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PREFACE

The Occupational Safety and Health Act of 1970 emphasizes the need

for standards to protect the health and safety of workers exposed to an

ever-increasing number of potential hazards at their workplace. To provide 
«

relevant data from which valid criteria and effective standards can be 

deduced, the National Institute for Occupational Safety and Health has 

projected a formal system of research, with priorities determined on the 

basis of specified indices.

It is intended to present successive reports as research and 

epidemiologic studies are completed and sampling and analytical methods are 

developed. Criteria and standards will be reviewed periodically to ensure 

continuing protection of the worker.

I am pleased to acknowledge the contributions to this report on 

benzene by members of my staff, the valuable and constructive comments 

presented by the review consultants on benzene, the ad hoc committees of 

the American Academy of Occupational Medicine and the Society of 

Toxicology, by Robert B. O'Connor, M.D., NIOSH consultant in occupational 

medicine, and by Professor William A. Burgess, NIOSH consultant on 

respiratory protection. The NIOSH recommendations for standards are not 

necessarily a consensus of all the consultants and professional societies 

that reviewed this criteria document on benzene. Lists of the NIOSH Review 

Committee, members and of the Review Consultants appear on the following 

pages.

Marcus M. Key, M.D. ^
Director, National Institute

for Occupational Safety and Health



The Office of Research and Standards Development, 

National Institute for Occupational Safety and 

Health, had primary responsibility for development 

of the criteria and recommended standard for benzene. 

George D. Clayton and Associates developed the 

basic information for consideration by NIOSH staff 

and consultants under contract No. HSM-99-72-26. 

Douglas L. Smith, Ph.D., served as criteria manager 

and had NIOSH program responsibility for development 

of the document.
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I. RECOMMENDATIONS FOR A BENZENE STANDARD

The National Institute for Occupational Safety and Health (NIOSH) 

recommends that worker exposure to benzene in the workplace be controlled 

by adherence to the following sections. The standard is designed to 

protect the health and safety of workers for up to a 40-hour workweek over 

a working lifetime; compliance with the standard should therefore prevent 

adverse effects of benzene on the health and safety of workers. The 

standard is measurable by techniques that are valid, reproducible, and 

available to industry and government agencies. Sufficient technology 

exists to permit compliance with the recommended standard. The standard 

will be subject to review and revision as necessary.

These criteria and recommended standard apply to occupational 

exposure of workers to the aromatic hydrocarbon C6H6 , hereinafter referred 

to as "benzene." Synonyms for benzene include benzol, benzole, coal 

naphtha, cyclohexatriene, phene, phenyl hydride, and pyrobenzol. Benzin, 

petroleum benzin, and benzine are terms used for a mixture of saturated 

aliphatic hydrocarbons and should not be confused with benzene.

Section 1 - Environmental (Workplace Air) ■

(a) Concentration

Occupational exposure to benzene shall be controlled so that workers 

shall not be exposed to benzene at a concentration greater than 10 parts 

per million parts of air (32 milligrams per cubic meter of air) determined 

as a time-weighted average (TWA) exposure for up to a 10-hour workday, 40- 

hour workweek with a ceiling of 25 parts per million parts of air (80
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milligrams per cubic meter of air) as determined by a sampling time of 10 

minutes.

(b) Sampling and Analysis

Procedures for sampling, calibration of equipment, and analysis of 

environmental samples shall be as provided in Appendix I or by any method 

shown to be equivalent in accuracy, precision, and sensitivity to the 

method specified.

(c) Exposure

"Exposure to benzene" means exposure to a concentration of benzene 

above one-half the recommended environmental standard. Exposures at lower 

environmental concentrations will not require adherence to the following 

sections except for Sections A (b)(c), Skin and Eye Protection, and 

6(a)(d)(e) of Work Practices. Procedures for identification of exposure 

areas can be accomplished by tiae-weighted average (TWA) determinations by 

methods described in Appendices I and II or by any method shown to be 

equivalent in accuracy, precision, and sensitivity to the methods 

specified.

If "exposure" to other chemicals also occurs, for example to 

toluene, provisions of any applicable standards for the other chemicals 

shall also be followed.

Section 2 - Medical

Medical monitoring (biologic monitoring and medical examinations) 

shall be made available to workers as outlined below.
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(a) Biologic Monitoring

Biologic monitoring shall be provided to all workers subject to 

"exposure to benzene." It consists of sampling and analysis of urine for 

total phenol content. Such monitoring shall be performed to ensure that no 

worker absorbs an unacceptable amount of benzene. Unacceptable absorption 

of benzene posing a risk of benzene poisoning is demonstrated at levels of 

75 mg phenol/liter of urine (with urine specific gravity corrected to

1.024) or greater as sampled and determined by the method specified in 

Appendix III, or alternative methods shown to be equivalent in accuracy and 

precision. "Spot" urine specimens of about 100 ml shall be collected as 

close to the end of the working day as feasible. Any urine specimens with 

a specific gravity less than 1.010 shall be discarded and another sample 

obtained.

To satisfy the biologic monitoring requirement, every worker subject

to "exposure to benzene" shall have urine sampling and analysis made»
available to him at quarterly intervals. The schedule of biologic 

monitoring may be altered if indicated by the results of a professional 

industrial hygiene survey. If environmental sampling and analysis 

demonstrate that environmental levels are at, or greater than, the 

environmental limit, the interval of biologic monitoring shall be increased 

so that a phenol analysis shall be conducted every 2 weeks on every worker. 

This increased frequency shall be continued for at least 2 months after the 

high environmental level has been demonstrated.

If a worker's urine phenol level is found to be 75 mg/liter or 

greater, calculated to a specific gravity of 1.024, two followup urine 

samples shall be obtained within 1 week after receipt of the results, one

3



as close Co the beginning and one as close to the end of the same working 

day as possible. If the original elevated finding is confirmed, steps to 

reduce the worker's absorption of benzene shall be taken promptly. Steps 

to be considered should include improvement of environmental controls, of 

personal protection or personal hygiene, and the use of administrative 

controls. For those workers with confirmed high biologic levels of phenol 

as determined from the biologic sampling, a medical examination for 

possible benzene poisoning shall be considered and the OSHA area industrial 

hygienist shall be informed.

Biologic monitoring shall also be provided where the OSHA area 

industrial hygienist has reason to believe operations produce unusual 

exposure excursions or that environmental samples do not adequately 

describe worker exposure.

(b) Medical Examinations

Medical examinations shall be provided for all workers subject to 

"exposure to benzene" or when unacceptable absorption of benzene is 

demonstrated as judged by biologic monitoring. An evaluation of the 

advisability of a worker's using negative- or positive-pressure respirators 

shall also be made.

(1) Preplacement and Annual

Comprehensive preplacement and annual physical examinations, 

to include medical histories, shall be provided for all workers. Initial 

examinations for presently employed workers shall be offered within 6 

months of the promulgation of a standard incorporating these 

recommendations and annually thereafter. The medical history should 

include information on previous exposures to benzene and any other
A



hematologic toxin; blood dyscrasias including, but not limited to, 

genetically related hemoglobin alterations, bleeding abnormalities, and 

abnormalities in the function of formed blood elements; renal disease; 

liver disease; alcoholic intake; and infection. Laboratory examinations at 

the time of the preplacement examination shall include, but shall not be 

limited to:

(A) Complete blood count, including hematocrit, 

hemoglobin, mean corpuscular volume, white blood cell count including a 

differential count, and platelet estimation from the differential slide.

(B) Reticulocyte count.

(C) Serum bilirubin.

(D) Urinary phenol.

(2) Quarterly

Each worker exposed to benzene shall have laboratory examinations 

provided at 3-month intervals as prescribed for the preplacement and annual 

examinations but not necessarily including the reticulocyte count and serum 

bilirubin requirements.

(3) Monthly

Monthly laboratory examinations, or more or less frequently 

as indicated by professional judgment, as prescribed for the quarterly 

requirements, shall be provided if, in the opinion of the responsible 

physician, a worker shows alterations in the formed elements of the blood 

as compared with previous results which are judged as sufficient to warrant 

more frequent observations. This schedule shall continue for at least 3 

months thereafter until there is evidence of return to normal values (see 

Appendix IV) or other reasons indicate discontinuance.
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(4) Two-Week Intervals

Each worker exposed to benzene in excess of a time-weighted 

average concentration which exceeds the standard shall have the laboratory 

examinations provided every 2 weeks as prescribed for the preplacement and 

annual examinations. If evidence of benzene poisoning is developed from 

these examinations, the worker should be kept under a physician's care 

until the worker has completely recovered or maximal improvement has 

occurred. Ordinarily, this is mandatory in most workmen's compensation 

jurisdictions.

Each employee who absorbs unacceptable amounts of benzene as 

indicated by biologic monitoring shall be examined as soon as practicable 

after such absorption is demonstrated and confirmed, and at least monthly 

thereafter, until his urine phenol levels have returned to normal, ie, 

below 75 mg/liter of urine.

Medical records shall be maintained for persons employed in work 

involving exposure to benzene and shall Include information on all biologic 

determinations and on all required medical examinations. Medical records 

with pertinent supporting documents shall be maintained at least 20 years 

after the individual's employment is terminated. These records shall be 

available to the medical representatives of the Secretary of Health, 

Education, and Welfare, of the Secretary of Labor, of the employee or 

former employee, and of the employer.
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Section 3 - Labeling (Posting)

The following sign shall be affixed in a readily visible location at 

or near entrances to areas in which there is the likelihood of occupational 

exposure to benzene:

DANGER!

BENZENE

EXTREMELY FLAMMABLE:
Keep away from heat, sparks, and open flame.

VAPOR HARMFUL 
High concentrations of vapor 

are hazardous to health.
Provide adequate ventilation.

This warning sign shall be printed both in English and in the 

predominant language of non-English-speaking workers, unless they are 

otherwise trained and informed of the hazardous areas. All illiterate 

workers shall receive such training.

Section 4 - Personal Protective Equipment and Protective Clothing

Engineering controls shall be used to maintain benzene exposures 

below the prescribed limit. Administrative controls may also be used to

reduce exposure. Requirements for personal protective equipment shall be

as approved under provisions of 29 CFR 1910 (37 FR 22102, Subpart I,

October 18, 1972, as amended).

(a) Respiratory Protection

This subsection shall apply whenever a variance from the standard 

recommended in Section 1(a) is granted under provisions of the Occupational

7
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Safety and Health Act, or in the interim period during the application for 

a variance. When the limits of exposure to benzene presctibed in 

subsection (a) of Section 1 cannot be met by controlling the concentration 

of benzene in the work environment, an employer must utilize, as provided 

in this subsection, a program of respiratory protection to effect the 

required protection of every worker exposed. Respirators shall also be 

provided and used for nonroutine operations (occasional brief exposures 

above the ceiling of 25 ppm and for emergencies); however, for these 

instances, a variance is not required, but the requirements set forth below 

continue to apply. Appropriate respirators as described in Table 1-1 shall 

only be used pursuant to the following requirements :

(1) For the purpose of determining the type of tespirator 

to be used, the employer shall measure the atmospheric concentration of 

benzene in the workplace when the initial application for variance is made 

and thereafter whenever process, worksite, climate* or control changes 

occur which are likely to increase the benzene concentration. The employer 

shall ensure through proper respirator selection, fit, use, and maintenance 

that no worker is being exposed to benzene in excess of the standard.

(2) The respirator and cartridge or canister used shall be 

of the appropriate class* as determined on the basis of exposure to 

benzene.

(3) A respiratory protective program meeting the general 

requirements outlined in section 3.5 of American National Standard 

Practices for Respiratory Protection Z88.2-1969 shall be established and 

enforced by the employer. In addition, Sections 3.6 (Program
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Administration), 3.7 (Medical Limitations), and 3.8 (Approval) shall be 

adopted and enforced.

(4) The employer shall provide respirators in accordance

with Table 1-1 and shall ensure that the employee uses the respirator

provided.

(5) Respiratory protective devices described in Table 1-1

shall be those approved under provisions of 30 CFR 11 (37 FR 6244, March

25, 1972) as amended.

(6) Respirators specified for use in higher concentrations 

of benzene are permitted in atmospheres of lower concentrations.

(7) Employees shall be given instruction on the use of 

respirators assigned to them, day-to-day maintenance and cleaning of the 

respirators, and how to test for leakage.

(8) Emergency and escape-type respirators shall be made 

immediately available at the work stations for each worker.
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TABLE 1-1

REQUIREMENTS FOR RESPIRATOR USAGE - BENZENE

Maximum Use Concentration 
(Multiples of TWA limit)

Less than or 
equal to lOx

Respirator Type 
for Benzene

(1) Chemical cartridge respirator with 
organic vapor cartridge(s) and quarter 
or half mask.

Less than or 
equal to lOOx

Greater than 
lOOx

(2) Type C supplied air respirator, 
demand type (negative pressure), with 
quarter or half mask.

(1) Gas mask with chin style canister 
for organic vapors.

(2) Gas mask with front or back mounted 
chest type canister for organic vapors.

(3) Type C supplied air respirator, demand 
(negative pressure), with full facepiece.

(4) Self-contained breathing apparatus in 
demand mode (negative pressure) with full 
facepiece.

(5) Combination supplied air respirator, 
pressure-demand type, with auxiliary 
self-contained air supply and full facepiece.

(1) Self-contained breathing apparatus in 
pressure-demand mode (positive pressure). 
with full facepiece.

(2) Type C supplied air respirator, 
pressure-demand or continuous flow type 
with full facepiece or hood.

(3) Combination supplied air respirator, 
pressure-demand type, with auxiliary 
self-contained air supply with full 
facepiece.
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TABLE 1-1 
(continued)

REQUIREMENTS FOR RESPIRATOR USAGE - BENZENE

Maximum Use Concentration 
(Multiples of TWA limit)

Emergency
(No concentration
limit)

Respirator Type 
for Benzene

(1) Self-contained breathing apparatus in 
pressure-demand mode (positive pressure) 
with full facepiece.

(2) Combination supplied air respirator, 
pressure-demand type, with auxiliary 
self-contained air supply and full facepiece.

Evacuation or escape 
(No concentration 
limit)

(1) Self-contained breathing apparatus in 
demand or pressure-demand mode (negative 
or positive pressure).

(2) Gas mask with organic vapor canister 
and mouthpiece respirator.

(b) Skin Protection

(1) Benzene-wetted clothing shall be removed promptly and

benzene-exposed parts of the body shall be washed thoroughly.

(A) Workers wearing benzene-wetted clothing shall

not be permitted to smoke or go near heaters or open flames.

(B) Benzene-wetted clothing shall not be placed in 

proximity of flames, heaters, or spark-producing equipment, and shall be 

free of vapor before being reworn.

(2) Workers shall be warned to avoid situations during

extremely cold weather in which liquid benzene could freeze on clothing and 

vaporize on entering warm areas, thus posing a serious health or fire 

hazard to the wearer.
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(3) Protective clothing, consisting of coveralls or 

similar full-body clothing should be worn and should be changed at least 

twice weekly.

(4) If operations require continued exposure to liquid 

benzene, workers shall wear impervious clothing, gloves, or coverings to 

protect potentially eatpoeed areas of the body. Consideration shall be 

given to the heat stress factors involved when wearing impervious clothing.

(c) Eye Protection

Eye protective equipment shall be provided by the employer and used 

by the employee where eye contact with liquid benzene is likely to occur 

from spill, splash, or spray.

(1) Selection, use, and maintenance of eye protective 

equipment shall be in accordance with provisions of the American National 

Stfiidafd Practice for Occupational and Educational Eye and Face Protection, 
ANSI Z87.1-1968.

(2) Spectacle-type safety goggles—  metal or plastic rim 

safety spectacles with unperforated side shields, or suitable all-plastic 

s§fety goggles equipped with approved impact-resistant glass or plastic 

lenses shall be worn when there is danger of benzene contact with the eye. 

Prescription lenses shall be provided for those employees need them.

(3) Face shields—  full length, 8-inch minimum plastic 

s h ^ d s  W i ^  forehead protection may be worn in place of, or in addition 

to» goggles* If there is danger of material striking the eyes from 

underneath, or around the sides of the face shield, safety goggles shall be 

worn as addetf protection.
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Section 5 - Informing Employees of Hazards from Benzene

At the beginning of employment in a benzene area, employees exposed 

to benzene shall be informed of hazards, relevant symptoms of overexposure, 

appropriate emergency procedures, and proper conditions and precautions for 

safe use of benzene. The information shall be posted in the work area, and 

maintained on file, and be readily accessible to the worker at all places 

of employment where benzene is involved in unit processes and operations or 

is released as a product, byproduct, or contaminant.

A continuing educational program shall be instituted to ensure that 

all workers have current knowledge of job hazards, proper maintenance 

procedures and cleanup methods, and that they know how to correctly use 

respiratory protective equipment and protective clothing.

Information as required shall be recorded on US Department of Labor 

Form OSHA-20 "Material Safety Data Sheet" or a similar form approved by the 

Occupational Safety and Health Administration, US Department of Labor.

Section 6 - Work Practices

(a) Smoking

Smoking materials, including personal matches and lighters, shall be 

prohibited in all areas where there is benzene.

(b) Emergency Procedures

(1) Fire fighting procedures shall be established and 

implemented to meet foreseeable events; these shall include procedures for 

emergencies involving release of benzene vapor.

(2) Where there is the possibility of benzene contact on

the eyes or skin, safety showers, eye-wash fountains, and cleansing
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facilities shall be installed and maintained to provide prompt, immediate 

access by the workers.

(3) Appropriate respirators shall be immediately available

for wear during emergency situations and evacuation or escape.

(c) Exhaust Systems and Enclosure

Exhaust ventilation and process enclosures shall be used wherever 

practicable to control workplace concentrations. Spark-proof fans and 

systems shall be designed and maintained to prevent the accumulation or 

recirculation of benzene into the workplace. In addition, necessary 

measures shall be taken to ensure that discharge outdoors will not produce 

a health hazard to humans, animals, or plants.

(d) General Housekeeping

Emphasis shall be placed upon cleanup, inspection and repair of 

equipment and leaks, proper storage of materials, and assurance that escape 

routes are kept clear. Sanitation shall meet the requirements of 29 CFR 

1910.141, as amended.

(e) Disposal

(1) All local, state, and federal regulations concerning

waste disposal into landfills, streams, municipal treatment plants, or 

impounding basins shall be followed.

(2) Benzene or benzene-containing materials shall not be

discharged where there is a potential for vapor ignition.

(f) Food

Food preparation and eating should be prohibited in benzene work

areas.
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(g) Restricted Access to Benzene Areas

Entry to any area where there is the possibility of exposure to 

benzene shall be permitted only on the basis of need; all persons entering 

shall be protected as required for workers regularly assigned to that area.

Section 7 - Monitoring and Reporting Requirements

Workroom areas where it has been determined, on the basis of an 

industrial hygiene survey or the judgment of a compliance officer, that 

environmental levels do not exceed one-half the environmental standard
i

shall not be considered to have benzene exposure. Records of these 

surveys, Including the basis for concluding that air levels are not above 

one-half the environmental standard, shall be maintained until a new survey 

is conducted. Surveys shall be repeated when any process change indicates 

a need for réévaluation or at the discretion of the -compliance officer. 

Requirements set forth below apply to areas in which there is benzene 

exposure.

Employers shall maintain records of accidental benzene release 

requiring evacuation. In addition* records of environmental exposures to 

benzene shall be maintained based upon the following sampling and recording 

schedules except as otherwise indicated by a professional industrial 

hygiene survey. In all monitoring, samples representative of the exposure 

in the breathing zone of employees shall be collected. An adequate number 

of samples shall be collected to permit construction of a time-weighted 

average (TWA) exposure and ceiling concentration for every operation or 

process. The minimum number of representative TWA determinations for an 

operation or process shall be based on the number of workers exposed as



provided in Table 1-2 or as otherwise indicated by a professional 

industrial hygiene survey.

Periodic environmental sampling and biologic sampling shall be timed 

so that results from both procedures will reflect representative worker 

exposures to benzene.

(a) Initial and Recurrent Sampling Procedures

(1) The first environmental sampling shall be completed 

within 6 months of the promulgation of a standard incorporating these 

recommendations.

(2) Samples shall be collected and analyzed at least

quarterly for the evaluation of the work environment and to determine

adherence to the recommended standard.

(3) Employees or their representatives shall have the 

opportunity to observe environmental monitoring.

(b) Special Sampling Procedures

(1) Environmental monitoring of an operation or process

shall be repeated at 15-day intervals when the benzene concentrations have

been found to exceed the recommended environmental standard. In such

cases, suitable control measures shall be instituted, and monitoring shall 

continue at 15-day intervals until 2 consecutive surveys indicate the 

adequacy of the controls.

(2) Environmental samples shall be taKen within 30 days

after installation of a new process or process change.

(c) Recordkeeping Procedures

(1) Records of all sampling and medical examinations shall

be maintained for at least 20 years after the individual's employment is
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terminated. Records shall Indicate the type of personal protection 

devices, if any, in use at the time of sampling. Records shall be 

maintained and classified so that each employee shall be able to obtain 

information on his own environmental exposure.

