nanotechnology is the engineering of materials on
the nanoscale for technological or scientific applications
(Rittner and Abraham, 1998). Engineered nanoparticles
exhibit many novel physiochemical, electronic, optical,
mechanical, catalytic, and thermal properties not present in
the bulk form (Misra et al., 2008). These properties derive, in
large part, from the increased surface area-to-volume ratio
(Nel et al.,, 2006). Some of the most important engineered
nanoparticles exploited in an expanding number of commer-
cial products and technological applications include carbon
nanotubes, fullerenes, quantum dots (QDs), metals (Ag, Au),
metal oxides (TiO,, ZnO, Fe,O;, SiO,), and lipophilic
nanoparticles. Liposomes are nanosized vesicles comprising
lipid bilayers (Kirjavainen et al, 1999; Immordino et al.,
2006) formulated with naturally derived phospholipids and/
or other lipophilic molecules. Solid lipid nanoparticles are
made from lipids that are solid at room temperature (Miiller
et al., 2000). Both lipophilic nanoparticle types have been
designed for transcutaneous drug delivery. Many solid lipid
nanoparticles and liposomal delivery systems have been
commercialized, and many more are in clinical trials (Walve
et al, 2011). Historically, many articles on lipophilic
nanoparticles appear in this journal and several excellent
reviews exist (Schafer-Korting et al., 1989; Miller et al.,
2000; Immordino et al., 2006; Prow et al., 2011a,b), and
therefore these will not be explicitly discussed in this review.

The emerging field of nanomedicine seeks to exploit the
novel properties of engineered nanomaterials for diagnostic
and therapeutic applications (Zhang et al., 2008; Parveen
et al., 2011). Nanoparticles can be engineered to carry drug
payloads, image contrast agents, or gene therapeutics for
diagnosing and treating disease, with cancer being a primary
focus (Gao et al., 2004; Moghimi et al., 2005; Al-Jamal et al.,
2009; Boisselier and Astruc, 2009; Debbage, 2009; Riehe-
mann et al., 2009; Huang et al., 2010a; Huang et al., 2011;
Ilbasmis-Tamer et al., 2010). Nanomaterials can be designed
for passive tumor targeting, relying on the phenomenon of
enhanced permeability and retention (lyer et al., 2006;
Huang et al., 2010a), or for active targeting designed with
tethered homing ligands (Reubi, 2003; Schottelius and
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Wester, 2009). Fluorescent QDs (Gao et al., 2004; Hild et al.,
2008; Kosaka et al, 2009), particularly near-infrared QD
nanoparticles that can overcome tissue background auto-
fluorescence (Ma and Su, 2010; Mortensen et al.,, 2010,
2011), have been developed for in vivo tumor and sentinel
lymph node tracking (Hama et al., 2007; Frangioni, 2008).
Superparamagnetic iron oxide nanoparticles have been
investigated as contrast agents for magnetic resonance
imaging (Huang et al., 2011; Lim et al., 2011).

It has come to light in recent years that there is an
increasing need to understand nanomaterial tissue inter-
actions at cellular and systemic levels, not only to optimize
the therapeutic/imaging applications but to also minimize
potential side effects (De Jong and Borm, 2008). Some
lipophilic and polymeric nanomaterials are designed to
biodegrade in vivo, but many of the important semiconduc-
tor, metal, and metal oxides nanoparticles are sparingly
soluble. Long-term cellular presence may produce toxic or
immunological side effects such as reactive oxygen species
generation (Long et al., 2006), leaching of toxic ions (Bottrill
and Green, 2011), exposure of cryptic epitopes (Lynch et al.,
2006), cytotoxicity, and genotoxicity (Nakagawa et al., 1997;
Wamer et al., 1997; Jin et al., 2008; AshaRani et al., 2009;
Xu et al, 2009). In vitro cell studies find that most
nanoparticles produce dose-dependent cytotoxic or cytokine
responses (Ryman-Rasmussen et al., 2006; Pan et al., 2007;
Jin et al., 2008; Zhang and Monteiro-Riviere, 2009; Cui et al.,
2010; Pedata et al., 2011) as was reported in this journal for
keratinocytes exposed to QDs with different surface coatings
(Figure 1). Therefore, understanding the fate and trans-
port of nanomaterials that contact the body is critical for
optimizing translational applications and therefore constitute
areas of active research. Progress made in understanding
nanoparticle skin interactions and their therapeutic applica-
tions is discussed next.