TABLE 1-2 

SAMPLING SCHEDULE

Number of Employees Exposed 

1-20

Minimum Number of 
TWA Determinations

50% of the total 
number of workers

21-100 10 plus 25% of the
excess over 20 workers

over 100 30 plus 5% of tlje
excess over 100 workers
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II. INTRODUCTION

This report presents the criteria and the recommended standard based 

thereon which were prepared to meet the need for preventing occupational 

diseases arising from exposure to benzene. The criteria document fulfills 

the responsibility of the Secretary of Health, Education, and Welfare, 

under Section 20(a)(3) of the Occupational Safety and Health Act of 1970 to 

. develop criteria dealing with toxic materials and harmful physical 

agents and substances which will describe . . . exposure levels at which no 

employee will suffer impaired health or functional capacities or diminished 

life expectancy as a result of his work experience."

The National Institute for Occupational Safety and Health (NIOSH), 

after a review of data and consultations with others, formalized a system 

for the development of criteria upon which standards can be established to 

protect the health of workers from exposure to hazardous chemical and 

physical agents. It should be pointed out that any recommended criteria 

for a standard should enable management and labor to develop better 

engineering controls resulting in more healthful work practices and should 

not be used as a final goal.

These criteria for a standard for benzene are part of a continuing 

series of criteria developed by NIOSH. Thé proposed standard applies only 

to the processing, manufacture, and use of benzene or its release as an 

internediate, byproduct, or impurity therefrom as applicable under the 

Occupational Safety and Health Act of 1970.

The standard was not designed for the population-at-large, and any 

extrapolation beyond general occupational exposures is not warranted. It
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is intended to (1) protect against injury from benzene, (2) be measurable 

by techniques that are valid, reproducible, and available to industry and 

official agencies, and (3) be attainable with existing technology.

19



III. BIOLOGIC EFFECTS OF EXPOSURE

Extent of Exposure

The first major industrial use of benzene was as a solvent in the 

rubber industry just preceding World War I. [1] During World War I, 

benzene production was stimulated greatly by the demand for toluene in the 

manufacture of explosives. The large quantities of benzene which were 

produced resulted in its more widespread use as a starting point for the 

manufacture of various organic compounds. This situation led to greatly 

increased uses of benzene as a solvent in the artificial leather, rubber 

goods, and rotogravure printing industries, and as a starting material in 

organic syntheses. [1]

Benzene is a clear, colorless, noncorrosive, highly flammable liquid 

with a strong, rather pleasant odor. Its physical properties are given in 

Table XII-1. Today, it is obtained primarily from the petroleum industry 

where it is produced as a petrochemical from paraffinic hydrocarbons. [2,3] 

It is also recovered from the gases and coal tar in coke oven operations. 

The major impurities in commercial benzene (bettiioi) ¿tie toluene and xylene 

although the commercial fora may also bfe contaminated with phenol, 

thiophene, carbon disulfide, acetyl nitfile, pytidihe, and other 

substances. "Benzol 90" contains from 80-85% benzene, 13-15% toluene, and 

2-3% xylene. The "90" designation refers to the pfercent of total liquid, 

by volume, which distills below 100 C.

Industries and processes Using benzene include coke and gas, 

chemical, printing and lithography, paint, rubber, dry cleaning, adhesives, 

petroleum, and coatings. [2,4] Benzene is also Used extensively in
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chemical laboratories as a solvent and reactant In numerous chemical 

applications. [1,5]

During 1967, nearly 800 million gallons of benzene were produced in 

the United States [3] and by 1969, this figure had increased to 1,185 

million gallons with approximately 16% of the production derived from coal.

[6] About 87% of the benzene output is used chiefly as an intermediate in 

producing other organic chemicals such as phenol, cyclohexane, and. styrene 

(see Table XII-2). [3] The remaining amount (13%) is used primarily in the 

manufacture of detergents and pesticides with small amounts of benzene 

being used in solvents and paint removal formulations. Benzene is also 

present in gasoline. [7,8] Petrols (gasolines) in the United Kingdom were 

reported by Sherwood [9] to be as high as 6% in benzene content and an ad 

hoc report [10] on European gasolines showed that most of the gasolines

tested during 1970 to 1972 were in the 5% range with some up to 16%.

Benzene analyses reported in 1972 [11] of 37 unleaded and low-lead

gasolines from 15 companies in the United States showed a range from 0.3- 

2.0% benzene content by volume with an average of 0 .8%.

Benzene may also be a component in commercial grades of toluene, 

xylene, and multicomponent solvent mixtures whose composition varies with

intended usage. [5] It is a significant component, ie, 3% or more, in 

numerous hydrocarbon mixtures such as the aromatic petroleum naphthas whose 

boiling ranges encompass that of benzene. [5,12]

Although benzene is used generally in enclosed systems wherever 

possible, exposures can occur from liquid transfer operations, from 

equipment leakage, from carryover losses, and in maintenance operations.
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Exposures also occur from its uee as a solvent component in small plant 

open systems. [1,5]

NIOSH estimates that 2,000,000 persons in the work force have 

potential exposure to benzene.

Historical Reports

The early uses of benzene, particularly as a solvent, resulted in 

widespread exposures of workers to its vapor with levels regularly around 

500 ppm and some in excess of 1,000 ppm (3,200 mg/cu m). [13]

In 1909, three 14-year old Maryland girls became ill and, within 1 

month, 2 of then» died following exposure for a period of 4-5 months to the 

vapprg of a commercial grade of benzene used as a rubber solvent in sealing 

tip cans. [14] Leukopenia was the most striking feature of the blood 

examination. One girl entered the hospital with a leukocyte count of 1,280 

pells/ cu mm whicfy dropped to 480-600/cu mm before death. The second girl 

was hospitalized with a count of 560 which dropped to 140/cu pun before 

death. In both cases> there vere relative decreases in the 

polymorphonuclear elements of 43? and 18%, respectively, and the red blood 

cej.1 counts dropped to 640,000/cu mm in the first girl, and to 1,150,000/cu 

mm in the second. Both deaths occurred 6-7 days after admission to the 

hospital. No mention was made of the outcome of the third case.

Numerous other early reports of fatal cases of benzene poisoning 

have been mentioned in review articles by preenburg in 1926 [1] and

Hamilton in 1931. [15]

Early cases of chronic benzene poisoning; include those reported in 

England by Legge in 1920 [13] of 2 men engaged in spreading balloon fabric
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with rubber. Legge's report provided the first measurements of benzene 

levels in workroom atmospheres to which workers were exposed on a chronic
i
basis. The exposure levels were determined by the firm's chemist and for 

many of the operations they ranged from 2.1-8 parts/ 10,000 (210-800 ppm)

with a peak concentration of 1,050 ppm measured "in front of a fan and at 

back of machine, machines on both sides, both spreading." However, Legge 

pointed out that considering the amount of benzene which was being consumed 

in the poorly ventilated spreading room, the concentration at the end of 1 

hour could theoretically have been as high as 16,800 ppm.

With the expanded use of benzene in industry after World War I, an 

increasing number of reports of chronic benzene poisoning of workers began 

to appear in the literature. [1,16-18] Because of the seriousness of 

benzene poisoning, investigations were directed to the many aspects of the 

cause, recognition, and control of the disease; the results from this 

research were prominent in the occupational health literature. [19-22] The 

growing recognition of the hazard associated with the use of benzene led 

gradually to the substitution of other solvents and an accompanying 

decrease in the incidence of cases of benzene poisoning.

Effects on Humans

(a) Effects of Inhalation

Browning [23] reported that fatal cases have usually occurred when 

benzene was inhaled in enclosed spaces such as in tanks containing residues 

of benzene, and that 13 such cases were reported in Great Britain between 

1941 and 1959. The effects observed following such severe exposures were 

convulsive movements and paralysis followed by unconsciousness. Milder
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forma of acute intoxication produced an initial state of euphoria followed 

by giddiness, headache, nausea, a staggering gait and, if not removed from 

exposure,, a state of unconsciousness. Recovery depended upon the severity 

of the exposure.

Gerarde [24] noted that breathlessness, nervous irritability, and 

unsteadiness in walking may persist for a period of 2-3 weeks; furthermore, 

delayed effects may arise and persist long after the acute incident. The 

postmortem findings in cases of acute benzene poisoning include extensive 

petechial hemorrhage in the brain, pleurae, pericardium, urinary tract, 

mucous membranes, and skin.
t

Flury [25] stated that single exposures to benzene vapor in the 

atmosphere at 20,000 ppm may be fatal within 5-10 minutes; 7,500 ppm will 

produce toxic effects if inhaled for 0.5-1 hour and an exposure to 3,000 

ppm may only be tolerated for 0.5-1 hour.

(b) Effects of Oral Exposure

Cases of illness or death resulting from the accidental ingestion of 

a fluid containing benzene have been reported. [26,27] Liquid benzene 

causes a local irritation of the mucous membranes of the mouth, throat, 

esophagus, and stomach. [24] The subsequent absorption of ingested benzene 

into the blood leads to signs and symptoms of systemic intoxication. [24] 

The ingestion of a tablespoohful of benzene has been known to cause 

collapse, bronchitis, and pneumonia. Ingestion as a route of entry of 

benzene in industrial situations is unlikely except in accidental or 

intentional situations.
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(c) Effects of Skin Exposure

Dermal contact with liquid benzene may cause erythema and blistering 

of the skin and a dry, scaly dermatitis may develop on prolonged or 

repeated exposure. [24] Investigations of the percutaneous absorption of 

benzene have been very limited and from which only qualified estimates can 

be made.

In 1946, Cesaro [28] reported no observable change in the urinary 

inorganic sulfate to total sulfate ratio as evidence of absorption of 

benzene during 20- to 30-minute exposures of the arms or whole bodies of 

male human subjects to cotton soaked with benzene.

Conca and Maltagliati [29] in 1955, also reported no urinary sulfate 

changes and detected no benzene in the expired breath of 3 men whose arms 

had been immersed in benzene for 25-35 minutes. A colorimetric method of 

unstated sensitivity was used for the breath analyses.

In 1961, Hanke et al [30] reported the rate of human skin absorption 

of liquid benzene applied under a closed cup as 0.4 mg/sq cm/hr using an 

ultraviolet spectrophotometric method to determine the amount of benzene 

remaining from a known quantity exposed to the skin for 10-15 minutes under 

controlled conditions. This compared with later findings by his coworkers 

of 22-23 mg/sq cm/hr for ethylbenzene [31] and 14-23 mg/sq cm/hr for 

toluene. [32] These findings support the belief that liquid benzene is 

poorly absorbed through the intact skin.

(d) Absorption, Distribution, Metabolism, and Excretion

Srbova et al [33] in 1950 reported on 23 human volunteers exposed to 

benzene vapor at levels ranging from 47-110 ppm. The subjects inhaled a 

mixture of air and benzene, usually for 2 hours (occasionally for as long
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as 3 hours), during which time samples of inhaled and exhaled air were 

taken every 15 minutes and analyzed polarographically. Blood and urine 

samples were also collected and analyzed at different times. The 

absorption of benzene was reported to be greatest during the first 5 

minutes, decreasing rapidly thereafter, and becoming constant after 

approximately 15 minutes of exposure. After 1 hour, approximately 50% of 

the inhaled benzene was absorbed. Following benzene exposure, 30-50% of 

the absorbed benzene was eliminated through the lungs, only 0 .1-0.2% was 

eliminated unchanged through the kidneys, and the remainder was 

metabolized. Complete equilibrium between the concentrations of benzene in 

the air and in the blood was not achieved because the duration of the 

experiments was too short. Benzene removal through of the lungs was also 

followed in 10 subjects with 16.4-41.6% of the retained benzene being 

eliminated within 5-7 hours. The rate of benzene elimination was greatest 

during the first hour and decreased slowly thereafter.

Teisinger et al [34] in 1952 reported on exposing 15 human subjects 

to an average benzene vapor concentration of approximately 100 ppm for 5 

hours. They reported an average retention of 46% of the inhaled benzene, 

elimination of 12% through the lungs following exposure, and only 0 .1-0 .2% 

of the unmetabolized benzene eliminated in the urine. Approximately 29% pf 

the absorbed benzene was metabolized and excreted in the urine in the form 

of phenol, 2.9% as pyrocatechol, and 1% as hydroquinone.

In 1946, Duvoir et al [35] reported that in subjects exposed to

6,000 ppm of benzene 28-34% was retained and absorbed into the blood. The

authors found that approximately 55-60% of the benzene in the blood became

fixed in the bone marrow, fatty tissues, and the liver. The remaining 40-
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45% was excreted unchanged through the lungs. The absorbed portion was 

then metabolized through oxidation to phenol and diphenols and eliminated 

as such or as esters of sulfuric and glucuronic acids. Through this 

metabolic process, benzene decreased the organic sulfate reserve.

Hunter, [36] using gas chromatographic analysis, stated that at a 

benzene concentration of approximately 35 ppm a healthy adult male reached 

a relatively steady state in approximately 5-7 minutes. Approximately 47% 

of the benzene in the inhaled air was absorbed. The major portion of the 

urinary phenols was conjugated with glycine, sulfuric acid, or glucuronic 

acid with up to 8% of the phenols being excreted in the free form.

According to Gerarde, [2] benzene saturation of the circulating 

blood is very rapid, reaching a 70-80% saturation level within 30 minutes. 

Relatively complete saturation, however, may require as much as 2-3 days. 

The author suggested that the fatty tissue, which has a great affinity for 

benzene, removes and stores the benzene carried by the blood; however, this 

fatty tissue in many instances has a very meager blood supply and requires 

a relatively long period to attain equilibrium.

Benzene is best known in industrial exposure situations for its 

chronic forms of poisoning and specifically for its injurious effect on the 

hematopoietic system.
*

Erf and Rhoads [20] presented in 1939 the results of blood findings

in 9 individuals, 6 of whom were rotogravure printers employed in a plant

from which Greenburg et al [17] also reported on an investigation (see

Epidemiologic Studies). The authors stated that "no correlation between

the severity of disease and the intensity of exposure can be made." The

duration of exposure ranged from 6 months to.3 years, with the symptoms of
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poisoning being present from 1-6 months before medical aid was sought. The 

hematologic findings varied; however, anemia, leukopenia, thrombocytopenia, 

and elevated reticulocyte levels were present in all cases. Biopsy tissue 

from the sternal bone marrow of 8 of the patients showed microscqpic 

changes varying from a hypoplasia with immature cellular elements to a 

hyperplasia with normal maturation. Following 2-5 months of treatment, 8 

of the 9 patients were clinically improved; the ninth subject developed 

leukemia and died. In 1918, the man had worked with his brother in a 

studio where benzene was used. During that year his brother developed 

epistaxis and anemia and died. The man then changed his occupation without 

further exposure to benzene until 17 years later when he obtained 

employment in the rotogravure plant where he was exposed to benzene vapor 

for 14 hours a day. Upon hospitalization, leukemia was diagnosed. He did 

not respond to treatment, the WBC increased in number to 137,000/cu mm with 

the majority being identified as myelocytes, and the spleen and all 

peripheral lymph nodes became enlarged. After 5 weeks of therapy he left 

town and died 2 months later in another city. Post-mortem examination 

revealed a diffuse infiltration of the organs with immature myeloid cells, 

a finding typical of myeloid leukemia.

In 1967, Stewart et al presented information concerning 10 

chronically exposed benzene workers. Only an abstract of the paper was 

reported [37]; subsequent publication of the data of potential importance 

has not resulted. The workers, chronically exposed to benzene (less than 

25 ppm) for several years, were accidentally overexposed (85-115 ppm) to 

benzene for a period of 3 months. Six complained of fatigue and all showed 

signs of mild anemia. Nine of the 10 recovered in 4-8 months after which
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time they were returned to the benzene area and were maintained under a 

strict medical surveillance program. It included continuous breathing-zone 

monitoring and frequent analysis of breath for benzene vapor.

Epidemiologic Studies

The signs and symptoms of chronic benzene poisoning can effectively 

be described from a report by Helmer [38] in 1944. Because of the 

difficulties in importing appropriate solvents during World War II, the use 

of benzene increased markedly in a Swedish plant which manufactured rubber 

raincoats. Work was performed on a conveyor belt with alternate sewing and 

gumming, the latter being done mainly by hand on open tables using a 

solution of 10% rubber in heated benzene. The total amount of benzene used 

was unspecified; however, at full worker capacity, about 50 kg of benzene 

evaporated in an 8 1/2-hr workday. The atmospheric benzene concentration 

was estimated to be approximately 17 mg/liter (5,320 ppm) based upon its 

rate of consumption and even distribution over the premises. The work 

force had been reduced to one-third of normal along with reduction in the 

total output (8 kg benzene consumption/workday) when inspections were 

conducted by the State Institute of Public Health. With the decreased 

benzene consumption and fan-installed improved ventilation, environmental
I

»

analysis showed a benzene content of 0.44-0.70 mg/liter of air (140-220 

ppm). There had been no mechanical provisions employed for exhaust

ventilation before cases of benzene poisoning were encountered. The study 

showed that 184 workers (169 women and 15 men) from the rubber plant, of 

which 60 workers (58 women and 2 men) were entered on the sick list 

suffering from chronic benzene poisoning. In those workers afflicted,



headaches (73%) and fatigue (88%) were prominent, persisting for many 

months, even after the blood picture had improved markedly. The subjects 

complained of having to lie down after performing very simple household 

chores and not even being able to take short walks. There was an increased 

tendency to bleed; cutaneous hemorrhages were noted (48%), mainly in the 

legs and arms. The hemorrhages were often large with initial spreading, 

and would appear without demonstrable trauma. Other abnormal bleeding 

occurred in the gums and nose, as well as irregular, sometimes more 

fréquent and copious menses. The latter affected only women who had

suffered more serious blood changes. Other common troubles included 

nervousness, vertigo, somnolence or sleeplessness, shortness of breath, and 

palpitations. Dyspeptic disorders, nausea, vomiting, and loss of appetite 

appeared in 22% of the cases. Two subjects complained of a benzene taste 

in the mouth. Skin changes were manifested in the form of itching, 

possibly with pruriginous papules or slight dermatitic changes. There was 

a loss of weight in 9 cases, sotte up to 10 kg (approximately 22 pounds) in 

one year. There werè teports of prickling sensations in the arms and legs. 

Eight subjects complained of smarting in the eyes. It was pointed out, 

both by Helmer [38] in this study and by Greenburg et al, [17] that 

symptomatic effects often do not correlate with objective findings. 

Symptomatic effects may be absent, even in serious cases of chronic benzene 

poisdhing.

The unique aspect of chronic bettzetie poisoning resulting from 

exposure to berizerte vapor over prolonged periods of time is its effect on 

the blood-foraiing system. There is a distressing lack of eXposùre-effect 

data in the literature; therefore, onlÿ approximations of worker exposure
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can be made. One exception is the early account in 1926 by Greenburg [19] 

in which he reported on the complete blood counts (CBC) of workers exposed 

to concentrations of benzene ranging from 90-1800 ppm (undescribed sampling 

and analytical method) in 18 workrooms during both winter and summer 

seasons. The data enable estimates of the effects of local ventilation and 

seasonal changes on the benzene content in the air. Even so, 

concentrations were reported as averages; ranges are unknown but may have 

an important bearing on individual workers, especially those determined to 

be positive (see below). Summaries of the blood findings and average 

benzene-in-air concentrations are presented in Tables XII-3 and XII-4. 

Originally, the most important early sign of benzene poisoning was thought 

to be the change in the white blood cell (WBC) count. Greenburg considered 

cases as positive which showed less than 5,500 WBC/cu mm (7,500-9,000 was 

considered the normal count). A reduction of the WBC count to less than

4,000 and the red blood cell (RBC) count to less than 4 million /cu mm was 

found in 10 of 26 workers. Three of 8 workers studied in detail showed 

less than 50% polymorphonuclear leukocytes, 2 showed a lymphocyte 

population greater than 45%, and 2 showed eosinophils of more than 5%. In 

all groups listed in Table XII-3, there were workers who showed a picture 

of chronic benzene poisoning as judged by reductions in the WBC count. The 

hazard from the use of benzene was evidently not entirely removed at 

average benzene concentrations in the vicinity of 70-90 ppm. riations 

were noted in the individual susceptibility to benzene poisoning as well as 

to wide variations in the quantities of benzene used during the year; 

therefore, only qualified estimates can be made to correlate the benzene 

exposure levels with the clinical findings.
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In 1939, Greenburg et al [17] reported on the results of blood 

examinations performed on 332 workers exposed to benzene vapor In 3 

rotogravure plants. In Plant A, exposures ranged from 50 to over 1,000 

ppm; in Plant B, from 24-675 ppm, and in Plant C, from 11-57 ppm in the 

first floor pressroom, from 182-298 ppm in the proofroom, and from 25-200 

ppm in the 11th floor pressroom. The method of sampling and analysis was 

not described. The extensive results of the blood tests were grouped for 

the workers from the 3 plants which prevents relating the blood findings to 

the reported exposure levels in the separate process areas. Of the 332 

workers examined, 130 were found to be suffering with varying degrees of 

benzene poisoning, 22 of these to a severe extent whereas 43 were early 

cases. The RBC count was less than 4.5 million in 48% of these subjects, 

the platelets were less than 100,000 in 33%, and the WBC count was less 

than 5,000 in 15% of the total workers, in 30% of the early cases, and in 

86% of the 22 severe cases of poisoning. The hemoglobin (Hgb) was less 

than 13 g/lOOml of blood in 15% of 235 workers examined.

From the detailed blood studies which were performed on 102 of the 

workers, the incidence of significant abnormalities has been summarized and 

is presented in Table XII-5. In the early mild cases, the most frequent 

changes were a reduction in RBC (72.1%) and an increase in average cell 

size (58.1%). Since macrocytosis was also shown (24.3%) in the 9 otherwise 

negative cases, it was suggested that an increase in mean corpuscular 

volume (MCV) and a reduction in the RBC count constituted a more sensitive 

index of benzene poisoning than did WBC reduction. Various combinations of 

the 5 most commonly used blood tests (Table XII-6) Indicated that 82% of 

poisoning cases could be revealed by a combination of MCV and RBC
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determinations. It was possible to detect poisoning in even more workers 

when the determinations were combined with WBC counts (93%) and finally,

97% when thrombocyte examinations were added.

Savilahti [39] described in 1956 the clinical findings of 147 

workers exposed to benzene for more than 10 years in a shoe factory where 

air analyses at 3 working stations 6 months preceding the medical study 

provided average benzene values of 318, 433, and 470 ppm, respectively. 

Hematologic abnormalities were found in 73% of the workers;

thrombocytopenia, 62%; leukopenia, 32%; anemia, 35%; and anemia,

leukopenia, and thrombocytopenia simultaneously in 31 subjects. Of those 

affected, 1 died and 120 became asymptomatic within 3 months following 

removal from exposure to benzene. Of the remainder, 1 patient was still in 

the hospital after 1 year, 6 were at home on sick leave, and 20 continued 

Co show relatively minor hematologic symptoms.

Juzwiak [40] published in 1969 the results of blood examinations on 

585 persons employed in 13 shoe plants where they were exposed to benzene 

vapor. From 1960 to 1963, "Butapren" glue was used, consisting of 

(literally translated) 40% extraction benzene (probably petroleum benzin), 

26% technical benzene, 2% toluene, 26% ethyl and butyl acetates, and other 

"harmless components." Fluctuations in mean benzene concentrations from 

0.1-0.5 mg/liter of air (31-156 ppm) were reported. In 1964, the toluene

content of the glue was increased to 29% to replace the technical benzene
!
entirely; nevertheless, mean benzene concentrations of 0.13-0.14 mg/liter 

(41-44 ppm) were still recorded. In addition to the toluene, gasoline was 

also known to be present in the chemical composition of the glue. 

Commercial toluene and gasoline regularly contain benzene. Seventy-three



percent of the wotkeirs were reported to have reduced RBC counts, 8.5% had 

reduced WBC counts, and 91% had reduced Hgb levels. Again, the lack of 

adequately documented environmental data in support of medical findings 

precludes any confident correlation of exposure and effect.

Cases of leukemia reportedly due to benzene exposures first appeared 

in thé literature Of the 1930's. [17*22] Mallory et al, [22] in 1939, 

presented necropsy or biopsy protocols from 19 cases having chronic 

exposure to benzehé. They pointed out that early phases of benzene 

poisoning wete not exemplified irt their report since all but 3 of the cases 

wëre fatal and the early death of 1 Of the remainder was expected, based on 

à diagnosis of aleukemic leukemia. None of the repotted cases had less

than 6 months' contact with benzene Vapor and only 4 cases had less than a 

year's exposure. Table Xll-7 lists the presumptive duration of contact and 

interval between the last contact and death or biopsy in the 19 cases of 

chronic benzene poisoning. Of special note are 2 cases of verified 

leukemia:

(1) The subject had been exposed to benzene for 10 years

and, according to the authors* had shown hematologic evidence of benzene 

poisoning. lie developed a typical picture of acute myeloid leukemia in the 

last 3 months of his life. Autopsy showed the characteristic myeloid

infiltration of the liver* spleen, and bone marrow. In addition, a true

leükëtaic tumor* 4 cm in diameter* was localized in the liver.

(2) A boy of 12, a painter's Son, played in hla father's

shop, frequently using a paint remover known to contain benzene to remove

coats of paint from toys. He developed a clinical picture of aplastic
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anemia but tissue biopsy revealed a typical leukemic replacement of the 

marrow.

The authors described "a neoplastic tendency" for benzene as 

evidenced by the degree of aplasia, excessive mitotic figures, and all 

development having no counterpart in normal tissues but common to malignant 

tumors. They concluded that the evidence that chronic exposure to benzene 

produced leukemia in human beings was incomplete but sufficient to command 

serious consideration.

Vigliani and Saita [41] reported in 1964 on 6 cases of benzene- 

associated leukemia which had been observed by them. Meager environmental 

data were presented which applied to 2 of the cases.

(1) A 38-year-old man became an operator in a rotogravure 

firm which used inks containing 40% benzene. According to the authors, the 

benzene concentration in the department where the man worked varied between 

0.60 and 2.10 mg/liter of air (190-660 ppm). Four years later, he was 

hospitalized with generalized depression of the formed elements of the 

blood. Post-mortem findings were myeloid metaplasia of the liver and 

spleen.

(2) A 24-year-old man began work in the same rotogravure 

department as the operator described above. Seven years later (1945), when 

the first worker died of leukemia, sqme of the other workers in the 

department showed signs of benzene poisoning and were examined; however, 

benzene poisoning was apparently not suspected in this man and he was not 

examined. It is not known whether he had been examined prior to the death 

of his colleague. In 1949, at the same time the plant replaced benzene 

with other solvents, he showed a slight leukopenia. Subsequent quarterly
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routine medical examinations showed him normal until 1961 when serious 

signs and symptoms of leukemia appeared. In spite of intensive therapy, 

4eath occurred approximately 1 year after the clinical appearance of the 

disease.

The incidence of benzene-induced chromosome changes in peripheral 

blood lymphocytes or bone marrow has received increased interest. [42-49] 

Significantly increased rates of "unstable" and "stable" chromosome 

aberrations were observed and were still present several years after 

cessation of exposure to benzene. [48] Follov/up studies showed a tendency 

toyard a decrease in unstable chromosome changes and a persistence or an 

increase in stable changes. Occasional abnormal clone formations were 

observed. These changes are similar to those reported in individuals with 

pa§t exposure to ionizing radiations, both therapeutic [50] and accidental. 

[51-53] According to Forni et al, [48] the implications of the chromosome 

findings with respect to the problem of benzene leukemia are not clear. 

Persistent chromosome changes in lymphocytes seem simply to indicate that 

damage has occurred. However, stable chromosome changes in the bone marrow 

might give rise to leukemic clones, as has been demonstrated in 2 reported 

cases of benzene-associated leukemia. [44,45] An interesting case 

involving pregnancy was reported by Forni et al [48] in which a patient, 

while severely pancytopenic and yith severe hemorrhagic problems, delivered 

an apparently normal boy. All chromosome studies in the patient showed an 

increased rate of chromosome aberrations; hovrever, a cytogenetic study of 

the peripheral blood performed on the newborn boy did not show chromosomal 

abnormalities. In 1969, the patient had another pregnancy and delivered a 

normal daughter.

36



In reviewing reports of chromosomal aberrations observed by Pollini 

and Columbi, [42] Vigliani and Saita [41] suggested a possible mutagenic 

effect on blood cells which may help to explain the appearance of leukemia 

during the course of a benzene hypoplastic anemia. The authors made no 

conclusion concerning the existence of a true "benzene leukemia" because of 

a lack of extensive analysis of the incidence of leukemia among workers 

exposed to benzene as compared with that of a carefully evaluated control 

group. In a leukemia survey reported by Thorpe, [54] emphasis was placed 

on the need for improvement in the recording and storage of biological 

observations, job histories, occupational exposures, and demographic data. 

A comparison by Vigliani and Saita [41] of the incidence of acute leukemia 

among the general population in Milan from 1959 to 1961, however, indicated 

an incidence of about 1 case among 20,000 people. Statistics from the 

Italian National Institute for Insurance Against Accidents and Occupational 

Diseases as reported by Vigliani and Saita [41] showed a sharp rise in the 

reported cases of acute leukemia among local residents in 1962 to 1963, 

coinciding with the increase in cases of benzene poisoning in workers, The 

rise in leukemia cases was about 20 times higher than expected. The 

incidence of leukemia was especially striking when the fatal general 

population cases were considered: out of 26 deaths, 11 were due to

leukemia and 15 to aplastic anemia. [41] Their figures corresponded well 

with those of Cavignaux [55] for 1960 and 1961 which pointed out the high 

incidence of leukemia among cases of benzene poisoning in France. Vigliani 

and Saita [41] emphasized that, "Great caution must be exercised before 

admitting the benzene etiology of chronic myeloid or lymphatic types of 
leukemia."



Browning [23] has tabulated 60 cases of leukemia among benzene 

workers in her 1965 text. She found no correlation between the original 

authors' reported medical findings and benzene exposure levels.

In a 1969 report of the health status of 765 female workers in the 

leather industry in Lodz, Poland, Butarewicz et al [56] provided data 

showing blood changes in 18.6% of 350 workers exposed to a benzene-

containing adhesive, as compared with blood changes in only 5% of 246

workers exposed to a benzene-free glue and 3.5% in 169 control female

workers who were not exposed to either of ,thfe adhesives. The atmospheric
11benzene levels were not well defined, the highest concentrations noted in 

one of the zones being reported as more than 1.2 times (37 ppm) the maximum 

permissible concentration of 100 mg/cu m (31 ppm). There were wide 

Variations in the air analyses as a function of the season, room 

temperature, the number of dryers operating, and the efficiency of the 

ventilation; thetfefote, essentially ho exposute-effeet comparisons can be 

made. Such a large population of workets exposed to benzene in recent 

years would have provided an excellent oppottuhity for the development of 

correlative data between blood changes and other medical findings with 

measured environmental exposures to benzene.

The study of Hardy and Elkins [57] in 1948 emphasized that ben&ehe 

poisoning, as evidenced by laboratory blood studies, frequently occurted

without any indication of clinical signs or Symptoms. A small 

Massachusetts rubber coating firm experienced the death of an employee 

which was diagnosed as benzene poisoning. Subsequently, a blood study was 

performed on all 52 workers employed by the company. Sixteen workers 

showed deviations in more than 1 blood element. The results of air



analyses, taken on 3 different occasions, are listed in Table Xll-8 and

indicate what the authors termed remarkable uniformity. There had been no

significant changes in the ventilation of the plant or in the plant's 

operational procedures during the 8-year period preceding the complete 

blood study; however, during the wartime period of 1942-1946, most of the 

men had put in considerable overtime work, "averaging much more than eight 

hours a day." According to the authors, [57] of the 16 men with abnormal 

blood pictures, 6 worked in the coating room and, in all probability, were

exposed to average benzene concentrations of not over 60 ppm; 2 men who

worked in the mixing room were possibly exposed to 80 ppm; and 1 man who 

cleaned the cans may have had a considerably higher exposure. Followup 

studies of the 16 workers, either 4 months or 10 months later, showed only 

4 workers with relatively normal hematologic values at the time the report 

was written, 10 months after benzene exposure ceased entirely. It was 

concluded from this study that the maximum allowable concentration of 75 

ppm of benzene which was accepted by the State of Massachusetts at that 

time was too high, and subsequently the figure of 35 ppm was used.

Additional data on effects of benzene on the blood picture were 

provided in 1961 by Pagnotto et al [12] from a study of the Massachusetts 

rubber coating industry. By that time, the use of benzene as an industrial 

solvent in large quantities had diminished considerably; however, petroleum 

naphthas containing varying amounts of benzene up to 9.3% were used heavily 

in the rubber coating industry. Their study covered 11 plants which 

involved practically all the large Massachusetts plants and some of the 

smaller ones. Of 65 environmental determinations taken, only 4 were 

recorded above 40 ppm, the highest being 125 ppm. Air sampling and
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analyses were performed by collecting the benzene vapor on silica gel and 

analyzing the desorbed benzene by ultraviolet spectrophotometry. In 

addition, urinary phenol determinations were performed on 162 workers and 

compared with the atmospheric exposure levels as shown in Figure XII-1. 

According to the authors, it was apparent from the air-urine correlation 

that the phenol test was a good index of benzene exposure. A limited 

number of Hgb determinations were also performed on workers in 3 of the 

plants. The results of the blood tests on 47 men representing spreader, 

saturator, and churn operations showed in Plant A, 5 out of 27 workers had 

Hgb levels below 13.5 g/ 100 ml of blood and 2 out of 32 had RBC under 4 

million/cu mm. In Plant B, 1 worker out of 9 examined showed deviations in 

Hgb and RBC below the criteria listed for Plant A. No abnormal findings 

were reported in Plant C.

The domestic and foreign literature dealing with the effects of 

benaene on exposed workers consists primarily of medical reports rather 

than documented, comprehensive frequency and distribution studies 

encompassing both medical and environmental findings. Published definitive 

epidemiologic data have been difficult to find on workers exposed to 

benzene vapor at specific concentrations for prolonged periods of time.

Kozlova and Volkova [58] in 1960 reported on observed changes of the 

formed elements of the blood and phagocytic activity of leukocytes in 

workers exposed to benzene in a leatherette factory over a study period of 

5 years, 1953-1957. The blood changes were studied in 252 production 

workers; phagocytic activity of leukocytes was also determined from 157 of 

the subjects. Environmental concentrations of benzene fluctuated from 150-

1,000 mg/cu m (47-310 ppm) during the first 3 years of the study. At the
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end of 1955, environmental concentrations were reduced due to installation 

of improved control measures, and in 1957, exposure levels reportedly did 

not exceed 80-150 mg/cu m (25-47 ppm) average concentrations. Worker job 

assignments remained relatively unchanged during the course of the 5-year 

period. Phagocytic activity of leukocytes was measured by the average 

number of bacteria engulfed by neutrophils in a 1 1/2 billion suspension of 

Bacillus Fridmani. For analysis of the data, 3 groups were selected based 

upon environmental benzene levels in the plant areas. Group I, consisting 

of 121 workers, was exposed at benzene concentrations exceeding 250 mg/cu m 

(about 78 ppm) which was more than 5 times the then existing maximum 

permissible concentrations of 50 mg/cu m (16 ppm). Group II consisted of 

60 workers exposed to concentrations of 100-200 mg/cu m (31-62 ppm), 2-4 

times the maximum permissible concentration, and Group III, 71 workers not 

having production assignments involving benzene but whose exposures were 

from 75-125 mg/cu m (24-39 ppm) due to benzene vapor in the proximity of 

the main production areas. The Group III exposure levels were 1 1/2 to 

2/1/2 times the maximum permissible concentration. Marked alterations of 

blood formed elements were reported for all groups and the authors [58] 

noted that decreased leukocyte and thrombocyte counts were observed more 

frequently in workers employed 5-10 years than were changes in erythrocyte 

composition. Furthermore, it was stated that with prolonged contact with 

small concentrations of benzene (Group 'III exposure levels), leukocyte 

depression occurred prior to depression of the erythrocytes. In Groups I 

and II, the prevalence of neutropenia was closely related to the length of 

worker employment. Because of the leukocyte depressions observed, and 

particularly with the neutrophils, it was believed that phagocytic activity
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provided a measure of individual susceptibility to benzene. Phagocytic 

activity was decreased in 86% of Group I workers and 60% of Group III 

workers. It was found that phagocytic activity of the leukocytes, as a 

rule, decreased in the majority of workers sooner than blood alterations 

were noted. It was suggested that phagocytic activity of the leukocytes 

was a more sensitive test for benzene poisoning than was observation of 

morphological changes of the blood.

Horiuchi et al [59] presented in 1963 the effects of benzene 

exposure in 373 male workers engaged in paint manufacture of coating 

operations in 14 workshops. Thirty-minute breathing zone samples were 

taken along with clinical laboratory tests which included complete blood 

cell counts, specific gravities of whole blood and serum, urinary 

coproporphyrin and total sulfate ratios, and subjective clinical symptoms 

obtained by a questionnaire. Workshops were grouped according to the range 

of benzene concentrations encountered as: Group I, 6.6-78.5 ppm; Group II,

3.4-35.9 ppm; Group III, 0.3-22.1 ppm; and Group IV, trace-1.8 ppm. From 

the frequency of "abnormal" findings (unspecified as to what constituted 

abnormal) it was concluded that effects noted in Group IV were essentially 

the same as for workers not exposed to benzene. Based on the higher 

incidence of abnormal findings in Groups I and II compared with Group III, 

the authors concluded that the maximium allowable concentration of benzene 

in the workroom air should be below the maximum encountered in Group III, 

that is, approximately 20 ppm.

Followup studies [LD Pagnotto, written communication, October 1972] 

of the rubber coating industry originally reported by Pagnotto et al [12] 

were made through 1963 and results are summarized in Table XII-9 for Plant
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A for which the most complete information was available. Two naphtha 

solvents were used in Plant A, (3% and 7.5% benzene by volume) until 1965 

when toluene-containing solvents were introduced. Table XII-9 lists 12 of 

35 workers who were involved in the study. Although information is 

minimal, the table provides information as to environmental benzene 

concentrations and worker exposures as measured by urine phenol levels over 

a 3 1/2 year period from 1960 through 1963. Environmental benzene

concentrations for spreader and churn operations consistently averaged 

between 20 and 25 ppm and frequently were lower. The saturator operation 

indicated fluctuations as high as 140 ppm and it appears that saturator 

environmental levels in the vicinity of 70-90 ppm were encountered rather 

frequently. Of particular significance is the generally close agreement 

observed between environmental benzene concentrations obtained from 

laboratory analysis and equivalent air levels for individual worker 

exposures as determined from Table XII-10. This again indicated the value 

of urinary phenol determinations as a measure of exposure to benzene.

Blood Hgb levels of some of the workers are listed in Table XII-11.

The data are very meager and no firm conclusions can be drawn from the

information. In one of the 1961 studies, 27 workers were tested and 6 were 

found to have Hgb levels below 13.5 g/100 ml of blood. In the 1963 study,

12 of 24 workers examined were reported to have normal blood pictures. The

remainder were said by the company to show minor deviations from normal, 

although these differences were unspecified and the information was 

unavailable. Blood studies from Worker L were reported to have liad an 

appreciable deviation from the normal. There was no knowledge of his blood 

picture prior to being hired by the rubber coating firm. He was removed
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from the job in 1963. Worker H was the saturator operator reported in 

Table XII-9 and had the highest benzene exposures. He was still working 

at the saturator job in June, 1967.

(a) Sex, Pregnancy, and Age

In 1939, Hunter [21] reported on a study of 70 male and 19 female 

workers exposed to benzene whose histories, physical examinations, routine 

urine and complete blood examinations were conducted over a period of 4 

years. The workers were divided into 3 main classifications consisting of 

group 1, those showing a normal blood picture; group 2, those showing only 

1 abnormal feature; and group 3, those showing 2 or more deviations from 

the normal. Two of the 10 fatal cases in the study were female. In one 

factory where 43 workers were studied, although the only fatal case was a 

young girl, 26 of the workers were men (60.5%) and about 28 of them (64%) 

had a depression of the polynuclear percentage. The author found no 

supporting evidence that women were more liable to development of benzene 

poisoning than men and suggested that facts from the study cast 

considerable doubt on whether a female hypersusceptibility to benzene 

existed. Hunter emphasized that the early diagnosis of benzene poisoning 

depends upon an evaluation of the complete blood picture rather than upon 

the existence of a leukopenia alone. No environmental exposure data were 

given in this report.

Mallory et al [22] in a companion paper to that of Hunter suggested 

from either necropsy or biopsy material obtained from 4 females and 12 

males that hypoplastic reactions might be more common in the female than in 

the male, thus supporting an opinion at the time that females were more
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susceptible than males to the effects of benzene poisoning. The authors 

recognized that their figures were too few to be conclusive.

In 1928, Smith [16] reported on a study of 79 women, 25 with 

confirmed chronic benzene poisoning and 5 suspected cases. Complete 

histories were obtained which were designed to reveal past and present 

exposure to benzene. In addition, complete blood counts were taken, 

consisting of Hgb, RBC, and WBC, including differential counts. Findings 

were not compared with those of male workers but the results did not differ 

from those reported in men by other investigations. The age spread of the 

women studied was quite evenly distributed from 17-52 years. The author 

found that susceptibility to benzene poisoning appeared to be about equally 

marked among young and older women and that youth did not seem to be a 

predisposing factor in the development of benzene poisoning. In addition, 

the menstrual function was undisturbed in the majority of positive and 

suspected cases. The few incidences of menstrual Irregularities were not 

considered to be of concern.