NANOPARTICLE SKIN PENETRATION

Fueled by the expanding commercialization of products that
contain engineered nanoparticles such as carbon nanotubes
that strengthen everyday products including bicycle frames,
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tennis, and badminton rackets (Endo et al., 2004), and
principally by the use of TiO, and ZnO nanoparticles in
cosmetics and sunscreens for UVR protection (Robichaud
et al., 2009; Nanowerk, 2010), researchers in the nanotox-
icology field have sought to determine the conditions under
which nanoparticles may penetrate the stratum corneum
barrier and how the nanoparticle physiochemical properties
may influence penetration, systemic translocation, and
toxicity (Colvin 2003; Gwinn and Vallyathan 2006; Nel
et al., 2006; Tsuji et al., 2006; Nohynek et al., 2007, 2008;
Stern and McNeil 2008; Elder et al., 2009; Schneider et al.,
2009; Adiseshaiah et al., 2010; Baroli 2010; Smijs and
Bouwstra, 2010; Burnett and Wang 2011). Most work in this
area has focused on engineered nanoparticles; however, a
link to skin aging from exposure to soot and fine dust
nanoparticles associated with traffic-related air pollution has
recently been reported in this journal (Vierkotter et al., 2010).
The question of nanoparticle skin penetration from unin-
tended exposure is clearly important from an environmental
and occupational health and safety standpoint (Teow et al.,
2011). Conversely, to be useful in therapeutic applications,
nanoparticles must be able to penetrate the skin barrier,
deliver their payload, and clear from the body without
adverse side effects. Nanoparticle penetration through a
severely defective skin barrier (i.e., open wounds) is not
contested; however, despite nearly 15 years of active investi-
gation, a debate still lingers on whether nanoparticles can
penetrate healthy or a mildly defected skin barrier. This lack
of consensus stems, in part, from the wide diversity of in vivo
and ex vivo skin models and nanoparticle types used, as well
as limitations in analytical tools and instrument sensitivity to
detect isolated nanoparticles. Certainly, epidermal thickness
and hair follicle density vary widely among species and
anatomical locations (Bronaugh et al., 1982; Otberg et al.,
2004), and these differences will affect nanoparticle skin
penetration, making it difficult to draw general conclusions
from the vast literature base. Nevertheless, trends are
beginning to emerge. For example, (1) qualitative studies
suggest that healthy human skin constitutes a formable barrier
to nanoparticle penetration, (2) hair follicles comprise
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Figure 1. Quantum dot (QD565) surface coating affects keratinocyte concentration-dependent cytotoxicity at 24-hour exposure. (a) Polyethylene glycol-
coated QD. (b) Polyethylene glycol amine-coated QD. (c) Carboxylic acid—coated QD. Figure adapted from Ryman-Rasmussen et al., 2006.
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important collection sites for nanoparticles, especially when
skin is massaged or flexed, and (3) nanoparticle surface
charge can significantly influence skin interactions, with
neutral charged particles being less hindered from penetra-
tion and positively charged particles exhibiting increased
cytotoxicity. A brief summary of recent studies that support
these conclusions are highlighted below.