In 1956, Cassan and Baron [60] mentioned the greater susceptibility 

of women to benzene poisoning, particularly when they were pregnant. 

Because the study involved women exclusively, no firm conclusions may be 

drawn from this report regarding sex differences in susceptibility to 

benzene poisoning.

Savilahti [39] reported in 1956 that he did not find any correlation 

between age, sex, and symptoms of benzene poisoning in the study of 147 

workers (98 women, 49 men). Subjects showing abnormal blood changes ranged 

in age from 16-66 (average*36) while those unaffected were from ages 18-66 

with an identical average age. Twenty-four of the 41 female workers and 18
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of the 35 male workers became ill; thus, no significant differences were 

observed between age or sex.

Animal Toxicity

(a) Acute Exposures

Lazarew et al [61] reported in 1931 that liquid benzene could be 

absorbed through a rabbit's paw by measuring the weight increase resulting 

from the absorption of benzene vapor by activated silica gel from the 

exhaled air after preliminary removal of water and carbon dioxide by 

phosphorus pentoxide and soda lime. The animal served as its own control 

by providing an exhaled air sample through a tracheal canula for analysis 

preceding the 30- to 60-minute exposure. The weight increases of the 

silica gel adsorption tubes during the experimental runs were 2-3 times 

greater than the controls. No quantitative data were available and the 

degree of benzene absorption is unknown.

In 1944, Carpenter et al [62] described their observations of ten 

rabbits undergoing anesthesia with 35,000-45,000 ppm of benzene vapor in 

air. The average time required for light anesthesia was 3.7 minutes, 5.0 

minutes for excitation and tremors; death ensued in approximately 36 

minutes.

In 1965, Jonek et al [63] reported on a histochemical study of 

enzymatic changes in the central nervous system of mice subjected to acute 

benzene poisoning by single inhalation exposures at the 60 mg/liter (18,750. 

ppm) and compared the findings to those observed in a control group. 

Changes in the activity of enzymes suggested a selective influence of 

benzene on oxidation in neurons. This reaction was not the same in all
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neurons; some showed enzymatic activity similar to that observed in the 

control group, while in others, activity was less than that in the controls 

or even absent. The authors postulated that the observed changes in the 

enzyme activities may be the result of a direct lesion of the lipoprotein 

membranes of the structural elements of the cells by benzene or the 

products of benzene metabolism.

(b) Chronic Exposures

In 1941, Schrenk et al [64] reported, in an extensive study of dogs 

exposed continuously (24 hr/day), intermittently (4- or 8-hr/day), and 

singly to benzene vapor, that (1) the initial absorption of benzene was 

extremely rapid (nearly complete within 30 minutes) with later absorption 

approaching equilibrium more slowly (over several hours), (2) a linear 

relationship existed between the concentration of benzene in the air and 

the equilibrium concentration in the blood, (3) distribution of benzene 

throughout the body occurred rapidly, (4) the fat, bone marrow, and urine 

contained approximately 20 times the concentration of benzene as the blood, 

(5) benzene concentration in the muscle and vital organs was 1-3 times that 

in the blood, and (6) the RBC contained approximately twice the amount of 

benzene found in the plasma. The blood benzene values were determined by 

either a nitration method or a rather involved method in which carbon 

dioxide was formed from the combustion of benzene and ultimately measured 

by changes in electrical conductivity through precipitation as barium 

carbonate from a barium hydroxide solution. The method provided 70-112% 

recoveries of added known amounts of benzene. The blood samples were drawn 

before and after the repeated daily exposures to benzene. The exposures 

ranged from 2-37.5 hours for different animals. The results of this work
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showed that for each 100 ppm of benzene vapor in air, the equilibrium blood 

concentration in terms of milligrams of benzene/100 ml of blood was 0.21. 

When the concentration of benzene in blood and air were calculated in mg/ 

liter, the coefficient of distribution obtained by dividing the blood 

concentration by the air concentration was found to be 6.58.

Desoille et al [65] described in 1967 the effects of exposure to 

benzene on virgin and pregnant guinea pigs from a dose of 0.1 g/kg using 

benzene in olive oil and injected subcutaneously each day for a period of 9 

weeks. A study of the variations of RBC and WBC counts was made before, 

during, and after pregnancy. Pregnancy did not enhance the hemotoxic 

effects of benzene.

Deichmann et al [66] in 1963 published results after exposing 8 

groups of rats to analyzed benzene concentrations extending from 15-831 ppm 

for periods ranging from 5 weeks to 7 months. A significant leukopenia 

resulted after 2-4 weeks of exposure to the 3 highest exposure groups of 

831, 65, and 61 ppm. Exposure to mean concentrations of 47 and 44 ppm, 7

hours/day, 5 days/week, in separate experiments induced a moderate but 

definite leukopenia after 5-8 weeks of exposure. The WBC dropped from 12.1 

to 10.4 thousand/cu mm in the males and from 11.3 to 9.4 thousand/cu mm in

the females when exposed to 47 ppm (range, 33-55). In the groups exposed

to 44 ppm (range 40-50), the WBC dropped from 15.2 to 10.0 thousand/cu mm 

in the males and from 11.8 to 7.7 thousand/ cu mm in the females. No

leukopenia was observed in the groups of rats exposed to average

concentrations of 31, 29, or 15 ppm or in the controls.

-Nau et al [67] exposed rats to a benzene concentration of 1,000 ppm 

for 23.5 hours/day, 7 days/week. After 183 hours of exposure, the rats
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appeared to be in "poor" condition and suffered a loss in body weight. 

They hemorrhaged from the nose and mouth, the stomach was distended, the 

gut was empty, and the blood vessels of the lungs, liver, kidneys, 

intestines, and omental tissues were engorged. The WBC fell from a mean 

value of 22,650 to 5,425/cu mm by the 105th day, and there was a reversal 

of the polymorphonuclear-lymphocyte ratio from 22:57 in the preexposure 

period to 54:46 at the end of 105 days of exposure. Microscopic studies of 

the bone marrow showed an increase in the proportion of RBC precursors. 

Nau et al [67] also showed a decrease of WBC (no values given) after about

90 days of repeated daily exposures of 8 hours/day, 5 days/week at the 200

ppm level, but there was no change in the polymorphonuclear-lymphocyte 

ratio. Microscopic examination of the bone marrow showed some depression 

of myelocytic activity and stimulation of erythrocytic activity. Rats 

similarly exposed at 50 ppm had a decrease in the WBC (no values given).

In addition, the development of bilateral cataracts was reported in 

50% of the rats after 600 hours of exposure to the 50-ppm> concentration of 

benzene. However, observation was not found in the rats exposed to 200 ppm 

of benzene undergoing the ssme 8-hour/day, 5-day/week regimen after 750

hours of exposure. The rats exposed to 50 ppm also developed, as did the

rats at the 200 ppm exposure level, lower leucocyte DNA values, depression 

of myelocytic activity, and a stimulated erythrocytic activity in the bone 

marrow.

Wolf et al [68] published in 1956 the results of their toxicologic 

studies of benzene and certain of its alkylated derivatives. These 

investigators noted slight histopathologic changes in the blood and testes 

of rabbits consisting of leukopenia and degeneration of the seminiferous
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tubules when exposed to 80 ppm concentrations of benzene for 243 days; in 

the bone marrow, blood, spleen, and testes of guinea pigs exposed to 88 ppm 

for 269 days; in the blood and kidneys of guinea pigs exposed to 88 ppm for 

32 days; and in the blood and spleen of rats exposed to 88 ppm for 204 

days. On the basis of these results, the authors concluded that the no­

effect level was below 80 ppm.

Following the belief that the central nervous system has a 

regulatory effect on hematopoietic activity, and that functional 

disturbances of the central nervous system preceded changes occurring in 

either blood morphology or the hematopoietic system to chronic benzene 

intoxication, Novikov [69] in 1956 reported on changes in conditioned 

reflex activity in 6 rats exposed at 64 mg/cu m (20 ppm) of benzene vapor 

and an additional 6 animals exposed at 13 mg/cu m (4 ppm) for 6 hours/day, 

6 days/week, for 5 1/2 months. As could be expected with a central nervous 

system depressant, there was a delay in conditional response time after 

exposure to benzene; this delay was observed in rats exposed at 20 ppm but 

not at 4 ppm. It was suggested by the author [69] that the results 

presented could serve as a physiological basis for an allowable benzene 

concentration limit in atmospheric air.

Horiuchi et al [70] reported in 1967 on the effects of benzene 

inhalation on spontaneous behavior in 15 mice as measured by spontaneous 

motor (wheel-turning) activity. This study was initiated as a result of 

reports in the USSR literature on behavioral responses. Mice were exposed 

6 hours/day for 20 days to benzene concentrations at 10 ppm and 100 ppm. 

Observations were also made on changes in body weight, RBC's, WBC's, and 

thrombocyte counts. Thirty days after cessation of benzene exposure,
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examinations of the bone marrow, spleen, liver, and kidneys were performed. 

A decrease in wheel-turning activity was observed by the 5th day in the 5 

mice exposed at 100 ppm. The 5 mice exposed at 10 ppm and 100 ppm showed 

decreases in the RBC and WBC counts, but values overlapped those of the 

controls. In addition, degenerative changes of the bone marrow were 

reported in all mice exposed to benzene at 100 ppm and slight degenerative 

changes in 2 of 5 mice exposed at 10 ppm. The authors emphasized that 

further study was needed. No attempt was made to relate the animal results 

to human exposure, but it was concluded that the benzene concentration 

necessary to prevent effects in mice was below 10 ppm.

(1) Nutrition

Experimental studies with dogs and rats conducted by Shils 

and Goldwater [71] showed that an inadequate protein intake predisposes to 

increased susceptibility to benzene poisoning. They stated that no 

appreciable effect of varying the fat content of the diet has been 

demonstrated convincingly. On this basis, they recommended that the 

benzene workers have well balanced meals containing sufficient of high 

quality protein. This recommendation was made with a view to the role of 

the sulfur-containing amino acids and of choline in influencing the fat 

content of the liver and the reparative processes in the liver.

(2) Proneness to Infections

Reports on this subject are limited to several studies made 

in the 1913-1917 period. Winternitz and Hirschfelder [72] reported that 

rabbits with leukopenia from benzene had strikingly reduced resistance to 

pneumonia. Kline and Winternitz [73] emphasized the lowering of resistance 

that accompanies leukopenia. Animals with leukopenia from benzene
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succumbed in 41 hours to 5 ml of a 20-hour culture of pneumococcus 

introduced intratracheally, while animals injected subcutaneously with 1 ml 

of toluene/kg of body weight did not have leukopenia, had normal resistance 

to infection, and survived. Weiskotten and Steensland [74] noted that 

active acute infection appeared spontaneously in rabbits injected with 

benzene. The authors suggested that the lowering of resistance by benzene 

may activate latent or quiescent infection. White and Gammon [75] reported 

that rabbits exposed to benzene vapor administered from a wide-mouthed 

bottle with absorbent cotton on the bottom were less resistant to 

tuberculous infection than were unexposed rabbits. Camp and Baumgartner 

[76] found that rabbits whose leukocyte counts had been lowered to below 

1,000/cu mm succumbed in 1 1/2 to 4 days from inflammatory reactions

resulting from irritation of an ear scratch with croton oil or from an 

intramuscular injection of carmine.

(c) Metabolism

Phenol is the chief metabolite of benzene in the urine and, to a

lesser extent, hydroquinone and catechol have been found [77]; yet,

although the toxic effects of benzene have been attributed to its phenolic

metabolites, [23, 78] subcutaneous administration of phenol, catechol, and

hydroquinone in rats failed to produce any hematopoietic toxicity even at

doses approximating an LD50. [79] Posner et al [80] in 1961 demonstrated a

microsomal enzyme that metabolized benzene and it has been concluded from

studies in rats that metabolism by hepatic microsomal enzymes is necessary

for the observed bone marrow toxicity. [79] Also, benzene itself, rather

than its hydroxylated derivatives, is probably responsible for the

microsomal stimulation. [81] Drew and Fouts [82] in 1974 demonstrated that
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pretreatment of rats with phenobarbltal Increased the rate of hepatic 

microsomal metabolism of benzene 10-fold. On the basis that the LC50 for 

Inhaled benzene and the LD50 for Injected benzene were not affected by 

pretreatment of rats with phenobarbltal, a protective effect from 

barbiturateinduced microsomal metabolism was not demonstrated. Lee et al 

[83] in 1974 presented a study which was undertaken to determine which 

stage in erythrocyte development was most sensitive to benzene in the 

belief that benzene interfered with erythrocyte production. Based upon the 

24- or 72-hour uptake of 59Fe in the circulating erythrocytes of mice 

having benzene pretreatment at selected time intervals, the possible damage 

to stem cells, pronormoblasts, normoblasts, or reticulocytes was 

determined. Using the appearance of 59Fe as an index of red cell 

development, it was determined that single doses of benzene selectively 

damaged pronormoblasts and normoblasts without affecting stem cells or 

reticulocytes. Thus, benzene seemed to damage red cell percursors which 

underwent both differentiation and maturation, rather than those concerned 

principally with differentiation (stem cells) or maturation 

(reticulocytes).

Correlation of Exposure and Effect

Liquid benzene on the skin may cause erythema and blistering, and a 

dry, scaly dermatitis may develop on prolonged or repeated exposure. [24] 

Investigations of the percutaneous absorption of benzene have failed to 

detect changes in the urinary inorganic to total sulfate ratio [28] or of 

benzene in the expired breath. [29] According to Hanke et al, [30] the 

rate of benzene absorption through the human skin was found to be 0.4 mg/sq

53



cm/hr as compared with later findings by others of 14-23 mg/sq cm/hr for 

toluene. [32] These findings, along with supporting evidence determined 

in rabbits by Wolf et al [68] indicate that liquid benzene is poorly 

absorbed through the intact skin. Therefore, skin absorption of benzene is 

not considered an important route of entry in the occupational situation; 

however, it is important to avoid skin contact with benzene to prevent 

local effects. Similarly, ingestion of liquid benzene is generally of

concern only in cases of accidental swallowing or attempted suicide.

Absorption of benzene through inhalation is by far the most 

important route of entry in industrial exposures. Repeated exposures of 

workers over a prolonged time to high concentrations of benzene have 

occurred under conditions of poor ventilation combined with heated benzene 

to accelerate evaporation. [38] In a plant which manufactured rubber 

raincoats, an atmospheric benzene concentration was estimated to be 5,320 

ppm. Sixty workers out of 184 suffered from chronic benzene poisoning in 

the reported study. [38] Rats exposed experimentally to 1,000 ppm of 

benzene [67] by Nau et al showed hemorrhaging from the nose and mouth, 

engorgement of the blood vessels, stomach distention, and markedly reduced 

WBC levels. Animals were exposed (23.5 hours/day, 7 days/week) for 183 

hours to the benzene vapor. Such an exposure is not representative of the 

normal work schedule but it does indicate the toxic effects of benzene at a 

concentration to which humans are known to have been exposed.

Worker exposures to benzene concentrations from approximately 300-

700 ppm consistently show marked blood dyscrasias. [19,39,41] Reduced WBC

and RBC counts were noted by Greenburg [19]; Savilahti [39] found

thrombocytopenia, leukopenia, and anemia in from 32-62% of 147 workers; and
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Vigliani and Saita [41] described 2 cases of benzene-associated leukemia 

along with other workers who showed signs of benzene poisoning in a 

rotogravure plant which used inks containing 40% benzene. Deichmann et al 

[66] found significant leukopenia in rats exposed to 831 ppm of benzene 

vapor for periods of 5 weeks and longer. In another animal study, Nau et 

al [67] showed decreased WBC's and altered myelocytic and erythrocytic 

activity of the bone marrow in rats exposed to 200 ppm, 8 hours/day, 5 

days/week, for 750 hours of exposure.

Alterations in the blood picture also have occurred at benzene 

exposure levels in the vicinity of 100 ppm. Juzwiak, [40] in 1969, stated 

the results of blood examinations on 585 persons employed in 13 shoe 

plants. Exposure levels from benzene contained in a glue mixture 

fluctuated in mean concentrations from 31-156 ppm. The author found 

reduced RBC counts, WBC counts, and Hgb levels. Although 91% of the 

workers had reduced Hgb levels, only 8.5% had reduced WBC counts. It is 

difficult to correlate the medical findings with the airborne exposures 

because of the lack of adequately documented environmental data..

Although Greenburg's findings [19] were published in 1926, they

represent some of the most meaningful studies available showing approximate

correlations of environmental benzene concentrations and chronic benzene

poisoning (see Table XII-3). Greenburg considered cases as positive which

showed less than 5,500 WBC/cu mm. In all groups studied, there were

workers who presented a picture of chronic benzene poisoning as judged by

reductions in the WBC count. Greenburg concluded that keeping the average

concentration of benzene in the workroom air below 100 ppm (presumably just

below this level) still involved a substantial hazard to workers. Effects
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at 80-88 ppm were noted in animals by Wolf et al [68] in 1956 in rats, 

rabbits, and guinea pigs exposed intermittently to benzene vapor for 

periods varying from 204 to 269 days. On the basis of results from their 

study, the no-effect level was concluded by the authors to be below 80 ppm.

Hardy and Elkins [57] found evidence of deviations in more than one 

blood element in 16 of 52 workers from blood studies in a plant using 

naphtha solvents. For 8 years preceding their blood study, the plant’s 

operational procedures and ventilation had undergone no significant

changes. Six of the men with abnormal blood pictures were exposed to

average benzene concentrations of not over 60 ppm and two other men were 

exposed to possibly 80 ppm. Additional data from further studies of the 

rubber coating industry from 1960 through 1963 were supplied by Pagnotto in 

a 1972 written communication. Environmental benzene concentrations 

consistently averaged between 20 and 25 ppm and frequently were lower for 

spreader and churn operations. From minimal blood data, 6 of 27 workers 

tested were found to have Hgb levels below 13.5 g/100 ml of blood in one of 

the 1961 studies (see Table XII-11). In the 1963 study, 12 of 24 workers

were said to show minor deviations from normal although these differences

were unspecified. Rats exposed by Deichmann et al [66] at mean 

concentrations of 44 ppm (range 40-50), 7 hours/day, 5 days/week, had WBC 

levels decreasing from 15.2 (preexposure) to 10.0 thousand/cu mm (after 5-8 

weeks) In the males and from 11.8 (preexposure) to 7.7 thousand/cu mm in 

the females. No leukopenia was observed in rats exposed to average 

concentrations of 15 or 31 ppm.
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IV. ENVIRONMENTAL DATA

Environmental Concentrations

In the past, where benzene was used in large quantities, extremely 

high concentrations of atmospheric benzene vapor could exist in the working 

environment. This was due in part to the lack of toxicological knowledge 

about benzene and the lack of enforcement of control procedures. During 

the winter months when the doors and windows of the plants were closed and 

normal ventilation was minimized, concentrations of benzene vapor could 

reach very high levels. The literature indicates atmospheric 

concentrations well over 16,000 ppm. [13] As the knowledge of the toxicity 

of benzene increased and better industrial hygiene practices were conducted 

in the United States, the levels of benzene in the workroom atmosphere 

decreased. During the 1930's and 1940's, these concentrations were lowered 

through the use of product substitution, improved ventilation, and other 

engineering practices. Specifically, in 1939, Greenburg et al [17] cited 

benzene exposure levels ranging from 10-1,060 ppm in 3 plants of the 

rotogravure printing industry in New York City. Also in 1939, a report by 

Bowditch and Elkins [18] gave levels of benzene vapor concentrations 

extending from 100 to greater than 500 ppm in 6 plants engaged in the 

manufacture of artificial leather, rubber goods, or shoes during the 1936- 

1939 period.

In 1961, Pagnotto et al [12] reported measurements of benzene 

concentrations up to 125 ppm in the workroom atmosphere of 8 rubber coating 

plants, the highest concentrations of benzene occurring in the saturating 

rooms.
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From additional data supplied by Pagnotto [written communication, 

1972], benzene concentrations in the plant listed in Table XII-9 ranged 

from 95-260 ppm in the churn room operations and from 65-200 ppm at the 

spreader machines during 1935 through 1937. The vise of the benzene solvent 

was discontinued in 1937. In 1960, when surveys of this industry were 

resumed, benzene containing naphtha solvents had been substituted for the 

benzene solvent used earlier, the percentage of benzene in the naphtha 

solvents being 3% and 7.5% by volume. During the 1960-1963 period, 

environmental benzene concentrations for spreader and churn operations 

consistently averaged 20-25 ppm and frequently were lower. Measurements as 

high as 140 ppm were noted in the saturator operation. These benzene 

containing naphtha solvents continued to be used until 1965 when toluene 

containing solvents were introduced. In another plant using a solvent 

containing 5% benzene, environmental concentrations of 125 ppm were 

recorded. Improvements in ventilation reduced air levels to approximately 

6 ppm (range 3-13 ppm) within 6 months. Urine phenol levels in the workers 

attested to the reduced environmental concentrations. These significant 

reductions in the measured benzene concentrations emphasize the efficacy of 

substitution and ventilation procedures as methods of control.

Parkinson [84] in 1971 reported on an investigation on the

possibility that a hazard to health existed in the handling of gasoline,

particularly at retail gasoline service (filling) stations. A working

group consisting of representatives from approximately 6 British petroleum

firms planned the investigation, conducted at typical retail service

stations and bulk loading installations during the summer of 1969, mostly

during warm weather and while there was a relatively high demand for
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gasoline. A series of 30-minute personal samples were taken at a sampling 

rate of 1 liter/minute during the entire work period of service station 

operators, and during the entire period of loading or discharging of 

gasoline for bulk installation operators or tank truck (road car) drivers. 

In addition, urine samples for phenol analysis were collected at the 

beginning and end of the working period. Nine service stations were 

surveyed, 4 of which were large and open with a high annual sales volume of 

gasoline, and 4 that were "typical filling stations" of medium size and 

somewhat enclosed with average annual sales. One station represented a 

site in dense urban areas, being very enclosed and with a relatively high 

annual sales volume of gasoline. Benzene content of gasolines ranged from 

2.8-5.8% by volume, in weather situations ranging from sunny to changeable, 

with variable temperature and wind conditions. Environmental benzene 

concentrations ranged from 0.2-3.2 ppm from 121 total tests taken. Normal 

handling procedures at bulk loading facilities with gasolines ranging from

0.4-6.8% benzene by volume resulted in environmental benzene concentrations 

ranging from 0.1-7.7 ppm for 70 total determinations. One seemingly 

nonrepresentative sample of 19.5 ppm was also found. Loading and 

discharging of road tankers with gasoline containing added benzene (10-33% 

by volume) produced 1 airborne benzene concentrations ranging from 1.4-9.4 

ppm. The highest urinary phenol levels observed were 18 mg/liter for the 

service station operations, 10 mg/liter for the bulk loading facilities 

handling normal gasoline, and 48 mg/liter in the handling of gasoline 

containing added benzene. It was concluded that benzene concentrations 

measured during normal operations in a variety of service stations were 

such that it was difficult to conceive that any benzene inhalation hazard
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existed. Even though environmental benzene and urinary phenol levels for 

bulk loading operations were higher than for the filling station findings, 

the values recorded were considered to be well within the UK ceiling limit 

of 25 ppm, even during abnormally warm weather.

Sherwood [85] in 1972 reported on benzene exposures during loading 

and weighing operations of rail tankers with gasoline from storage tanks. 

The loading operator was adjacent to open ports on top of the tankers and 

the weighing operator worked in a small room at ground level between pair 

of railroad tracks. During loading operations, some benzene vapor escaped 

through the open tanker ports and rather than being dispersed, entered the 

weighing room at ground level when there was little or no wind. The mean 

concentrations to which workers were exposed during loading operations were

1.6 and 2.5 ppm, equivalent to 1.1 and 1.3 ppm on a time-weighted average 

basis over an 8-hour workday. The weighing operator was exposed to a mean 

concentration of 20 ppm which, when calculated on a time-weighted averaged 

basis, was equivalent to 14 ppm over an 8-hour workday. Modifications were 

made to reduce exposures in the weighing operation to levels below those 

encountered by the loaders.

Published environmental data on benzene concentrations in other 

industries is lacking beyond the brief statements provided in the medical 

reports on benzene poisoning discussed in Section III. These medical 

reports indicate a marked decrease in benzene exposure levels since World 

War I when concentrations extended into the thousands of ppm. [13] By the 

late 1930's, levels had dropped to hundreds of ppm, [17,18] and more 

recently to the tens of ppm. [12,22,56,86]
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The substitution of process materials or equipment is frequently the 

most effective approach to reduce or eliminate benzene vapor exposures in 

industry. Oftentimes substitution of less toxic materials is one of the 

most overlooked methods of controlling exposure to a hazardous substance. 

The effectiveness of this method has been demonstrated in the rubber 

coating industry.

Where substitution of benzene containing solvent mixtures for other 

less hazardous solvents is not practical, consideration should be given to 

isolation of processes and installation of local exhaust ventilation in the 

major process sections where vaporous benzene emissions occur.

Environmental Sampling and Analytical Method

Many methods have been used in the past to determine the 

concentration of benzene vapor in air. Methods of collection have included 

absorption in scrubbers by nitrating solutions, [87,88] direct collection 

of whole-air samples, [89] and adsorption on silica gel [90-94] or 

activated carbon. [95,96] Analytical methods have included colorimetry 

which involves nitration followed by reaction with various ketones, 

[87,88,97] direct ultraviolet spectrophotometry, [91,98,99] direct 

estimation by means of colorimetric Indicator tubes, [100,101] based on the 

colorimetric reaction between benzene and formaldehyde in the presence of 

sulfuric acid, and gas chromatography. [95,96,102-104]

Of the various methods of collection, adsorption on activated 

charcoal offers the greatest efficiency and ease of collection. The use of 

scrubbing liquids is inconvenient for obtaining personal breathing-zone 

samples, especially when 2 or more scrubbers must be connected in series to
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assure high collection efficiency. The use of plastic-film bags for 

collecting whole-air samples may result in loss of samples due to

adsorption or permeation of the benzene vapor through the plastic. In

addition, aromatic hydrocarbons such as benzene are easily displaced from 

silica gel by water vapor, resulting in the possible loss of sample when 

using silica gel in a humid atmosphere.

Of the various methods of analysis, gas chromatography is believed 

to offer the greatest specificity and sensitivity. The various 

colorimetric methods, and even the direct spectrophotometric methods, are

subject to interferences from a wide variety of compounds, and removal of

these interferences is tedious and, in many cases, incomplete. The use of 

colorimetric indicator tubes must be considered only a semiquantitative 

technique, useful only on that basis.

Sorbability of Benzene on Charcoal

A concentration of 25 ppm of benzene was dynamically generated in a 

NIOSH laboratory to test the sorbability of benzene on charcoal. The 

following tests were performed:

(a) Single Section Charcoal Tubes

To obtain an approximate breakthrough value, a charcoal tube 

containing only one section of charcoal (100 mg) was used to collect 

benzene from the air. The 25-ppm mixture was drawn through the tube at a 

rate of 1 liter/minute and a flame ionization detector was placed 

downstream of the tube to monitor the benzene vapor coming through the 

tube. Concentrations coming through the tube were recorded by a strip 

chart recorder and the point at which the signal noticeably deflected from
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the initial reading was defined as the point of breakthrough. The average 

breakthrough volume was 66 liters, obtained from several tubes under these 

conditions.

(b) Double Section Charcoal Tubes

These tests were performed using the normal charcoal tubes 

containing two sections of activated charcoal. Samples were collected at 

25 ppm of benzene at a flow rate of 1 liter/minute and for various lengths 

of time ranging from 10-200 minutes. .Breakthrough was defined as the point 

in sampling at which 0.1 mg of benzene was collected on the 50-mg (backup) 

section of charcoal. The data points are listed in Table IV-1.

A plot was made of total volume sampled vs weight of benzene on the 

backup section of charcoal, a parabolic regression analysis was performed, 

and a curve was plotted. The volume on the curve corresponding to 0.1 mg 

of benzene on the backup section was selected as the point of breakthrough 

and was determined to be 68 liters.

From these data, it appears that 68 liters is a very conservative 

value, since no tube had more than 0.1 mg on the backup section until at 

least 90 liters of air had been drawn through the tube. Therefore, a 

sample volume of 10 liters (1 liter/minute for 10 minutes) as prescribed in 

the recommended sampling method provides excellent recovery of the sampled 

benzene. At this sampled volume of 10 liters, no appreciable amount of 

benzene will pass to the backup filter and the small amount which does 

adsorb is well below the defined breakthrough point (0.1 mg).
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TABLE IV-1

ADSORPTION OF BENZENE ON CHARCOAL SECTIONS 
TO DETERMINE BREAKTHROUGH

Benzene Concentration

Tube Volume sampled Front section Backup section
No. (liters) (mg) (mg)

20-16 10 0.79 0.001
20-12 15 1.24 0.001
20-9 20 1.74 0.004
20-10 25 2.11 N.D.*
20-U 30 2.46 N.D.*
20-15 35 3.08 N.D.*
20-14 40 3.55 0.011
20-8 45 4.01 0.010
20-13 50 4.38 0.014
20-7 55 4.96 0.034
20-5 60 5.20 0.060
20-3 65 5.58 0.013
20-4 70 6.33 0.031
20-1 75 6.60 0.052
20-2 80 7.25 0.070
20-6 90 7.81 0.150
20-20 100 8.72 0.019
20-19 120 10.10 0.033
20-17 150 12.40 0.605
20-18 200 13.83 2.971

*N.D. - No detectable benzene on the backup section.

Accuracy and Precision Data

(a) Analytical Method, Not Including Sampling Error 

Ten samples from the breakthrough tests were used to determine the 

accuracy and precision of the analytical method alone (not including 

sampling error). The 25-ppm benzene concentration was prepared by 

continuously injecting benzene from a motor-driven syringe into a flowing 

air stream. The flow rate of the air sampled through the charcoal tube was 

controlled at 1 liter/minute by a calibrated critical orifice.
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TABLE IV-2

DATA FOR ACCURACY AND PRECISION OF 
THE ANALYTICAL METHOD 

(NOT INCLUDING SAMPLING ERROR)

Tube
No.

Total benzene 
collected (mg)

Volume sampled 
(liters)

Measured conc 
(ppm)

20-7 4.96 55 28.2
20-8 4.01 45 27.9
20-9 1.74 20 27.2
20-10 2.11 25 26.4
20-11 2.46 30 25.7
20-12 1.24 15 25.9
20-13 4.38 50 27.4
20-14 3.55 40 27.8
20-15 3.08 35 27.5
20-16 0.79 10 24.7

Mean (x) of the 10 measured values ■ 26.9 ppm 
Standard deviation (s) ■ 1.1 ppm
Accuracy: Systematic error ■ ~x-25 x 100 * 7.6%

25
Precision (relative standard deviation) = 

s x 100 - 4.2% 
x*

The information in Table IV-2 is obtained from a small sampling, but 

provides a typical example of the accuracy and precision of the method 

excluding any sampling error.

(b) Analytical Method Using Personal Sampling Pump

(1) No in-line resistance

The accuracy and precision of the overall sampling and 

analytical method was determined (Table IV-3) on samples using approved 

coal mine dust personal sampling pumps having no pulsation dampeners and a 

rotameter calibrated with no in-line resistance. Ten charcoal tube samples 

were taken using 5 different pumps (two samples/ pump) at different times 
during the day.
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(A) Sampling procedures

The charcoal tube tips were broken off and the tube 

was connected to the pump inlet with a 3-foot length of polyvinyl tubing. 

With pump operation, the rotameter ball was set for the desired flow rate 

(1 liter/minute), and the benzene-containing air (25 ppm) was sampled for 

10 minutes.

Theoretical sampling volume = 10 liters/tube 

Generated concentration = 25 ppm 

Temperature of sampling = approximately 25 C 

Pressure = approximately 745 mm Hg

TABLE IV-3

DATA FOR ACCURACY AND PRECISION OF ANALYTICAL METHOD 
USING PERSONAL SAMPLING PUMP 

(NO IN-LINE RESISTANCE)

Tube Total benzene Measured conc.
No. collected (mg) (ppm)____

A1 0.69 21.6
B1 0.65 20.3
Cl (lost)
D1 0.69 21.6
El 0.79 24.7
A2 0.68 21.3
B2 0.55 17.2
C2 0.71 22.2
D2 0.67 21.0
E2 0.77 24.1

Mean (x) = 21.6 ppm
Standard Deviation (s) = 2.2 ppm
Accuracy: Systematic error = 25-x x 100 = 13.6%

25
Precision (relative standard deviation) = 

£  x 100 = 10.1%
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(2) With In-line Resistance

Ten charcoal tube samples were collected using the same

procedure as in (1) above, except that pump calibration was performed with

a charcoal tube in line. The results are listed in Table IV-4.

TABLE IV-4

DATA FOR ACCURACY AND PRECISION OF 
ANALYTICAL METHOD USING PERSONAL SAMPLING PUMP 

(WITH IN-LINE RESISTANCE)

Tube Total beiizene Measured conc.
No. collected (mg) (ppm)

A3 0.71 22.2
B3 0.79 24.7
C3 0*71 22.2
D3 0.70 21.9
E3 0.80 25.0
A4 0.51 16.0
B4 0.79 24.7
C4 0.77 24.1
D4 0.77 24.1
E4 0.73 22.9

Mean (x) = 22.8 ppm
Standard Deviation (s) = 2.7 ppm
Accuracy: Systematic error = 25-ST x 100 = 8.8%

25
Precision (relative standard deviation) = 

s x 100 = 11.6%
X “

The accuracy of the tests with in-line calibration was approximately 

5% better than that in (1) above which lacked the in-line calibration. The 

data, however, were insufficient to show whether the difference was 

statistically significant.
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V. DEVELOPMENT OF STANDARD

Basis for Previous Standards

The uses for benzene greatly expanded following World War I and an 

increasing number of reports of chronic benzene poisoning of workers 

appeared in the literature.[1,16-18] By 1947, the maximum allowable 

concentration for worker exposure to benzene had been reduced from 75 ppm 

to 35 ppm in the State of Massachusetts. [57] This was predicated upon the 

findings of Hardy and Elkins [57] of abnormal blood pictures in workers 

exposed to average benzene concentrations probably not over 60-80 ppm. 

This level was later adopted by the Maine Department of Health and Welfare 

in 1954 [105] and the Florida Industrial Commission in 1957. [106]

The American Conference of Governmental Industrial Hygienists 

recommended 100 ppm in 1946. [107] Subsequently, the value was

successively reduced to 50 ppm in 1946, [108] 35 ppm in 1948, [109] and 25 

ppm in 1957 [110] as a time-weighted average level where it remained until 

1963 when a "C" designation was added [111] which indicated a ceiling limit 

that should not be exceeded. This value is the current recommended ceiling 

for an 8-hour/day, 40-hour/week exposure period. [112] The Conference 

believes this level to be low enough to prevent serious blood changes. 

[112]
The American National Standards Institute recommends a time-weighted 

average of 10 ppm for an 8-hour workday with a ceiling of 25 ppm and an 

acceptable peak exposure of 50 ppm for a duration of not more than 10 

minutes if encountered not more than once during an 8-hour workday. [113] 

The ceiling of 25 ppm is considered acceptable to avoid changes in the



blood-forming tissues. The acceptable excursion level and duration is 

apparently based purely on judgment; examination of the literature by NIOSH

has failed to find data to support such an excursion above a ceiling.

The American Industrial Hygiene Association's Hygienic Guide for 

benzene [5] recommends a maximal atmospheric concentration (8 hours) for 

benzene of 25 ppm with 100 ppm not to be exceeded for any period of time. 

The MAC of 25 ppm is based upon the particularly insidious and irreversible

effects of long-term low-level exposure.

The current workroom air standard established under the Occupational 

Safety and Health Act of 1970 is an 8-hour time-weighted average of 10 ppm 

(29 CFR Part 1910.93 published in the Federal Register, volume 37, page

22139, dated October 18, 1972, as amended). The standard is based on

American National Standards Institute Z37.4-1969. [113]

In 1971, a conference of the International Labour Office (IL0) 

adopted a Convention [114] and Recommendation [115] concerning protection 

against hazards of poisoning arising from benzene which specified an 

environmental concentration in the workplace not to exceed a ceiling value 

of 25 ppm (80 mg/cu m) for benzene or products containing benzene at more 

than 1% by volume. Restrictions on the use of benzene specified that 

whenever harmless or less harmful substitute products were available, 

substitution was mandatory; however, specifically excluded from the 

restriction were (1) the production of benzene, (2) the use of benzene for 

chemical synthesis, (3) the use of benzene in gasoline, and (4) analytical 

or research work carried out in laboratories.

Permissible levels in the range of 100 or 110 mg/cu m (31 or 35 ppm)

for benzene vapor in the workplace have been established in Bulgaria,
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Chile, France, Hungary, Malagasy Republic, Morocco, and Poland. [116] A 

level of 80 mg/cu m (25 ppm) exists for the Federal Republic of Germany, 

whereas the Democratic Republic of Germany has set 50 mg/cu m (16 ppm). 

Unusually high permissible levels were established by Uruguay at 1,000 

mg/cu m (310 ppm) and Bolivia at 320 mg.cu m (100 ppm). Spain has set 

separate limits for men and women of 220 mg/cu m (70 ppm) and 110 mg/cu m 

(35 ppm), respectively. [116] The maximum permissible concentration in 

the USSR was 50 mg/cu m (16 ppm) in 1957 [58] and 20 mg/cu m (6 ppm)

[116,117] in 1959, apparently based on the experimental work in rats 

reported in 1956 by Novikov. [69] Currently, the limit is 5 mg/cu m (2 

ppm) based on findings of a definite lowering of the phagocytic activity of 

leukocytes reported by Kozlova and Volkova [58] in humans, along with other 

unspecified data in unknown species. [118] Although most nations have not 

established a formal environmental standard for benzene, 71 countries have 

existing legislation which governs the use of benzene or recognizes worker 

compensation claims resulting from benzene exposure. [116]

Basis for Recommended Environmental Standard

Published definitive epidemiologic data are lacking on workers 

exposed to benzene vapor at any concentration for prolonged periods of 

time. The US and European literature dealing with the effects of benzene 

on exposed workers consists primarily of medical reports rather than 

documented, comprehensive epidemiologic studies encompassing both clinical 

and environmental findings.

The report of Pagnotto et al, [12] along with the followup data (see 

Epidemiologic Studies) from investigations in the rubber coating industry
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during the 1960-rl963 period showed that environmental benzene 

concentrations consistently averaged between 20 and 25 ppm for spreader and 

churn operations. Levels occasionally reached 39 ppm. Some workers had 

hemoglobin levels below 13.5 g/100 ml of blood and other unspecified minor 

deviations from normal had been observed. Thèse findings may indicate 

borderline blood problems. Some of the workers in the rubber coating plant

had been exposed to benzene for a number of years and the borderline

hematological changes are of equivocal significance in these workers.

Hardy and Elkins [57] found that levels of benzene exposure ranging

from 40-80 ppm with an estimated average of 60 ppm in the artificial

leather industry had produced deviations in more than 1 blood element in 16 

out of 52 workers exposed. In addition, average inorganic sulfate to total 

sulfate ratios from urinalyses were interpreted as representing hazardous 

conditions for workers exposed to benzene concentrations of not over 60 

ppm.

The chronic exposures of rats, rabbits, and guinea pigs to 80-88 ppm 

concentrations of benzene for periods extending from 32-269 days by Wolf et 

al [68] evoked a leukopenia with changes in the number of nucleated cells 

in the bone marrow. These investigators stated that the "no effect level" 

for benzene is "well below 80 ppm" on the basis of their findings with the 

3 species of test animals.

Nau et al [67] reported that there was a decrease in the WBC of rats 

after 756 hours of exposure to a 50 ppm concentration of benzene for 8 

hours/day, 5 days/week. The animals also developed lower leukocyte DNA 

values, a depression of myelocytic activity, and an increase in the 

proportion of erythrocyte precursors in the bone marrow.
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Deichmann et al [66] induced a moderate but definite leukopenia in 

rats exposed 5 hours/day, 4 days/week to 44 and 47 ppm concentrations of 

benzene for periods of 5-8 weeks. No leukopenia developed in rats exposed 

to from 15-31 ppm.

In summary, the exposures of industrial workers to benzene at 

concentrations averaging 60 ppm and of animals (rats) at 40-50 ppm has 

induced hematological changes in these subjects. Suggestive but by no

means conclusive changes were noted from data in the rubber coating

industry workers at 20-25 ppm. At levels of 80-88 ppm, leukopenia and 

proportional increases in nucleated cells in the bone marrow occurred in 

animals and at about 60 ppm, changes in total RBC’s and WBC’s, Hgb, 

polymorphonuclears, lymphocytes, and eosinophils were noted in humans. On 

the basis of this evidence, it is felt that exposures of workers should be

kept below 25 ppm.

There are conflicting reports concerning the increased 

susceptibility of women to benzene poisoning. [16,21,22,39,60] Hunter [21] 

considered that his study cast considerable doubt on theories of the 

existence of female hypersusceptibility to benzene. Savilahti [39] also 

found no significant differences between sexes in susceptibility to benzene 

poisoning. Of the studies suggesting greater susceptibility of women to 

benzene poisoning, [22,60] comparisons between men and women either cannot 

be made or figures are too few to be meaningful. Smith [16] reported 

menstrual function to be undisturbed in the majority of her positive or 

suspected cases of benzene poisoning. She did not judge the few incidences 

of menstrual irregularities to be of concern.
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It is concluded from study of the relevent reports that an increased 

susceptibility to benzene of pregnant women or their offspring has not been 

demonstrated. The risk of exposure of pregnant women to benzene at levels 

below 100 ppm has not been defined. The literature contains statements 

such as that of Cassan and Baron [60] in 1956 that a pregnant woman must be 

removed not only from the work station but from the room where work with a 

benzene exposure risk is performed. Their statement is based (in part) on 

the measurement of RBC between 4.0 and 4.25 million in two pregnant women 

following their removal to another part of the room from the work station 

where they used a benzene varnish on electrical equipment. There are 

special requirements placed on the hemopoietic system of women in general, 

and especially during pregnancy. Although no definite hypersusceptibility 

to benzene vapor has been shown in women, pregnant women, or their 

offspring, it may be prudent to avoid exposing pregnant women to benzene. 