Numerous qualitative studies have been published investi-
gating the skin penetration of many types of nanoparticles.
Studies of topically applied nanosized TiO, (Schulz et al.,
2002; Filipe et al., 2009; Sadrieh et al., 2010; Lopez et al.,
2011; Monteiro-Riviere et al., 2011) and QDs (Zhang and
Monteiro-Riviere, 2008a; Zhang et al., 2008b; Gopee et al.,
2009; Prow et al, 2011a,b) consistently find negligible
penetration through barrier intact skin, independent of
species. In contrast, 5-nm Au metal nanoparticles were
reported to diffuse though the stratum corneum barrier of
intact mouse skin (Huang et al, 2010b), and 15-nm Au
nanoparticles were reported to penetrate ex vivo rat skin to
a greater extent than 102 nm and 198 nm (Sonavane et al.,
2008). Nanoparticle accumulation in hair follicles, which
occurs in many species (Lademann et al., 2001, 2007, 2011;
Vogt et al., 2006; Todo et al., 2010; Patzelt et al., 2011), and
stratum corneum penetration through barrier-impaired skin
(Mortensen et al., 2008; Zhang and Monteiro-Riviere, 2008a;
Zhang et al., 2008b; Gopee et al., 2009; Ravichandran et al.,
2010; Monteiro-Riviere et al., 2011) are common trends.
Studies report detectable penetration of QDs through mouse
skin treated with ultraviolet B radiation (Mortensen et al,,
2008, 2011) and ex vivo human skin treated with a hair
removal agent (Ravichandran et al.,, 2010), which is a
commonly used cosmetic product. The effect of ultraviolet
B radiation to slightly enhance nanoparticle stratum corneum
penetration was corroborated in a recent in vivo study of
TiO, and ZnO nanoparticles applied to pigs in typical
sunscreen formulations (Monteiro-Riviere et al., 2011).
Others report more significant nanoparticle penetration
through dermabraded skin (Zhang and Monteiro-Riviere,
2008a; Zhang et al., 2008b; Gopee et al., 2009), which is
noteworthy because this too is a popular skin treatment used
by consumers for cosmetic reasons (Karimipour et al., 2010).
Stratum corneum tape stripping is a well-accepted method of
barrier disruption (Bashir et al., 2001), and it is used to
enhance the skin permeability of large hydrophilic molecules
(Tsai et al., 2003); however, nanoparticle penetration through
tape-stripped skin varies qualitatively in magnitude from
none (Zhang and Monteiro-Riviere, 2008a; Zhang et al.,
2008b; Gopee et al., 2009) to some detected (Jeong et al.,
2010; Ravichandran et al., 2010; Prow et al., 2011a,b), and
may therefore depend strongly on skin species and/or the
number of strips and type of tape used.

Few studies have endeavored to quantify the magnitude of
nanoparticle penetration level and to correlate penetration
with the magnitude and type of skin barrier defect. One
relevant study quantified the penetration of neutral charged
polyethyleneglycol-coated nail-shaped QDs (CdSe/CdS core/
shell, 37nm) through dermabraded SKH hairless mice
(Gopee et al, 2009). Elemental Cd ion organ analysis

Journal of Investigative Dermatology (2012), Volume 132

suggested that ~2% of the applied dose accumulated in
the liver 48 h after exposure. This is considerably higher than
the systemic levels of negatively charged dihydrolipic acid—
coated sphere-shaped QD (CdSe/ZnS core/shell, 15nm)
quantified to be <0.001% of the applied dose in the lymph
nodes of SKH hairless mice following 24 h of ultraviolet B
radiation exposure (Mortensen et al., 2011), which may
suggest an effect of surface charge. The latter is consistent
with a recent in vivo human study that quantified systemic Zn
ion levels in blood to be <0.001% of the applied dose
following repeated application of ZnO nanoparticle contain-
ing sunscreen to UVR-exposed skin (Gulson et al., 2010). The
main conclusion that can be drawn from these quantitative
studies is that nanoparticle skin penetration, even through
barrier-disrupted skin, is a minor percentage of applied dose.
A key limitation, however, with elemental organ analysis is
the inability to distinguish between nanoparticle and soluble
ion skin penetration. Therefore, the development of more
sensitive techniques and new assays that can be exploited to
quantify intact nanoparticle skin and systemic penetration are
seen as key challenges to advancing the fields of nanomed-
icine and nanotoxicology forward as we discuss further in the
last section.

NANOPARTICLE-BASED THERAPEUTICS

As highlighted above, for effective therapeutic use, nanopar-
ticles must be able to breach the stratum corneum barrier and
enter cells, perhaps through receptor-mediated processes
(Zhang and Monteiro-Riviere, 2009). Therefore, many tech-
niques including gene gun, microneedles, ultrasound, elec-
troporation, and tape stripping have been developed to
disrupt the stratum corneum to aid in nanoparticle delivery
(Lindemann et al., 2003; Polat et al., 2011; Kim et al., 2012).
Research investigating therapeutic applications have focused
in three main areas: (1) skin cancer imaging and targeted
therapeutics, (2) immunomodulation and vaccine delivery,
and (3) antimicrobials and wound healing. Many excellent
reviews exist in these areas (Bolzinger et al., 2011; Prow
et al, 2011a,b), including the specialized topic of drug
targeting through the pilosebaceous unit (Chourasia and Jain,
2009). In the following, we highlight some recent findings
and emphasize challenges that remain in the clinical
translation of nanotechnology to dermatology, thus pointing
to the significant opportunity for continued investigative
studies in this field.