In the study by Smith, [16] the ages were quite evenly distributed between 

17 and 52 years. Susceptibility to benzene poisoning was about equally 

marked between young and old, so youth was not considered to be a 

predisposing factor in benzene poisoning.

In view of the borderline hematological changes which occur in both 

man and animals from exposures to benzene and of the consequences which 

result from overexposure, it is considered that a conservative limit must 

be recommended. Therefore, in order to provide protection of workers to 

the effects of benzene poisoning over a working lifetime, it is recommended 

that an environmental limit for benzene of 10 ppm as a time-weighted 

average for up to a 10-hour workday, 40-hour workweek be adopted. In 

addition, in order to preclude acute effects from benzene, it is considered



that exposures of workers should be kept at or below 25 ppm; therefore, a 

ceiling is recommended for which benzene concentrations shall not be 

permitted to exceed 25 ppm.

It is recognized that many workers handle small amounts of benzene 

or are working in situations where, regardless of the amount used, there is 

only negligible contact with the substance. Under these conditions, it 

should not be necessary to comply with many of the provisions of this 

recommended standard, which has been prepared primarily to protect worker 

health under more hazardous circumstances. Concern for worker health 

requires that protective measures be instituted below the enforceable limit 

to insure that exposures stay below that limit. For these reasons, 

"exposure to benzene" has been defined as exposure above half the 

environmental limit, thereby delineating those work situations which do not 

require the expenditure of health resources for environmental and medical 

monitoring and associated recordkeeping. Half the environmental limit has 

been chosen on the basis of professional judgment rather than on 

quantitative data that delineate non-hazardous areas from areas in which a 

hazard may exist. However, because of non-respiratory hazards such as 

those resulting from skin irritation or eye contact, it is recommended that 

appropriate work practices and protective measures be required regardless 

of the air concentration.

Finally, because of the shortage of exposure-effect data, there is a 

great need for detailed, comprehensive epidemiological investigations of 

benzene. The cause and effect relationship between benzene and aplastic 

anemia seems firmly established. Whether the alterations in marrow 

function observed from benzene exposure actually induce malignant changes
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is not conclusive; nevertheless, the possibility that benzene can induce 

leukemia cannot be dismissed. The limited comparisons made for benzene 

worker populations in Italy [41] and France [55] indicate the distinct 

possibility that benzene may be carcinogenic. Limited population 

comparisons in the United States are not known to have been performed. 

Comprehensive studies on the long-term relationships of benzene worker 

populations with mortality and morbidity information on the incidence of 

leukemia in the population-at-large are greatly needed.

Basis for Biologic Monitoring

Biologic monitoring represents a technique by which absorption of 

benzene or its metabolites can be determined to verify whether a risk of 

benzene intoxication exists.

Benzene vapor is absorbed rapidly through the lungs from which the 

chemical is then distributed and either metabolized or rapidly excreted in 

the exhaled air. [64,77,119,120] Approximately 40% of absorbed benzene is 

excreted through the lungs; the remainder is metabolized. [119] It is 

widely distributed in the body tissues and tends to concentrate in tissues 

with a high fat content. [64] Most of the metabolized benzene is oxidized 

in the body to phenols which, in turn, are conjugated in the liver with 

sulfate ions and excreted in urine. [2]

Benzene in the blood and expired air along with urinary metabolites 

from benzene were considered as indices for biologic monitoring.

(a) Blood

Although measurements of benzene in the blood have been performed, 

[121] they have not been generally employed to correlate with the level . of
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environmental exposure. The measurement of benzene in the blood is not a 

good index of exposure, first, because benzene has a short and 

unpredictable duration in the blood and second, because there is no 

satisfactory correlation between the concentration of inhaled benzene and 

levels of benzene in the blood, at least from prolonged exposure. [116]

(b) Breath

Measurement of benzene by breath analysis is promising. In the 1967 

report by Stewart et al, [37] of 10 workers accidentally overexposed to 

benzene (85-115 ppm) for 3 months [see Section III (b)(1)], frequent breath 

analysis was performed along with environmental monitoring. The 

statistical correlation between the concentration of benzene in the expired 

air and that of the daily vapor exposures was so reliable that post­

exposure breath analysis was considered to be a rapid diagnostic index of 

benzene exposure.

Hunter [122] reported that exposures of benzene vapor in adult males 

at 300 mg/cu m (100 ppm) for 1-4 hours resulted in expired air 

concentrations of 180-220 mg/cu m. After the subjects were removed from 

the exposure, benzene could be detected in exhalations for up to 24 hours 

afterward with an instrument sensitive to 0.02 mg/cu m. Thus, Hunter felt 

that detection of benzene in expired air after industrial exposures was 

possible, and an indication of the intensity of the industrial exposure 

could be obtained from the concentrations found at known times after work.

Sherwood and Carter [102] reported in 1970 that immediately after 

sedentary exposure to 25 ppm for 4.5 hours (115 ppm-hr), the concentration 

in the breath was about 2 ppm. Breath sampling was employed successfully 

to evaluate the exposures of 3 workers during gasoline loading operations.
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[85] A 1972 report indicated that consumption of ethyl alcohol soon after 

benzene exposure resulted in an accelerated elimination of benzene in the 

breath. [123] A rise in rapidly excreted phenol in the urine was also

noted. The possibility that alcohol could accelerate elimination of 

benzene with possible protective effects was speculated upon. Limited 

comparisons of exhaled breath samplings with phenol-in-urine analyses have 

also been reported. [9]

Although breath analysis is claimed to give close correlations of 

environmental exposure levels to concentrations of benzene in the exhaled 

breath under experimental conditions, the rapid rate at which benzene is 

initially eliminated in the breath would seem to present difficulties in 

ascertaining accurate postexposure times under many occupational field 

conditions for which exhaled benzene concentrations could be related to 

environmental exposure levels for purposes of standards evaluation. 

Sufficient data involving decay curves for known exposure concentrations 

and times are generally unavailable; therefore, although breath analysis 

may be used to augment other biological analytical methods, there is, at 

present, inadequate information to recommend it as a primary method for 

biologic monitoring. Other methods are better supported by existing data,

(c) Urinalysis

(1) Sulfate Ratios

The urine sulfate ratio test is based on the premise that 

benzene is partially metabolized to organic derivatives conjugated with 

sulfate radicals. [124] As the sulfates increase due to exposure to 

benzene, there is a corresponding decrease in the ratio of inorganic to 

total sulfates. At one time, urine sulfate ratios were considered to be a
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good measure of benzene exposure [125]; however, more recent methods have 

shown sulfate ratios to be less specific than the measurement of urinary 

phenols. [124]

(2) Urinary Phenol

The mechanism of formation and elimination of phenol 

conjugates has been studied by Dutton, [120] and reviewed by Williams. [77] 

In a review on the tolerance limit for benzene, Truhaut [126] discusses 

reported findings and presents, in a schematic form, the metabolic 

transformation of radioactively tagged benzene in the rabbit; most of the 

pathways also occur in humans (Figure XII-2). [34] Phenol is the major 

detoxification product eliminated in the urine. Almost 40% of the retained 

benzene is excreted in urine as phenol, 3% as pyrocatechol, and 1% as 

hydroquinone with the excretion of these metabolites being completed within 

24-48 hours following a single exposure to benzene vapor. [77]

Teisinger and Fiserova-Bergerova [127] found that the measurement of 

total content of urinary phenol was superior to the measurement of the 

urine sulfate ratio as an index of benzene exposure. In addition, data was 

provided (Tables XII-12 and XII-13) by the Bethlehem Steel Corporation in 

response to a NIOSH request in the Federal Register of April 22, 1972, for 

information not readily available in the literature. Their conclusions 

also confirmed the superiority of urine phenol methods over the 

determination of urine sulfate ratios as an index of benzene absorption.

Docter and Zielhuis [128] suggested that "normal" values for urinary 

metabolites (phenol and phenol congeners) in individuals not exposed to 

benzene vary from 5-10 mg/liter with an upper limit of 15-20 mg/liter. 

Other estimates of the normal unexposed urinary phenol excretion are those
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of Deichmann and Schafer, [129] 11-42 mg; and Walkley et al, [124] an

average of 30 mg/liter. Thus, urinary phenol levels in unexposed persons 

are well below the recommended biologic level of 75 mg/liter.

The general rate of urinary excretion of a compound is dependent on 

many variables, such as physical exertion, excretory water availability, 

and sometimes diurnal and seasonal variations; therefore, small samples 

need to be corrected for variations in urine concentration. In the worker 

environment, problems of quality control and especially contamination are 

more easily managed with methods of "spot" surveillance programs than with 

collection of large volumes from multiple voidings which extend over 

periods of 24-48 hours.

Although the majority of retained benzene is excreted in the urine 

as phenol and conjugated phenols within 24 hours, samples obtained at or 

near the end of a working day present an excellent measure of exposure to 

benzene. [12] Close agreement generally results between observed 

environmental benzene concentrations obtained from laboratory analysis and 

equivalent air levels derived from urinary phenol measurements (see Tables 

XII-9, XII-10, and Figure XII-1).

An environmental benzene concentration of 25 ppm was reported by 

Walkley et al [124] to cause a urinary phenol concentration of 200 mg/liter 

in the people exposed. This would be equivalent to 170-190 mg/liter by the 

method of Sherwood and Carter [102] according to a written communication 

from Elkins in 1972. Docter and Zielhuis [128] found that people exposed 

to 25 ppm benzene produced 170-195 mg/liter of urinary phenol, while those 

exposed to 10 ppm produced a phenol concentration in the urine of 70-80 

mg/liter. Buchwald [130] reported that an environmental benzene
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concentration of 25 ppm would result in 195-225 mg/liter of phenol when 

adjusted to a specific gravity of 1.024.

It is on the basis of these studies that the recommended level of 75 

og/liter of phenol in urine sampled at or near the end of the workday has 

been selected to correlate with the recommended occupational environmental 

standard of a time-weighted average of 10 ppm of benzene. Phenol results 

obtained from samples taken at the beginning of the workday provide a 

measure of benzene retention and possibly metabolism of phenol-producing 

substances other than benzene. Such findings are valuable for comparison 

purposes with results obtained at the end of the workday but should not be 

related with 75 mg/liter of phenol as a basis for judging unacceptable 

absorption of benzene. Biologic monitoring, therefore, provides a valuable 

measurement technique to verify benzene exposure in the individual worker.

Basis for Biologic Sampling and Analytical Method

Several colorimetric methods have been used for the estimation of 

phenol in the urine. [124,131-134] In recent years, however, gas 

chromatographic techniques have been adopted extensively because of the 

advantages of specificity and rapidity of analysis. [102,135]

The following analytical techniques were given special 

consideration:

(a) A sensitive colorimetric method for phenol was developed by 

Walkley, Pagnotto, and Elkins, [124] a modification of the test of Theis 

and Benedict, [131] in which diazotized parariitroaniline was used as a 

color reagent. The results of this test were significant when the test was 

applied to urine samples collected at, or near, the end of the working
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period. It is advisable to adjust all phenol values to a definite specific 

gravity to obtain good correlation [134]; the authors used a specific 

gravity value of 1.024. The phenol method [124,128] gave a more reliable 

picture of overall benzene exposure than data obtained from environmental 

air analyses. The authors pointed out that the test should not be used as 

an exclusive measure of exposure but that it is useful in validating 

results of overall benzene exposure. This method has the disadvantage of 

including paracresol in the determination; thus phenol values are 

reflections of both benzene absorption and paracresol content in the urine.

(b) A gas chromatographic procedure to determine more accurately 

the normal urinary excretion of phenol and to relate excretion to defined 

exposures was devised by Van Haaften and Sie. [135] Urine samples were 

heated in the presence of phosphoric acid to hydrolyze the conjugated 

phenols. The liberated phenols were separated in a polyethylene-glycol 

column and determined by means of a flame ionization detector. The 

procedure was accurate from 1 to 1,000 mg/liter of urinary phenols or 

cresols. Sherwood and Carter, [102] presented a gas chromatographic 

procedure to differentiate phenol and its conjugates from ortho-, meta-, 

and paracresols in urine. Urine was hydrolyzed with perchloric acid at 95 

C. The phenols and cresols were then extracted with isopropyl ether for 

analysis by gas chromatography. The phenol concentration was determined by 

comparing the peak areas. Phenol was eluted in 100 seconds, orthocresol in 

130 seconds, and meta- and paracresols in 320 seconds at a carrier gas flow 

rate of 60 ml/min.

The gas chromatographic methods have high specificity and provide

for rapid determination of phenol in the urine. Detection of less than 0.1
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ppm of benzene in air and 1 mg/liter of urine phenol is possible. The 

method of Sherwood and Carter [102] is the recommended method; it is 

described in Appendix III.
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VII. APPENDIX I 

METHOD FOR 

SAMPLING AND ANALYTICAL PROCEDURES 

FOR DETERMINATION OF BENZENE

The following sampling and analytical method for analysis of benzene 

in air employs adsorption on charcoal, followed by desorption, and gas 

chromatographic measurement. This is a modified method derived from White 

et al [136] and Kupel and White. [137] Additional data are contained in

Part IV under Sorbability of Benzene on Charcoal and Accuracy and Precision

Data.

Atmospheric Sampling

(a) Equipment Used

The sampling train is composed of a charcoal tube, a vacuum pump, 

and a flowmeter. A personal sampler pump or a dependable hand pump, eg, a 

detector tube pump may be calibrated to produce the desired volume of air.

(b) Calibration of Sampling Instruments

Air sampling instruments may be calibrated with a wet test meter or

other suitable reference over a normal range of flowrates and pressure

drops. The calibration is conducted at least annually and at any time 

following repairs or modifications to the sampling system. Similarly, wet 

test meters should be calibrated upon procurement, at least annually, and 

after each repair. Calibration curves shall be established for each 

sampling pump and shall be used in adjusting the pumps prior to field use. 

The volumetric flowrate through the sampling system shall be spot checked
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and the proper adjustments made before and during each study to assure 

obtaining accurate airflow data.

(1) Flowmeter Calibration Test Method

(A) With the wet test meter in a level position, 

check to ascertain that the water level just touches the calibration point 

on the meter. If the water level is low, add water 1 to 2 F warmer than 

room temperature to the fill point and run the meter for 30 minutes before 

calibration.

(B) Check the voltage of the pump battery with a

voltmeter to assure adequate voltage for calibration. Charge the pump

battery if needed.

(C) Break the tips of a charcoal tube to produce 

openings of a least 2 mm in diameter.

(D) Assemble the calibration train in series, with 

the test meter, then the charcoal tube, and finally the pump.

(E) Turn the pump on, adjusting the rotameter float

to a selected reading on the rotameter scale. Wait until the float

indicates a steady reading.

(F) The pointer on the meter should turn clockwise 

and indicate a pressure drop of not more than 1.0 inch of water. Operate 

the system for 10 minutes before starting the calibration. If the pressure 

is greater, recheck the system.

(G) Data for the calibration include the serial

number; meter reading, start and finish; starting time, finish time, and
r

elapsed time; air temperature; barometric pressure; serial number of the
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pump and rotameter; the name of the person performing the calibration; and 

the date.
(H) Adjust the rotameter float to at least 3 other 

readings and record the pertinent data in step G at each reading.

(I) Correct the readings to standard conditions of

pressure and temperature by means of the gas law equation.

(J) Use graph paper to plot the actual airflow and 

the rotameter readings. Determine the rotameter reading which will result 

in a 1 liter/minute flowrate for the pump being calibrated.

(c) Sampling Procedure

The equipment should be set up in a proper locale. The tips of the 

charcoal tube are broken off producing openings of at least 2 mm in 

diameter; the filled end of the tube is inserted toward the pump. The tube 

should always be in a vertical position during sampling. The pump is 

started and a 10-liter sample is taken at a flowrate of 1 liter/minute. 

Slower flowrates may be used to lengthen the sampling period but the 1 

liter/minute rate should not be exceeded. After the sample is taken, each 

end of the tube should be capped (plastic caps are provided with commercial 

tubes). The samples will remain stable for at least 2 weeks which permits 

shipment for analysis; however, samples should be analyzed as soon as 

possible in keeping with good laboratory practices.

Analytical

(a) Principle of the Method

A known volume of air is drawn through a charcoal tube to trap the 

organic vapors present. The charcoal in the tube is transferred to a small
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test tube and desorbed with carbon disulfide and an aliquot of the desorbed 

sample is injected into a gas chromatograph. The area of the resulting 

peak is determined and compared with areas obtained from the injection of 

standards.

(b) Range and Sensitivity

The lower limit for benzene with instrument attenuation and splitter 

techniques is 0.01 mg for each sample. This value can be lowered by 

reducing the attenuation or by eliminating the splitter. The upper limit 

value for benzene is 6.0 mg/sample. This value is the number of milligrams 

of benzene which the front section will collect before a significant amount 

passes to the backup section. The charcoal tube consists of 2 sections of 

activated charcoal separated by a section of urethane foam [see description 

in (f)(2)]. If a particular atmosphere is suspected of containing a large 

amount of contaminant, it is recommended that a smaller than normal 

sampling volume be taken.

(c) Interferences

(1) When the amount of water in the air is so great that 

condensation actually occurs in the tube, organic vapors will not be 

trapped. Only water present as a mist is a problem, not water vapor.

(2) Any compound with the same retention time in the gas 

chromatograph as benzene at the operating conditions described in this 

method could be considered an interference. This type of interference can 

■be overcome by changing the operating conditions of the instrument.

96



(d) Accuracy and Precision

The accuracy and precision determined by a representative 

laboratory test with benzene (see also Accuracy and Precision Data in Part 

IV) was found to be:

Accuracy Precision 

Motor driven laboratory pump 7.6% 4.2%

Approved coal mine personal 

sampling pump (calibrated

with no in-line resistance) 13.6% 10.1%

Approved coal mine personal 

sampling pump (calibrated

with charcoal tube in line) 8.8% 11.6%

The accuracy includes single-day systematic error by 1 

operator. Precision represents the single-day accuracy on several 

different tubes and includes tube-to-tube deviation under controlled 

laboratory conditions. [138]

(e) Advantages and Disadvantages of the Method

The sampling device is small, portable, and involves no liquids: one 

basic method is provided for determining many different organic solvents. 

Interferences are minimal and most can be eliminated by altering 

chromatographic conditions. In addition, the analysis is accomplished 

using a rapid instrumental method.

97



One disadvantage of the method is that the amount of sample which 

can be obtained is limited by the amount of benzene which the tube will 

hold before overloading as indicated by benzene recovery at the outlet end 

of the tube. Also, the precision is limited by the reproducibility of the 

pressure drop across the tubes, which affects the flowrate, thus causing 

the volume to be imprecisely measured.

(f) Apparatus consists of:

(1) An approved coal mine dust personal sampling pump or 

any vacuum pump whose flow can accurately be determined at 1 liter/minute 

or less for an area sample.

(2) Charcoal tubes: Glass tubes with both ends flame-

sealed, 7 cm long with a 6-mm O.D. and a 4-mm I.D., containing two sections 

of 20/40 mesh activated charcoal separated by a 2-mm portion of urethane 

foam. The absorbing section contains 100 mg of charcoal, the backup 

section, 50 mg. A 3-mm portion of urethane foam is placed between the 

outlet end of the tube and the backup section. A plug of glass wool is 

placed in front of the absorbing section. The pressure drop across the 

tube must be less than 1 inch of mercury at a flowrate of 1 liter/minute. 

Tubes with the above specifications are commercially available.

(3) Gas chromatograph equipped with a flame ionization

detector.

(4) Column (20 ft x 1/8 in) with 10% FFAP stationary phase 

on 80/100 mesh acid washed DMCS Chromosorb W solid support.

(5) A mechanical or electronic integrator or a recorder 

and some method for determining peak area.

(6) Small glass-stoppered test tubes or equivalent tubes.
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(7) Syringes: 10 juliter syringe, and other convenient

sizes for preparation of standards.

(g) Reagents

(1) Spectroquality carbon disulfide

(2) Benzene, preferably chromatoquality grade.

(3) Bureau of Mines Grade A helium.

(4) Prepurified hydrogen.

(5) Filtered compressed air.

(h) Procedure

(1) Cleaning of Equipment

All equipment used for the laboratory analysis should be 

washed in detergent followed by tap and distilled water rinses.

(2) Collection and Shipping of Samples

Both ends of the charcoal tube are broken to provide openings 

of at least 2 mm (one-half the I.D. of the tube). The smaller section of 

charcoal in the tube is used as a backup section and is, therefore, placed 

nearest the sampling pimp. Tubing may be used to connect the back of the 

tube to the pump, but no tubing must ever be placed on the front of the 

charcoal tube. Because of the high resistance of the charcoal tube, the 

sampling method places a heavy load on the personal sampling pump; 

therefore, it should not be assumed that the pump will run a full 8 hours 

without a recharging of the battery.

One or more charcoal tubes serving as blanks are treated in 

the same manner as the sample tubes (break, seal, ship) except that no air 
is drawn through them.
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If bulk samples are submitted in addition to charcoal tubes,

they are to be shipped in a separate container.

(3) Analysis of Samples

(A) Preparation

Each charcoal tube is scored with a file and broken 

open in front of the first section of charcoal. The glass wool is removed 

and discarded, the charcoal in the first (larger) section is transferred to 

a small stoppered test tube, the foam separating section is removed and

discarded, and the second section is transferred to another test tube. The

two charcoal sections are then analyzed separately.

(B) Desorption

Prior to analysis, 0.5 ml of carbon disulfide is 

pipetted into each test tube to desorb the benzene from the charcoal.

Desorption is complete in 30 minutes if the sample is stirred occasionally.

EXTREME CAUTION MUST BE EXERCISED AT ALL TIMES WHEN USING CARBON 

DISULFIDE BECAUSE OF ITS HIGH TOXICITY AND FIRE AND EXPLOSION HAZARDS. IT 

CAN BE IGNITED BY HOT STEAM PIPES. ALL WORK WITH CARBON DISULFIDE MUST BE 

PERFORMED UNDER AN EXHAUST HOOD.

(C) Gas chromatographic conditions

Typical operating conditions for a gas chromatograph

are:

(i) 85 cc/min (70 psig) helium carrier gas flow.

(ii) 65 cc/min (24 psig) hydrogen gas flow to detector.

(iii) 500 cc/min (50 psig) airflow to detector.

(iv) 200 C injector temperature.

(v) 200 C manifold temperature (detector).
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(vi) 90 C oven temperature isothermal.

(vii) Use either dual column differential operation or 

uncompensated mode.

(D) Injection

To eliminate difficulties arising from blowback or

distillation within the syringe needle, the solvent flush injection

technique is employed to inject the sample into the gas chromatograph. The 

10-jLtl syringe is first flushed with solvent several times to wet the barrel 

and plunger, then 3 nl of solvent is drawn into the syringe to increase the 

accuracy and reproducibility of the injected sample volume. Next, the 

needle is removed from the solvent and the plunger is pulled back about 0.2 

/il to separate the solvent flush from the sample with an air pocket to be 

used as a marker. The needle is then immersed in the sample and a 5—jul 

aliquot is withdrawn. Prior to injection in the gas chromatograph, the 

plunger is pulled back a short distance to minimize sample evaporation from 

the needle tip. Duplicate injections should be made of each sample and the 

standard. No more than a 3% difference should result in the peak areas 

that are recorded.

(E) Measurement of area

The area of the sample peak is measured by an 

electronic integrator or some other suitable form of area measurement and 

preliminary sample results are read from a standard curve prepared as

outlined below.
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(i) Standards Preparation and Desorption Efficiency

(1) Preparation of Standards

It is convenient to prepare standards in terms of mg/ 0.5 ml 

of carbon disulfide because this is the quantity used for benzene 

desorption from the charcoal. To prepare a 0.3 mg/ 0.5 ml standard, 6.0 mg 

of benzene (converted to microliters for easy measurement) is injected into 

exactly 10 ml of carbon disulfide in a glass-stoppered flask. The excess 

quantity of benzene is used to minimize error due to carbon disulfide 

volatility. A series of standards is then prepared, varying in 

concentration over the desired range, and analyzed under the same gas 

chromatographic conditions and during the same time period as the unknown 

samples. Curves are established by plotting concentration vs average peak 

area.

(2) Determination of Desorption Efficiency

The desorption efficiency, ie, the percentage of benzene 

desorbed from the charcoal, is determined only once, provided the same 

batch of charcoal is always used.

Activated charcoal, equivalent to the amount in the first 

section of the sampling tube (100 mg), is measured into a 2-in, 4-mm I.D. 

glass tube, flame-sealed at one end, and capped with a paraffin film or 

equivalent at the open end. A known volume of benzene, usually equivalent 

to that present in a 10-liter sample at a concentration equal to the 

federal standard, is injected directly into the activated charcoal with a 

microliter syringe and the tube again capped with more paraffin film. A 

minimum of 5 tubes are prepared in this manner and allowed to stand for at 

least 1 day to assure complete adsorption of the benzene onto the charcoal.
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These tubes are desorbed and analyzed In exactly the same manner as the 

sampling tubes.

The results of each analysis are compared to the standards to 

determine the average percentage (desorption efficiency) that is desorbed. 

The desorption efficiency is then used as a factor in all sample analyses. 

“The desorption efficiency, determined in this manner, has been shown to be 

essentially the same as that obtained by analysis of a known amount of 

benzene vapor trapped on the charcoal and the determined value, therefore, 

is used because of its simplicity. Each laboratory should determine its 

own desorption efficiency. For comparison purposes, NIOSH determined a 

value of 96% for benzene on one batch of charcoal.

(j) Calculations

(1) Read the weight in milligrams corresponding to each 

peak area from the standard curve. No correction is necessary for the 

volume injected, since it is the same for both the sample determination and 

the standard curve.

(2) The weight of benzene on the front section of the 

blank is subtracted from the weight determined for the front section of 

each sample; a similar procedure is followed for the backup sections. 

Amounts present on the front and backup sections of the same tube are then 

added together to determine the total amount detected in the sample. This 

total weight is then divided by the desorption efficiency to determine the 

corrected total number of milligrams in the sample. Milligrams are 

converted into ppm by volume in the air sampled by the following equation 
at 25 C and 760 mm Hg:
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ppm = 24,450 ml/mole x mg/liter 
molecular wt

For a 10-liter air sample of benzene:

ppm = 24,450 ml/mole x mg in sample/10 liters
78.11 g/mole

ppm == 31.30 x mg in sample
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VIII. APPENDIX II 

METHODS FOR DETERMINATION OF 

EXPOSURE AREAS TO BENZENE

Estimation of Concentration with Detector Tubes

(a) Atmospheric Sampling

(1) Equipment Used

A typical sampling train consists of a detector tube with a 

corresponding sampling pump. A specific manufacturer's pump may only be 

used with his detector tubes.

(2) Sampling Procedures

A specific procedure depends on the manufacturer's 

instructions but normally consists of breaking both tips off a detector 

tube, inserting the tube into the pump, and taking a specific number of 

strokes with the pump.

(3) Handling and Shipping of Samples

Detector tubes are not stable with time; the stain in some 

tubes fades in a few minutes. The tubes should be read immediately in 

accordance with the manufacturer's instructions and charts; no attempt 

should be made to save the used tubes.

(b) General Principles

Gas detector tubes contain a chemically impregnated packing which

indicates the concentration of a contaminant in the air by means of a 

chemically produced color change. The color changes are not permanent or 

stable, so the stained tubes must be read immediately after the samples are 

taken. The length of stain or the color intensity is read according to the
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manufacturer's instructions. This may involve comparing the stain with a 

chart, a color comparator, or a direct concentration reading from 

calibration marks on the tube. Detailed descriptions are provided by 

individual manufacturer's instructions.

Tubes obtained from commercial sources which bear the certified seal

of NIOSH are considered to adhere to the requirements as specified for

Approval of Gas Detector Tube Units in 42 CFR Part 84 (37 F.R. 19643). A

user may perform his own calibration on commercially acquired tubes by

generating accurately known concentrations of benzene in air and cor­

relating concentration with stain length or color intensity.

(c) Range and Sensitivity

Certification standards require that certified tubes have a range 

from 1/2-5 times the time-weighted average concentration. The sensitivity 

varies with tube brands.

(d) Interferences

Interferences vary with tube brands. The manufacturer's 

instructions must be consulted.

(e) Accuracy

Certification standards by NIOSH under the provisions of 42 CFR Part 

84 (37 F.R. 19643) specify reliability to within ±25% of the actual 

concentration in the range 0.75-5 times the standard and ±35% in the range 

from 0.5 up to, but not including, 0.75 times the standard.

(f) Advantages and Disadvantages

Unlike the charcoal tube method, the use of detector tubes (and 

portable instruments) is relatively inexpensive and rapid; there is far 

less time lag than that experienced with laboratory analytical results.
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Rapid detecting units are valuable for determining whether a hazardous 

condition exists at a given location so that workers may be evacuated or 

suitable protective devices provided. In addition, industrial operators 

and process engineers need inexpensive and rapid tools for day-to-day 

evaluation of the atmospheric levels In a work area.

The accuracy of detector tubes is limited; at best they give only an 

indication of the contaminant concentration. In evaluating measurements 

performed with detector tubes, interferences, difficulty of end-point 

readings, and possible calibration inaccuracies must all be considered.

Measurement with Portable Instruments

(a) Atmospheric Sampling

(1) Equipment Used

Two classifications of portable meters that are applicable to 

atmospheric sampling are , direct reading instruments and analytical 

instruments. Combustible gas meters and flame ionization meters are 

portable, direct reading instruments; portable variable-path infrared 

analyzers and gas chromatographs are both field analytical instruments. 

Any of the 4 meters mentioned are acceptable for benzene determinations if 

they are properly calibrated before use.

(2) Sampling Procedures

The most important sampling step is the meter calibration. 

Careful calibration must be performed either in the laboratory prior to on­

site use or in the field using a container of specific benzene 

concentration. If calibration charts are inaccurate, erroneous readings 
will be made.
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The actual field sampling is conducted according to the 

manufacturer's instructions. Readings should be corrected if necessary for 

variables such as temperature, humidity, atmospheric pressure, etc, and 

recorded along with time, place, temperature, etc.

(b) General Principles

Analysis is dependent on the type of meter used. The portable 

direct reading meters require no analysis because they usually provide 

usable concentration readings directly. Results obtained from the 

variable-path infrared analyzer and the gas chromatograph must be recorded, 

further analyzed, and compared with standards to obtain concentration 

values.

(c) Range and Sensitivity

The range and sensitivity vary with the instrument used; in general, 

the portable analysis meters are more sensitive than direct reading units.

(d) Interferences

Again, these vary with the instrument used. Water vapor or

combustible gases interfere with benzene identification using combustible 

gas meters. Mixtures of any carbon containing compounds, other than

benzene, will interfere in flame ionization determinations.

(e) Advantages and Disadvantages

The benefits and drawbacks of portable instruments are essentially 

the same as for detector tubes discussed previously. Where recording

capability is possible, direct reading instruments have the advantage of

continuous record availability.
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IX. APPENDIX III 

BIOLOGIC METHOD FOR SAMPLING 

AND ANALYSIS OF BENZENE

The recommended biologic method for urinalysis is derived from 

Sherwood and Carter. [102] It has been designed to determine the

concentration of phenol and its conjugates, sulfate and glucuronide, in

urine. It also determines orthocresol and meta- and paracresols. Urine is 

hydrolyzed with perchloric acid at 95 C, and the phenols and cresols are 

extracted with isopropyl ether and determined by gas chromatography.

Collection of Urine Samples

"Spot" urine specimens of about 100 ml are collected as close to the 

end of the working day as possible. If any worker's urine phenol level 

exceeds 75 mg/liter, procedures are instituted immediately to determine the 

cause of the elevated urine phenol levels and to reduce benzene exposure to 

the worker. Weekly specimens are collected as described above until 3 

consecutive weekly determinations indicate that urinary phenol levels are 

below 75 mg/liter.

After thoroughly washing their hands with soap and water, workers

shall collect urine samples from single voidings in clean, dry specimen 

containers having tight closures and at least a 120-ml capacity. 

Collection containers may be glass, waxcoated paper, or other disposable 

types if desired. Following collection of urine specimens, 1 ml of a 10% 

copper sulfate solution is added to each sample as a preservative, and 

samples are laimediately stored under refrigeration, preferably at 0-4 C.
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Refrigerated specimens will remain stable for approximately 90 days. If 

shipment of samples is necessary to perform analyses, the most rapid method 

available shall be employed utilizing acceptable packing procedures as 

specified by the carrier. Proper identification of each specimen shall 

include as a minimum, the worker's name, date, and time of collection.

Analytical

(a) Principle of the Method

Urine samples are treated with perchloric acid at 95 C to hydrolyze 

the phenol conjugates, phenyl sulfate, and phenyl glucuronide, formed as 

detoxification products following benzene absorption. The total phenol is 

extracted with diisopropyl ether and the phenol concentration is determined 

by gas chromatography analysis of the diisopropyl ether extract.

(b) Apparatus

(1) Gas chromatograph with a flame ionization detector and 

equipped with a 5-foot x 3/16-inch column packed' with 2 w/w polyethylene 

glycol adipate on universal 'B* support. Operating conditions are as 

follows:

Column temperature 150 C
i

Detector temperature 200 C

Injection port tempera­

ture 200 C

Carrier gas Nitrogen

Carrier gas flowrate 60 ml/min

(2) Water bath

(3) Glass-stoppered, 10-ml volumetric flasks
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(A) 1-ml, 2-ml, and 5-ml volumetric pipets
1

(5) 5-nl syringe

(c) Reagents

(1) Phenol

(2) Perchloric acid

(3) Diisopropyl ether

(4) Distilled water

(d) Procedure

(1) Hydrolysis of Phenol Conjugates

Pipet 5 ml of urine into a 10-ml, glass-stoppered, volumetric 

flask. Add perchloric acid, mix by swirling, and transfer the lightly 

stoppered flask to a water bath at 95 C. After 2 hours, remove the flask 

from the water bath and allow to cool at room temperature.
T(2) Diisopropyl ether extraction of phenol and 

cresols.

Pipet 1 ml of diisopropyl ether into the flask and adjust the 

volume to 10 ml with distilled water. Shake vigorously for 1 minute to 

extract the phenol and cresols. Allow the aqueous and ether layers to 

separate.

(3) Gas chromatographic analysis for phenol

Inject 5 ixl of the diisopropyl ether layer into the gas 

chromatograph and record the attenuation and area of the phenol peak. 

Under the conditions described, phenol is eluted in 100 seconds, o-cresol 

in 130 seconds, and m- and p- cresols in 320 seconds.
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(e) Standards Preparation

A 50 mg/liter standard aqueous solution of phenol is prepared. , A 5- 

ml aliquot of the standard solution is then subjected to the hydrolysis, 

extraction, and gas chromatographic analysis procedures described under 

Procedure above.

(f) Calculations

Determine the phenol concentration in the urine by comparing the gas 

chromatographic peak area of the sample with that of the 50 mg/liter 

standard and adjust the value to a specific gravity of 1.024.

(g) Specific Gravity Correction

Due to the magnitude of correction which is required, samples having

uncorrected specific gravities less than 1.010 shall be rejected and 

another sample shall be obtained.

Based on a survey of a large population in the United States in 

connection with urinary lead excretion, Levine and Fahy [139] found the 

mean specific gravity to be 1.024. Many investigators throughout the world 

now use this figure. Buchwald [130] in 1964 determined the mean specific 

gravity for residents in the United Kingdom to be 1.016, a value now 

frequently used for Northern Europeans. The importance of specific gravity 

adjustments can be seen in that a specific gravity of 1.016 will give 

results having two-thirds the value of those corrected to 1.024. It is 

important, therefore, that a value be chosen for standardization; since 

greater acceptance seems to be for 1.024, this value has been selected for 

adjustment of urinary concentrations of benzene recommended for biological 

monitoring.

corrected concentration =  observed concentration x 24___
last 2 digits of sp gr (eg, 1.021)
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X. APPENDIX IV 

SPECIAL MEDICAL CONSIDERATIONS

The literature on the subject of benzene intoxication, both acute 

and chronic, has been reviewed elsewhere in this document. Levels of 

exposure permitted in the standards set by this document have been shown to 

reduce the danger of acute intoxications to a minimum. [1,24,23] Barring 

accidental exposure, the need for constant monitoring for signs and 

symptoms of acute intoxication is unnecessary. The toxic effects of 

chronic low level exposures are not as well documented and, as has been 

discussed, exposures to 40 ppm have caused hematologic changes in animals. 

[66] The need for constant and complete monitoring of the organ systems 

known to be affected by chronic benzene exposure is, therefore, prudent and 

necessary.

The hematologic system is especially singled out by benzene's toxic 

effects. There is no agreement in the literature as to which parameter of 

hematologic function is the first indicator of early benzene intoxication. 

Monitoring a number of components, therefore, becomes necessary.

The life span of the erythrocyte has been calculated by various 

methods to be approximately 120 days. [140] This means that if erythrocyte 

production were to stop suddenly, as in the development of aplastic anemia, 

0.83% of the red cell mass would be lost daily. In the asymptomatic 

individual exposed to very low concentrations of benzene, measurements of 

the red cell mass could safely be done every 3 months. In workers exposed 

to higher concentrations, the risk of developing aplastic anemia increases, 

and more frequent determinations become necessary. In the event of red
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cell agenesis, 2 weeks would be a sufficient time to reduce the red cell 

mass by 12%. A longer delay in discovering this condition would be 

deleterious to the prognosis; thus, monitoring the red cell mass in 

individuals with higher levels of exposure to benzene should b e ' done at 

intervals not exceeding 2 weeks. Macrocytosis has also been stated to be 

the second most frequent toxic effect of benzene on the bone marrow [140]; 

therefore, bone marrow monitoring for macrocytosis by the measurement of 

appropriate corpuscular indices at the most frequent practical period is 

indicated.

No such simple means for estimating the decay of the white blood 

cell mass in the case of WBC agenesis is available because, to date, the 

life span of neutrophils has not been measured successfully, despite 

estimates of less than 12 days. [140] It is difficult to rationally set a 

maximum period beyond which it would be dangerous to delay measurement. 

Quarterly intervals in exposed individuals are felt to be maximum intervals 

prudent in this situation, reflecting the expense and difficulty of the

differential WBC count, but measurement at short€*r intervals is desirable
*

where practical.

The life span of platelets has been variously estimated as from 9-12 

days. These data are imprecise because of the difficulty inherent in the 

measurements. For those individuals exposed to greater than the maximum 

suggested TWA, a bimonthly measurement would seem sufficient to find a 

marked platelet reduction by estimation of platelets from a smear of 

peripheral blood. This finding might precede symptoms. However, by the 

time the abnormality is sufficiently advanced, the worker may already be 

complaining of symptoms caused by a decreased clotting function; therefore,
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no test more frequently than quarterly is recommended for a platelet 

determination.

Increased turnover of erythrocytes, probably through hemolysis, has 

been reported. [140,141] Counts of reticulocytes (immature, still nucleate 

red blood cells) give a rough estimate of the rapidity of erythrocyte 

turnover. Obtaining this value on a quarterly basis is suggested in 

workers having exposures from 1-10 ppm of benzene and annually in others. 

Hemolysis is discovered early by laboratory estimation of the breakdown 

products of hemoglobin, of which bilirubin is the easiest to measure. 

Again, the frequency of the determination is predicated upon the level of 

individual exposure.

Normal Hematologic Values

The generally accepted ranges of normal for the hematologic tests 

discussed in the body of this document are presented in Table XII-14 and 

are derived from values reported by Conn. [142] It should be noted that 

these values do not represent a definition of normal, but are only a rough 

guideline. Interpretation of laboratory results should be made on the 

basis of that laboratory's established normal range for the procedure as 

performed there. The values listed in Table XII-14 are applicable only to 
adults.
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XI. APPENDIX V .

MATERIAL SAFETY DATA SHEET

The following items of information which are applicable to a

specific product or material containing benzene shall be provided in the

appropriate section of the Material Safety Data Sheet or approved form. If

a specific item of information is inapplicable, the initials "n.a." (not 

applicable) should be inserted.

(a) Section I. Source and Nomenclature,,

(1) The name, address, and telephone number of the

manufacturer or supplier of the product.

(2) The trade name and synonyms for a mixture of

chemicals, a basic structural material, or for a process material; and the 

trade name and synonyms, chemical name and synonyms, chemical family, and 

formula for a single chemical.

(b) Section II. Hazardous Ingredients.

(1) Chemical or widely recognized common name of all 

hazardous ingredients.

(2) The approximate percentage by weight or volume

(indicate basis) which each hazardous ingredient of the mixture bears to 

the whole mixture. This may be indicated as a range or maximum amount, ie, 

10-20 by volume; 10% maximum by weight.

(3) Basis for toxicity for each hazardous material such as 

an established standard in appropriate units.
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(c) Section III. Physical Data.

Physical properties of the total product including boiling point and 

melting point in degrees Fahrenheit; vapor pressure in millimeters of 

mercury; vapor density of gas or vapor (air=*l); solubility in water, in 

parts/hundred parts of water by weight; specific gravity (water=l); 

volatility, indicate if by weight or volume, at 70 degrees Fahrenheit; 

evaporation rate for liquids (indicate whether butyl acetate or ether=l); 

and appearance and odor.