Skin Cancer Imaging and Targeted Therapeutics

Applications of nanotechnology to skin cancer has seen
much effort in the design of new imaging and therapeutic
approaches (Stracke et al., 2006; Kosaka et al., 2009; Weiss
et al., 2010). The main focus has been on diagnosing and
treating metastatic melanoma, which is the deadliest of skin
cancers (Lev et al, 2004). Most chemotherapeutics are
administered systemically and are cytotoxic to healthy cells;
therefore, cancer patients must endure considerable morbid-
ity. Nanomedicine seeks to engineer nanoparticles to image
(Schmieder et al., 2005; Boles et al., 2010; Li et al., 2010;
Benezra et al., 2011) and selectively deliver drugs (Camerin



etal., 2010; Yao et al., 2011) or small-interfering RNA (Chen
et al., 2010, 2010a; Davis et al, 2010) specifically to
melanoma cells. Many potential drugs fail clinically because
of insolubility. Nanoparticles may overcome this as many
more types and higher concentrations of drugs can be loaded
on and into nanoparticles (Kaul and Amiji, 2002; Cho et al.,
2008; De Jong and Borm, 2008; Nasir, 2008; Zhang and
Monteiro-Riviere, 2008a; Zhang et al., 2008b; Dhar et al.,
2011).

Design criteria for nanoparticle therapeutics in vivo
emphasize the need for rapid renal clearance of insoluble
particles requiring particle sizes to be less than ~6nm (Choi
et al., 2007, 2010). Recently, multimodal silica nanoparticles
(7 nm) have been described for targeting M21 melanomas in
a xenograft mouse model (Benezra et al., 2011). Particles
were coated with bifunctional methoxy-terminated polyethyl-
ene glycol chains (~0.5kDa). The neutral charged poly-
ethylene glycol limits uptake by noncancer cells, and the
bifunctional group enabled attachment of the integrin-
targeting RGDY peptide labeled with '?*I, a long-lived
positron emitting radionuclide, for quantitative three-dimen-
sional positron emission tomography imaging. The RGDY
peptide increases tumor retention. The laminin receptor—
binding peptide (YIGSR) has also been used to increase
nanoparticle retention in B16 melanoma and other types of
tumors (Schottelius and Wester, 2009; Sarfati et al., 2011).
The positron-emitting silica nanoparticles were successfully
demonstrated for tumor targeting and nodal mapping. They
are now approved for in-human clinical trials to test for real-
time intraoperative detection and imaging of nodal meta-
stases, differential tumor burden, and lymphatic drainage
patterns (Benezra et al., 2011). Although rapid clearance of
these particles was demonstrated in humans, an added
advantage of silica is its biodegradation to nontoxic silicic
acid and its subsequent excretion by the kidneys (Low et al.,
2009; Rosenholm et al., 2011).

Proof-of-principle studies for specific targeting of meta-
static melanoma using homing ligands attached to nanopar-
ticles have been demonstrated using gold nanocages (Kim
et al., 2010), gold nanospheres (Lu et al., 2009), QDs (Zhou
et al., 2007; Zheng et al., 2010), and polymeric liposomes
(Zhu et al, 2010; Chen et al, 2010a). Tethering the
melanocyte-stimulating hormone peptide and/or its deriva-
tives to the nanoparticle is a strategy widely investigated to
target the melanocortin 1 receptor (Siegrist et al., 1994;
Wong and Minchin 1996; Wen et al., 1999; Lu et al., 2009;
Kim et al., 2010), a G protein-coupled receptor that is
overexpressed on melanoma cells (Loir et al., 1999; Salazar-
Onfray et al,, 2002). It is interesting to note that melano-
cortin peptides possess anti-inflammatory properties, and,
consequently, a-melanocyte-stimulating hormone-conju-
gated nanoparticles have been investigated as anti-inflam-
matory agents in the treatment of endodontic lesions (Fioretti
et al., 2010) and colitis using mouse models (Laroui et al.,
2009). Although targeting G protein—coupled receptors with
peptide agonists or antagonists is considered to offer many
advantages over protein targeting with antibodies (Hild et al.,
2010), targeting the melanocortin 1 receptor may have
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limited clinical benefit, as it does not provide sufficient
cellular specificity. Melanocytes and melanoma cells are not
the only cells in the body that express melanocortin 1
receptor (Neumann et al., 2001; Carlson et al., 2007; Hoch
et al., 2007; Li and Taylor, 2008), and a-melanocyte-
stimulating hormone can bind to other melanocortin recep-
tors (Srinivasan et al., 2004). Therefore, considerable
opportunities exist to identify selective melanoma-targeting
receptors. The sigma 1 receptor, as reported in this journal, is
a promising candidate that was recently investigated to
deliver c-Myc small interfering RNA to B16F10 melanoma
tumors using a mouse model (Chen et al., 2010a). Results
showed that tumor size was decreased by 24 x relative to a
phosphate-buffered saline control depending upon the
nanoparticle formulation, as illustrated in Figure 2.
Collectively, the existing research on the specific targeting
of melanoma cells in vivo is limited, and as studies progress it
will be critical to take into account cell surface receptor
variants, receptor internalization, and recycling, as well as
differences in receptor expression and/or trafficking that may
result in vivo owing to the effects of the tissue microenviron-
ment that are not captured in two-dimension in vitro cell
culture studies (Cukierman et al., 2002; Ghosh et al., 2005).

Immunomodulation and Vaccine Delivery via Skin

The skin provides both innate and adaptive immune response
functions that maintain tissue homeostasis and the ability to
react quickly to environmental insults (Iwasaki and Medzhi-
tov, 2004; Paus et al, 2006; Gallo and Nakatsuji, 2011).
Almost every substance that contacts skin has the potential to
penetrate and/or produce physiological changes. Skin is the
main route to allergen sensitization (Beck and Leung 2000;
Warbrick et al., 2002; Arts et al., 2003). Langerhans cells
(LCs) and dermal dendritic cells are two types of skin-resident
antigen-presenting cells that express CD1a, a protein that
mediates antigen presentation. It has been reported in this
journal that CDTa+ cells concentrate in the epithelium of
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Figure 2. Nanoparticles can be used for targeted drug delivery.
Nanoparticles (100 nm) targeting the sigma 1 receptor on melanoma cells
are formulated with anisamide (AA) to deliver c-Myc small-interfering RNA
(siRNA). DOTAP and DSAA are lipids used in the nanoparticle formulation.
Solid arrows indicate the intravenous administration of siRNA nanoparticles.
Results show significant reduction in B16F10 melanoma tumor size murine
syngeneic model. Figure adapted from Chen et al., 2010a.
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the hair follicle infundibulum (Vogt et al., 2006), Figure 3a.
LCs also express langerin (CD207), and CD207 + cells in
dorsal mouse skin show a distributed presence in the
epidermis Figure 3b. LCs comprise ~2-4% of epidermal
cells (Maurer and Stingl, 2001; Clark et al., 2006). T cells are
also abundantly present in normal skin (~1 x 10° cells per
cm?), and they display a diverse receptor repertoire (Clark
et al., 2006). The possibility to exploit nanotechnology to
modulate the immune system (Chen et al., 2009; Geusens
et al., 2009, 2010; Jang et al., 2010a; Zolnik et al., 2010;
Ozbasg-Turan and Akbuga 2011) and to deliver vaccines
through skin (Nasir, 2008, 2009; Fernando et al, 2010;
Huang et al., 2010b) are active research area of increasing
importance as recently reviewed (Prow et al., 2011a, b).
The ability of nanoparticles to carry antigen (Lynch et al.,
2007), provide adjuvant function (McNeela and Lavelle,
2011), and to accumulate in hair follicles, especially after
mechanical stimulation (Lademann et al., 2001, 2007, 2011;
Tinkle et al., 2003; Vogt et al., 2006; Rouse et al., 2007;
Mahe et al,, 2009; Schneider et al., 2009), has spurred
interest in their use for transcutaneous immune modulation.
Studies report that the amount and depth to which
nanoparticles can penetrate along the follicular duct strongly
depends on the particle size (Vogt et al., 2006; Mahe et al.,