(d) Section IV. Fire and Explosion Hazard Data.

Fire and explosion hazard data about a single chemical or a mixture 

of chemicals, including flash point, in degrees Fahrenheit; flammable 

limits in percent by volume in air; suitable extinguishing media or agents; 

special fire fighting procedures; and unusual fire and explosion hazard 

information.

(e) Section V. Health Hazard Data.

Toxic level for total compound or mixture, effects of exposure, and 

emergency and first-aid procedures.

(f) Section VI. Reactivity Data.

Chemical stability, incompatibility, hazardous decomposition 

products, and hazardous polymerization.
\

(g) Section VII. Spill or Leak Procedures.

Detailed procedures to be followed with emphasis on precautions to 

be taken in cleaning up and safe disposal of materials leaked or spilled. 

This includes proper labeling and disposal of containers holding residues, 

contaminated absorbents, etc.
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(h) Section VIII. Special Protection Information.

Requirements for personal protective equipment, such as respirators,

eye protection, clothing,, and ventilation, such as local exhaust (at site 

of product use or application), general, or other special types.

(i) Section IX. Special Precautions.

Any other general precautionary information.
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U.S. DEPARTMENT OF LABOR 
Occupational Safety and Health Administration

MATERIAL SAFETY DATA SHEET

F o rm  A p p ro v e d  
O M B  N o . 4 4 -R 1 3 8 7

Required under USDL Safety and Health Regulations for Ship Repairing, 
Shipbuilding, and Shipbreaking (29 CFR 1915, 1916, 1917)

SECTION 1
M A N U F A C T U R E R 'S  N A M E E M E R G E N C Y  T E L E P H O N E  N O .

A D D R E S S  (Number, Street, City, State, and ZIP Code)

C H E M IC A L  N A M E  A N D  S Y N O N Y M S T R A D E  N A M E  A N D  S Y N O N Y M S

C H E M IC A L  F A M IL Y F O R M U L A

SECTION II - HAZARDOUS INGREDIENTS

PAINTS, PRESERVATIVES, & SOLVENTS %
TLV

(Units) ALLOYS AND METALLIC COATINGS %
TLV

(Units)

P IG M E N T S B A S E  M E T A L .

C A T A L Y S T A L L O Y S

V E H IC L E M E T A L L IC  C O A T IN G S

S O L V E N T S F IL L E R  M E T A L
P LU S  C O A T IN G  O R  C O R E  F L U X

A D D IT IV E S O T H E R S

O T H E R S

HAZARDOUS MIXTURES OF OTHER LIQUIDS. SOLIDS, OR GASES %
TLV

(Units)

SECTION III - PHYSICAL DATA

B O IL IN G  P O IN T  (°F .) S P E C IF IC  G R A V IT Y  ( H jO = l )

V A P O R  P R E S S U R E  (m m  Hg.) P E R C E N T , V O L A T IL E  
B Y  V O L U M E  (%)

V A P O R  D E N S IT Y  (A IR = 1 ) E V A P O R A T IO N  R A T E  
( . ... = 1 )

S O L U B IL IT Y  IN  W A T E R

A P P E A R A N C E  A N D  O D O R

SECTION IV - FIRE AND EXPLOSION HAZARD DATA
F L A S H  P O IN T  (M e th o d  used) F L A M M A B L E  L IM IT S

E X T IN G U IS H IN G  M E D IA

Le i Uel

S P E C IA L  F IR E  F IG H T IN G  P R O C E D U R E S

U N U S U A L  F IR E  A N D  E X P L O S IO N  H A Z A R D S

PAGE (1) (Continued on reverse side) 
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SECTION V - HEALTH HAZARD DATA
T H R E S H O L D  L IM IT  V A L U E

E F F E C T S  O F  O V E R E X P O S U R E

E M E R G E N C Y  A N D  F IR S T  A ID  P R O C E D U R E S

SECTION V I - REACTIVITY DATA
S T A B IL IT Y

U N S T A B L E C O N D IT IO N S  T O  A V O ID

S T A B L E

IN C O M P A T A B IL IT Y  (Materials to avoid)

H A Z A R D O U S  D E C O M P O S IT IO N  P R O D U C T S

H A Z A R D O U S
P O L Y M E R IZ A T IO N

M A Y  O C C U R
C O N D IT IO N S  T O  A V O ID

W IL L  N O T  O C C U R

SECTION V III - SPECIAL PROTECTION INFORMATION
r e s p i r a t o r y  p r o t e c t i o n  (Specify type)

V E N T IL A T IO N L O C A L  E X H A U S T S P E C IA L

M E C H A N IC A L  (General) O T H E R

P R O T E C T IV E  G L O V E S E Y E  P R O T E C T IO N

O T H E R  P R O T E C T IV E  E Q U IP M E N T

SECTION IX  - SPECIAL PRECAUTIONS
P R E C A U T IO N S  T O  BE T A K E N  IN  H A N D L IN G  A N D  S T O R IN G

O T H E R  P R E C A U T IO N S

PAGE (2)
GPO 9 34-1 10 
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TABLE XII-1

SIGNIFICANT PHYSICAL PROPERTIES OF BENZENE

Formula 

Formula Weight 

Boiling Point 

Melting Point 

Specific Gravity

Solubility

Explosive Range for Vapor 

Flash Point 

Ignition Temperature 

Vapor Density

Derived from references 7 and 8

C6H6

78.1

80.1 C (176 F) at 760 mm Hg 

5.5 C (42 F)

0.8790 g/ml at 20 C (68 F)
4 C (39.2 F)

0.06% in water, mixes freely 
with alcohol, ether and most 
organic solvents.

1.4 - 7.1% by volume in air

-12 to -10 C (10.4-14 F)

490 C (914 F)

2.7 (Air - 1.0)
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TABLE XII-2 

BENZENE REACTIONS OF COMMERCIAL IMPORTANCE

1. Halogenation and subsequent hydrolysis to produce phenol:

C6H6 + C12 (Metallic Iron Catalyst) r C6H5C1 + HC1
chlorobenzene

C6H5C1 + NaOH (6-8% aqueous solution) 360 C_____
4500 lb/sq in

C6H50Na + HC1 _____________________ ^  C6H50H + NaCl
phenol

2. Hydrogenation of benzene to produce cyclohexane:

C6H6 + 3H2 (Metallic Nickel Catalyst) r C6H12
150-200 C, 25 atm cyclohexane

3. Friedel-Crafts reaction of benzene and ethylene to pro­

duce ethyl benzene which is then dehydrogenated to yield 
styrene:

C6H6 + C2H4 (Phosphoric Acid Catalyst) ^  C6H5C2H5
ethyl benzene

C6H5C2H5 (Cr203 . A1203 Catalyst) r C6H5CH=CH2 + H2
600 C styrene

From Chemical Economics Handbook [3]
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TABLE XII-3

SUMMARY OF BLOOD FINDINGS 
ON EXAMINATION OF WORKERS 

EXPOSED TO BENZENE

Group Room
Local

ventila­
tion

Average benzene 
in air, ppm

Summer Winter

Blood findings

Number 
of persons Number 
examined positive

I-A
Small amount of benzene; 150B - 100 9 2
no local ventilation; 60 - 150 1 0
low benzene content in air. 27A - 110 2 1

I-B
Small amount of benzene; 27B - 700 2 0
no local ventilation; high 59 - 150 210 9 1
benzene content in air. 61A - 130 210 12 6

61B - 1,360 580 1 1

I I-A
t

Large amount of benzene; 78A + 70 90 0
local ventilation; low 150A + 90 1 1
benzene content in air. 75B + 100 3 1

II-B
Large amount of benzene; 91 + 180 400 5 *0
local ventilation; high 50B + 430 3 1
benzene content in air. 50A + 500 4 1

75A + 130 330 10 1

Ill
Large amount of benzene; no 78B - 340 1 0
local ventilation;high 23 - 6 2
benzene content in air. 83 - 620 9 6

95 1,800 3 2

Total 81 26
*3 clinical cases, 1 fatal, since tests were made. 
From Greenburg [19]
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TABLE XII-4

DETAILED BLOOD COUNTS ON 13 WORKERS 
EXHIBITING THE PICTURE OF EARLY BENZOL POISONING

Plant 
Code No.

Hb RBC WBC Poly

%

Large 
Lym- Mono- 

phocytes nuclears
% %

Eos In

%

Trans

%

23 65 4,376,000 5,300 58 36 3.5 1.5 0.5
23 75 4,400,000 5,200 55 39 3.5 2.0 0.5
23 4,100
23 4,800
27 55 4,304,000 4,667 55 36 5.0 1.0 2.0
59 70 5,424,000 6,140 47 47 3.5 0.5 1.0
61 85 4,450
61 50 4,000

40 1,736,000 3,000
61 75 2,850

80 1,736,000 4,200
61 23 800,000 3,000
83 27 1,055,000 1,450 58 36 5.0 1.0 0.0

41
30 2,100,000 2,100
29 1,365,000 2,200 44 49 6.0 1.0 0.0

95 55 3,193,000 3,100 50 39 1.5 7.0 1.5
95 70 4,968,000 3,600 47 41 0.5 8.0 3.0

Normal 5,000,000
male 90-110 5,500,000 7,500 65-70 30 1-2 1-2 2-4
Normal 4,500,000
female 50-100 5,000,000 7,500 65-70 30 1-2 1-2 2-4

From Greenburg [19]

124



TABLE XII-5

INCIDENCE OF SIGNIFICANT ABNORMALITIES 
IN CASES COMPLETELY STUDIED, BY DIAGNOSIS

Test Criteria of Abnormality Severe Early Negative
Cases Cases Cases
No. % No. % No. %

RBC Less than 4.5 million 15 68.2 31 72.1
Mean corp volume More than 94 cu ¿cm 14 63.6 25 58.1 9 24.3
Platelets Less than 100,000 18 81.3 14 32.6
Hemoglobin Less than 13.0 gm/100 cc 8 36.4 11 25.6
WBC Less than 5,000 19 86.5 13 30.2

Number of cases examined 22 43 37

From Greenburg et al [17]
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TABLE XI1-6

COMBINATIONS OF TESTS WHICH WOULD REVEAL A HIGH PROPORTION 
OF INDIVIDUALS SHOWING THE BENZENE EFFECT, ACCORDING TO 

POSITIVE CASES WITH COMPLETE BLOOD STUDIES*

Combined Tests Cases of Poisoning Revealed 
by Given Test Combinations 

No. %

MCV + RBC 61 82.4
MCV + WBC 59 79.7
MCV + Hb 59 79.7
MCV + Platelets 57 77.0
RBC + Platelets 56 75.7
RBC + WBC 54 73.0
RBC + Hb 51 68.9

MCV + RBC + WBC + Platelets 72 97.3
MCV + RBC + WBC 69 93.2
MCV + RBC + Platelets 66 89.2
MCV + RBC + Hb 65 87.8

Single Tests
MCV COT 64.9
RBC 47 63.5
Platelets 31 41.9
WBC 30 40.5
Hb 30 40.5

Total positive cases having
complete blood studies 74 100.0

♦Includes 9 cases with macrocytosis as the only blood abnormality.
From Greenburg et al [17]
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TABLE XII-7

PRESUMPTIVE DURATION OF CONTACT AND INTERVAL 
BETWEEN LAST CONTACT AND DEATH OR BIOPSY 

IN CHRONIC BENZENE POISONING

Case Sex Age Industry Duration 
of Contact

Interval Since 
Last Contact

1 M 22 Rubber factory 6 months 9 months (N)
2 M 54 Artificial leather 7 years 1 month (N)
3 F 20 Rubber cement 8 months 1 month (N)
4 M 25 Artificial leather 3 years 1 month (N)
5 M 46 Cobbler* years 1 month (N)
6 F 44 Rubber factory 4 years 6 months (N)
7 M 48 Artificial leather 12 years 5 months (B)
8 M 45 Artificial leather 1 1/2 years 4 months (N)
9 M 45 Artificial leather 3 years 1 1/2 years (N)
10 M 43 Artificial leather years ? (N)
11 F 18 Rubber factory 7 months 1 month (N)
12 M 54 Artificial leather 3 years 3 months (N)
13 M 51 Cobbler* 2 years ? (N)
14 F 63 Telephone operator** 5 years 3 months (N)
15 M 28 Artificial leather 4 years 6 years (N)
16 M 57 Artificial leather 1 year 2 years (A) (B)
17 M 57 Artificial leather 5 years 5 months (A) (B)
18 M 41 Furniture finisher*** years 2 1/2 months (N)
19 M 12 Schoolboy*** ? 2 months (A) (B)

(N) Necropsy, (B) Biopsy, (A) Alive.
*Used benzene as solvent for rubber cement.

**Used solvent containing 50% benzene for eradicating 
names on switchboard.

***Used paint remover containing benzene.
From Mallory et al [22]
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TABLE XII-8 

AIR ANALYSES AT A BENZENE COATING PLANT

Benzene Vapor 
ppm

De-

Location

cem-
ber
1938

July
1946**

Au­
gust
1946

Aver'
age

Coating Room-Machine 
No. 1 60* 70* 50* 60*

Coating Room-Average 45 40 40 40
Coating Room-Maximum 60 70 55 60
Mixing Room-Average 80 80 80

*Exposure of deceased worker or successor.
**Analysis by an insurance company.
Derived from Hardy and Elkins [57]
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TABLE XII-9

SUMMARY OF ENVIRONMENTAL BENZENE LEVELS AND 
URINARY PHENOL EXCRETIONS FOR WORKERS IN A RUBBER 

COATING PLANT USING NAPHTHA SOLVENTS (3-7.5% by Volume)

Wkr Job

Date
Empi
Began

Age
When
Hired

Urine
Phenol
mg/1

5/25/60
Equiv
Air

Level
ppm

Actl
Air
Anal
ppm

Urine
Phenol
mg/1

7/14/60
Equiv
Air
Level
ppm

Actl
Air
Anal
ppm

Urine
Phenol
mg/1

1/13/61
Equiv
Air

Level
ppm

Actl
Air
Anal
ppm

Urine
Phenol
mg/1

9/6/61
Equiv
Air
Level
ppm

Actl
Air
Anal
ppm

A Spreader 7/55 55 106 10 5,11, 158 19 7,25 250 29 20,25 - - 19,36,
B 9/44 17 114 13 12,27 75 10 (16.0) 160 19 (22.5) 130 13 25
C 6/57 24 68 10 (13.8) * - 250 29 162 19 (26.3)
D 8/51 47 111 13 - - 330 38 200 25
E 12/55 34 270 31 - — - - 200 25
F 2/46 34 - - — - 350 41 260 31
G 7/60 33 - - - - - - 255 31
H Saturator 8/57 20 570 74 68 - - 57 700 95** 90 295 35 22,23
I Churner 9/47 38 _ — 190 22 12,17 360 44 152 19 14,16,
J 9/53 r\ s tC L - - - - (14.5) 270 31 106 10 44
K 2/59 18 - - - - 300 35 - - (24.7)
L 10/58 21 - - - — 480 62 390 47
* Mean

** Extrapolated
From Pagnotto (written communication, 1972)



TABLE XII-9

SUMMARY OF ENVIRONMENTAL BENZENE LEVELS AND 
URINARY PHENOL EXCRETIONS FOR WORKERS IN A RUBBER 

COATING PLANT USING NAPHTHA SOLVENTS (3-7.5% by Volume)
(Continued)

Worker Job

Urine
Phenol
mg/1

8/16/62
Equiv
Air
Level
ppm

Actual
Air

Analysis
ppm

Urine
Phenol
mg/1

4/10/63
Equiv
Air
Level
ppm

Actual
Air

Analysis
ppm

Urine
Phenol
mg/1

12/12/63
Equiv
Air

Level
ppm

Actual
Air

Analysis
ppm

Years
Expos

A Spreader - - 12,20, 195 25 35,10, 133 16 17,23, 8
B 96 10 18,3,4 230 27 10,21, 193 25 17,30, 19
C 68 10 (11.4)* 145 16 14,17, 132 16 35,20 6
D 87 10 350 41 38,39, 232 29 (25.3) 12
E 85 10 280 33 25,29 152 19 8
F 268 31 370 44 (21.5) 119 13 17
G 130 13 435 56 165 19 3
ITn S a t urator o on ¿ou o o in i /. XU } it 440 56 /* *3 /.^ * -* 9 260 31 38,82, 6

(12) 33 140
(39.7) (86.7)

i Churner _ __ 160 19 6 — _ 16
j - - 150 16 - - 10
K — - - - - - ?
L 206 25 300 35 325 38 5

*Mean
From Pagnotto (written communication, 1972)



TABLE XII-10

URINARY PHENOL LEVELS WITH CORRESPONDING 
EQUIVALENT ENVIRONMENTAL BENZENE EXPOSURE LEVELS

Urine Approx. Av. Equiv.
Phenol Benzene Air Level

(mg/liter) (ppm)

100 10
120 13
140 16
160 19
180 22
200 25
220 27
240 29
260 31
280 33
300 35
320 38
340 41
360 44
380 47
400 50
420 53
440 56
460 59
480 62
500 65
520 68
540 71
560 74
580 77
600 80

From Pagnotto (written communication, 1972)
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TABLE XII-11

SUMMARY OF HEMOGLOBIN LEVELS FOR 
WORKERS IN A RUBBER COATING 
PLANT USING NAPHTHA SOLVENTS 

(3-7% by Volume)

Worker 3/10/61 3/30/61 9/20/63 10/31/63

B 12.5 12.6
H 13.0 13.8
J 13.4 12.8
L 12.2 11.3 11.2 11.5
M 14.6
N 12.7
0 12.2

From Pagnotto (written communication, 1972)
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TABLE XII-12

COMPARISON OF BENZENE AIR LEVELS 
FROM URINE PHENOL AND AIR SAMPLE DATA

Benzene in Air 
ppm

Occupation Urine Phenol* Estimated from Air Sampling
mg/liter Urine Phenols Data (TWA)

Agitator operator 105 10 1.3
Agitator operator 107 10 10.7
Benzol loader <65 <5 1.7
Benzol still operator <65 <5 6.7
Benzol oil still operator <65 <5 0.8
Naphthalene operator 115 12 8.5
Analyst 105 10 2.4
Chemical observer 68 5 12.0
Foreman <65 <5 none
Repairman <65 <5 2.6
Chemical observer 65 5 17.1
Chemical observer 112 11 12.2
Chemical observer 66 5 6.5
Control tester 66 5 14.6
Stillman 212 24 39.2
Chemist 157 17 8.8
Pumpman helper 302 36 55
Pumpman helper 84 7 9.5

From Bethlehem Steel data (written communication, 1972)

*Values less than 65 mg/liter were not considered to differ 
significantly from that of an unexposed normal adult.
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TABLE XII-13 

BENZENE PLANT AIR LEVELS
ppm

Benzene in Air

Occupation 8-Hour TWA Range

Agitator Operator 6.0 0.5 - 20

Benzol Loader & 
Loader Helper

4.0 0.5 - 15

Benzol Still Operator 4.0 1 - 15

Light Oil Still 
Operator

2.5 1 - 15

Naphthalene Operator 10 2 - 3 0

Analyst 10 2 - 3 0

Chemical Observer 10 4 - 5 0

Foreman 1.5 1 - 1 0

From Bethlehem Steel data (written communication, 1972)
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TABLE XII-14 

NORMAL HEMATOLOGIC VALUES

Cell Counts

Erythrocytes Male
Female

Leukocytes Total

Differential

Myelocytes
Immature

polymorpho-
nuclears

Segmented
neutrophils

Lymphocytes
Monocytes
Eosinophils
Basophils

Platelets

Reticulocytes

Corpuscular Values for Erythrocytes

Mean Corpuscular Hemoglobin 
Mean Corpuscular Volume 
Mean Corpuscular Hemo­
globin Concentration

Hematocrit

Hemoglobin

Male
Female

Male
Female

Serum Bilirubin Concentration

Total
Direct
Indirect

4.6-6.2 million/cu mm 
4.2-5.4 million/cu mm

5,000-10,000/cu mm

0%

3-5%

54-62%
25-33%
3-7%
1-3%
0-0.75%

150,000-350,000/cu mm 

0.5-1.5% of erythrocytes

27-31 picograms 
82-92 cu miera

32-36%

40-54%
37-47%

14.0-18.0 g%
12.0-16.0 g%

0.3-1.1 mg% 
0.1-0.4 mg% 
0.2-0.7 mg%

From Conn [142]
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COMPARISON OF PHENOL IN URINE WITH BENZENE IN AIR

FIGURE XII-1

* Represents both phenol and paracresol. Phenol alone 
would result in values lower than indicated.

Derived from Pagnotto [12]
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SUGGESTED METABOLIC TRANSFORMATION OF BENZENE IN MAN

FIGURE XII-2

From Truhaut [ 126]

«U.S. Govern ment Prlntln# O f rice: 1 9 7 4  — 7 5 8 -5 2 0 /2 1 5 0
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