a

Figure 3. Dendritic cell localization patterns in skin. (a) Bright-field image of
hair follicle and corresponding immunofluorescent staining with anti-CD1a-
FITC antibody showing high concentration of CD1a+ cells in human
epithelium around hair follicle infundibulum. Bar =100 pm. (b) CD1a + cells
exhibit dendritic morphology. (c) Immunofluorescent staining of dorsal mouse
epidermis with anti-CD207-FITC (Langerin), specific for Langerhans cells,
showing distributed presence in plan view. White arrows indicate hair
follicles. Bar=50um. (d) CD207 + cells exhibit dendritic morphology.
Bar=10pm. Panels a and b are adapted from Vogt et al., 2006. Panels ¢ and
d are provided by Samreen Jatana, University of Rochester.
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2009; Patzelt et al., 2011). A recent study reported in this
journal exemplifies the use of 40 nm and 200 nm polystyrene
nanoparticles to target vaccine compounds to skin antigen-
presenting cells (Mahe et al., 2009). Tape stripping was used
to open hair follicles. The nanoparticles were observed to
penetrate into hair follicles, diffuse into the perifollicular
tissue where they were taken up by LCs (CD207+) and
dendritic cells (CD205 +), and transported to local draining
lymph nodes via LC and DC migration (Figure 4).

Although lipophilic and polymer particles are commonly
used to deliver substances across skin (Choi and Maibach,
2005; Benson, 2009; Rancan et al., 2009), these particle
types are typically designed to degrade. Therefore, they
may comprise inferior adjuvants compared with hard
insoluble nanoparticles that may be retained for longer
periods in skin. Studies must be conducted to confirm this, as
well as to determine the potential effect of skin pretreatments

a 40 nm

200 nm

DAPI
FITC-NPs

DAPI
CD205
FITC-NPs

o

Draining LNs

Figure 4. Nanoparticles translocate through skin to local draining lymph
node. Application of fluorescent 40- and 200-nm-diameter polystyrene
fluorosphere particles onto tape-stripped C57BL/6 mice skin were observed
to penetrate into hair follicles and translocate via skin-resident antigen-
presenting cells to draining lymph nodes. (a) Penetration of both 40 and
200 nm fluorospheres into the hair follicles was analyzed on longitudinal
5mm cryosections of the skin showing fluorescent signal confined to hair
follicle openings. (b) At 24 hours following topical application, the draining
lymph nodes (LNs) were analyzed by fibered confocal fluorescence
microscopy. Fluorescent spots were observed for both particle sizes,
indicating that the fluorspheres penetrated perifollicular tissue and were
taken up by epidermal and dermal dendritic cells and trafficked to the
lymph nodes. Figure is adapted from Mahe et al., 2009.



on immune response. The many methods used to clear
follicular openings and to reduce barrier function in healthy
skin have the potential to induce inflammatory responses
(Reilly and Green, 1999) and cause the emigration of LCs and
dendritic cells from the skin (Streilein et al., 1982; Holzmann
et al., 2004). These effects must be considered in optimizing
vaccination strategies. Other fundamental questions that
must be investigated include the following: (1) determining
whether nanoparticles themselves are immunogenic, (2) if
and where in the epidermis nanoparticle haptinization occurs
(Simonsson et al., 2011), and (3) how nanoparticles may alter
the way antigen is presented/processed by skin-resident
antigen-presenting cells.

It is important to note that although the positive use of
nanoparticles for vaccine delivery is a promising application,
there is also the possibility for unintentional nanoparticle skin
exposure that could potentiate negative immunological
effects, such as a contact hypersensitivity response in
susceptible people, resulting from the combined skin
exposure to nanoparticles and environmental factors such
as allergens or UVR. Using an in vivo mouse model, carbon
nanotubes were shown to be immunostimulatory; inducing
macrophage activation, proliferation of antigen-specific and
nonspecific T lymphocytes, production of cytokines, and the
induction of an antibody response to ovalbumin (Nygaard
et al., 2009; Grecco et al., 2011). TiO, nanoparticles sub-
cutaneously injected in NC/Nga mice were shown to
exacerbate the development of atopic dermatitis (AD)-ike
skin lesions following co-exposure to mite allergen (Yanagi-
sawa et al., 2009). UVR is an important environmental factor
known to induce a skin barrier defect (Holleran et al., 1997)
that can slightly increase nanoparticle stratum corneum
penetration (Mortensen et al., 2008; Monteiro-Riviere et al.,
2011); however, the question of whether nanoparticles could
exacerbate allergen sensitization on UVR-exposed skin has
not been widely considered. Combined skin exposure to
TiO, and UVR was reported to exacerbate atopic dermatitis—
like symptoms in DS-Nh mice (Kambara et al., 2006). UVR
skin exposure is also immunosuppressive (Schwarz, 2008;
Schwarz and Schwarz, 2011), and how this may impact
nanoparticle immunomodulation has not been investigated.
Therefore, although transcutaneous immunomodulation with
nanoparticles constitutes a promising application (Jang et al.,
2010a; Zolnik et al., 2010; Prow et al., 2011a, b), the field is
in its infancy with many unanswered questions about the
positive and negative effects and mechanisms by which
immunomodulation occurs.

Antimicrobials and Wound Healing

Wound healing can be complicated by common comorbid-
ities such as obesity, diabetes, and atopic dermatitis. Diabetic
patients are prone to chronic leg and foot ulcerations and
infection (O’Meara et al., 2000), and a high percentage of
atopic dermatitis lesions are colonized with Staphylococcus
aureus (Abeck, 1998; Breuer et al., 2002). Technologies that
can facilitate wound healing and prevent microbial invasion,
particularly from antibiotic-resistant microbes such as methi-
cillin-resistant Staphylococcus aureus, are in high demand.
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There are several recent studies that describe topical
application of nanoparticles for antimicrobial and wound
healing applications. Recent reviews focus on the use of
silver nanoparticles (nano Ag; Chaloupka et al, 2010;
Dastjerdi and Montazer, 2010; Elliott, 2010) and the design
of nitric oxide-releasing nanoparticles (Jones et al., 2010;
Sortino, 2010). Silver ions have long been used for their
inherent antimicrobial properties (Silver and Phung, 1996;
Nowack et al., 2011). Silver ions are thought to inhibit
bacterial enzymes and bind to DNA (Jung et al., 2008),
whereas nano Ag is reported to induce bacterial cell wall and
cytoplasmic membrane damage (Chamakura et al., 2011).
Literature also supports the antimicrobial activity of nitric
oxide (NO) and its use to promote wound healing (Fang,
2004; Luo and Chen, 2005; Weller and Finnen, 2006).
Friedman et al. (2008) describe the design of nitric
oxide-releasing nanoparticles (10 nm) made from tetramethy-
lorthosilicate, polyethylene glycol, and chitosan. Nitric oxide
gas was trapped in the hydrogel/glass composite matrix and
released upon contact with water. Topical application of
these nanoparticles was reported in this journal to be highly
effective against cutaneous methicillin-resistant Staphylococ-
cus aureus infection in a mouse model, as illustrated in
Figure 5 (Martinez et al,, 2009). The authors suggest that
these nanoparticles may be ideal for applications in combat
or disaster situations where emergency personnel could apply
them directly to trauma wounds in the field.

The antimicrobial and odor-reducing properties of nano
Ag has lead to the rapid commercialization of nano
Ag-containing products including socks (Benn and Westerh-
off, 2008; Lubick, 2008), food-storage containers (Costa
et al., 2011), washing machines (Farkas et al., 2011), soaps
(Nanocyclic, 2008), and surgical masks (Li et al., 2006). This
has significantly increased the potential for human skin
exposure beyond intentional antimicrobial use. It is known
that the human body can accumulate Ag with overuse of
silver sulphadiazine causing Argyria, a bluish graying of
skin (Wang et al., 1985; Fung and Bowen, 1996). This has
raised human health and safety concerns for nano Ag skin
exposure, particularly as these products maybe applied to

MRSA

Figure 5. Antimicrobial properties of nanoparticles accelerate wound
healing. Nitric oxide (NO)-releasing nanoparticles increase healing rate of
wounds infected with methicillin-resistant Staphylococcus aureus (MRSA)
in Balb/c mice relative to untreated controls and wounds treated with
nanoparticles alone (np). Figure is adapted from Martinez et al., 2009.
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barrier-defective skin (Lubick, 2008a; Christensen et al.,
2010; Jun et al., 2011; Teow et al., 2011). A recent study
reported that topical application of nano Ag in vivo to pigs
daily for 14 consecutive days caused dose-dependent
epidermal edema and dermal inflammation, with epidermal
hyperplasia at the highest concentration, consistent with a
chronic skin irritation response (Samberg et al., 2010). In vitro
studies showed that nano Ag produced dose-dependent
cytotoxicity and cytokine responses in keratinocytes, suggest-
ing the potential for adverse tissue responses, particularly if
applied to barrier-defective skin such as on open wounds.

CHALLENGES, PERSPECTIVES, AND CONCLUSION

This review provides a general overview of the nanotechnol-
ogy and its therapeutic applications in dermatology. This is a
growing research area that has led to the establishment of the
Nanodermatology Society in 2010 to promote a greater
understanding of the scientific and medical aspects of
nanotechnology in skin health and disease. In addition to
therapeutics, the expanding use of nanomaterials in techno-
logical and consumer applications has increased the potential
for unintentional human skin exposure. This has generated
considerable interest in determining the conditions under
which nanoparticles may penetrate skin—an essential prop-
erty for therapeutic efficacy, but the one that may provoke
potential negative side effects. Motivated by the wide use of
nanoparticles in ultraviolet B radiation—-protective sunscreens
and topical cosmetics, metal oxide nanoparticles are one of
the most studied (Nohynek et al., 2007, 2008; Burnett and
Wang, 2011). From available literature, it is reasonable to
conclude that under normal use conditions on healthy skin,
the penetration of ZnO and TiO, nanoparticles pose minimal
health concern. ZnO is soluble in acidic environments, and
the acidity of the skin stratum corneum likely induces
dissolution and penetration of ionic Zn (Jang et al., 2010b).
Zinc is an essential mineral and therefore poses minimal
toxicity concern. TiO, nanoparticles are highly insoluble and
are prone to agglomeration, which may hinder their
penetration (Sadrieh et al., 2010). Furthermore, stability and
low toxicity of TiO, are two properties that have long been
exploited in the successful use of Ti metal for dental and
orthopedic implants (Geetha et al., 2009). The adjuvant effect
of these (Vamanu et al, 2008) and other types of
nanoparticles that may contact barrier-defective skin, as well
as the effect of UVR induced immunosuppression on
nanoparticle skin interactions, remain important open ques-
tions. Limited data exist on nanoparticle interaction with
diseased skin. Atopic dermatitis and psoriasis are common
conditions on the rise (Stensen et al., 2008; Koebnick et al.,
2011). Contact hypersensitivity is a common occupational
disease (Diepgen and Coenraads, 1999). The effects of these
barrier-altering skin conditions on the penetration and
transport of nanoparticles are largely unknown. As studies
intensify, consistent use of skin models, nanoparticle
standards, and exposure conditions will greatly aid our
ability to solidify trends from the published literature. More
sensitive imaging techniques (Graf et al., 2009; Lin et al.,
2011; Mortensen et al.,, 2011) are needed that can track
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the biodistribution of nanoparticles systemically. Greater
emphasis is needed on quantitative studies that can relate
nanoparticle exposure (dose) to nanoparticle penetration and
therapeutic efficacy. Quantitative studies are needed to
determine whether nanoparticle therapeutics can be deli-
vered more effectively through diseased skin, or whether
unintentional nanoparticle exposure may exacerbate symp-
toms in susceptible individuals. To date, there has been an
inconsistent reporting of the detection sensitivity of the
techniques used, which can lead to incorrect conclusions
about prevalence of nanoparticle skin penetration. From a
mechanistic perspective, relatively little is known about
nanoparticle transport mechanisms in skin. Transcelluar
transport between corneocytes in the stratum corneum
(Mortensen et al., 2008; Monteiro-Riviere and Zhang, 2009)
has been reported; however, the dominant transport mechan-
ism through the epidermis is not well characterized.
Langerhans cells have been identified as an important
systemic transport mechanism to lymph nodes (Vogt et al.,
2006; Mahe et al., 2009), but the ability of nanoparticles to
affect LC function by preventing antigen uptake or altering
antigen presentation or migration have yet to be fully
explored. Therefore, although the imaging and therapeutic
applications of nanotechnology to dermatology are promising
areas, there are many interesting unanswered questions and
technical challenges that provide significant opportunity for
further investigative studies.
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