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ABSTRACT OF THE THESIS

DETERMINATION OF THE EXTRAVASCULAR BURDEN OF CARBON
MONOXIDE (CO) ON HUMAN HEART

Noninvasive measurements of myocardial carboxymyoglobin levels (%MbCO) and
oxygen tensions (PtOy) are difficult to obtain experimentally. We have developed a
compartmental model which allows prediction of myocardial %MbCO levels and PtO,
for varied carbon monoxide (CO) exposures. The cardiac compartment in the model
consists of vascular subcompartments which contain two tissue subcompartments varying
in capillary density. Mass-balance equations for oxygen (O,) and CO are applied for all
compartments. Myocardial oxygen consumption and blood flow are quantified from
predictive formulas based on heart rate. Model predictions are validated with
experimental data at normoxia, hypoxia, exercise and hyperoxia. CO exposures of
varying concentration and time (short-high, long-low), CO rebreathing during 100% O2,
and exposure during exercise is simulated. Results of the simulations demonstrate that
during CO exposures and subsequent therapies, the temporal changes of %MbCO in the
heart differ from those of carboxyhemoglobin levels (%HbCO). Analysis of correlation
between %HDCO, %MbCO and PtO, was done to understand myocardial injury due to
CO hypoxia. This thesis demonstrates that the model is able to anticipate the uptake and
distribution of CO in the human myocardium and thus can be used to estimate the
extravascular burden (MbCO, PtO; ) of CO on the human heart.

Key words: Myocardial Oxygen Tension, CO Hypoxia, Exercise, Tissue Oxygenation, Cardiac
Muscle
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CHAPTER 1

Introduction

Chapter 1 explains the importance of the need for developing a model for
predicting the extravascular burden of CO on the human heart. The chapter gives a
basic introduction to carbon monoxide (CO) toxicity, and details the sources of CO,
reactions of CO with the heme pigments in the body and the effects of CO exposure
on oxygen (Oy) delivery to tissues. This chapter discusses the symptoms, effects and
treatment strategies of CO poisoning cases. Finally, the chapter highlights the

hypothesis made and goals to be achieved in the following thesis.

1.1 Carbon Monoxide (CO) Toxicity

Carbon Monoxide (CO) is a byproduct of incomplete combustion of carbon-
based fossil fuels. CO is generated in toxic amounts by internal-combustion engines,
faulty fossil-fuel heating systems, fire accidents, and emissions from modern
automobiles in poorly ventilated spaces. The body produces CO as a by-product of
hemoglobin degradation, but the gas does not reach toxic concentrations in vivo
unless it is inhaled from exogenous sources (like faulty heaters, indoor charcoal grills,
cigarette smoke, swimming behind a motorboat or under a houseboat, etc.). Carbon
monoxide, which is a colorless, tasteless and odorless gas, is often referred to as an
invisible killer as it is difficult to detect. Exposure to CO concentrations exceeding
permissible exposure levels (PEL) of 50 ppm over an average of 8 hrs (1, 2) is a
significant environmental and occupational health concern. There are approximately
4000 deaths per year occurring in United States due to CO poisoning (3, 4, and 5).
CO exposures and poisonings occur more often during the fall and winter, when
people are more likely to use gas furnaces, heaters and generators in their homes (4,
6).

CO produces tissue toxicity by impairing oxygen (O) delivery to the tissues.
CO is absorbed by the respiratory tract and diffuses through the alveolar-capillary
membrane and enters the blood, following a path similar to that of O,. The rate of

absorption of CO decreases when the partial pressures of CO in blood of the



pulmonary capillaries and the alveolar air reach a state of equilibrium. After being
absorbed and diffusing through the respiratory tract, CO combines reversibly with the
heme pigments of the body, namely: (i) Hemoglobin (Hb) present in blood (ii)
Myoglobin (Mb) present in muscle tissues, and (iii) other membrane bound heme-
containing compounds (e.g., cytochromes). Hemoglobin (Hb) is a tetrameric heme
protein present in red blood cells whose main function is oxygen (O;) transport
(Figure 1.1.1). Oy is stored in the lungs as a gas and in the blood. In the blood it is
present in two (7) forms: (i) dissolved in plasma (normally 1.5% or 3 ml in 1 liter
blood) and (ii) reversibly combined with hemoglobin (normally 98.5% or 197 ml in 1
liter blood). Each hemoglobin molecule can bind to four oxygen molecules forming
fully-saturated oxyhemoglobin (O,Hb), (Figure 1.1.2). Hb binds CO ~220 times more
strongly than it binds O,, to form carboxyhemoglobin (HbCO) (Figure 1.3.1).

Myoglobin (Mb) is a monomeric heme protein present in muscle tissue
(Figure 1.2.2) and each myoglobin molecule can bind to one oxygen molecule
forming oxymyoglobin (O,Mb) (Figure 1.2.1). It is an oxygen store and also binds to
CO to form carboxymyoglobin (MbCO) (Figure 1.2.3). Mb binds CO ~36 times more
strongly than it binds O,

Thus CO toxicity causes mortality primarily due to the effects of severe
hypoxia by attaching itself to Hb and Mb and reducing the oxygen carrying capacity
of these heme proteins. CO usually replaces only two of the four O, molecules bound
to the heme groups of hemoglobin. In cases of high CO concentrations it is possible
that CO may replace the third O, molecule by binding to the third heme group (Figure
1.3.2). Thus CO toxic hypoxemia causes changes in the circulatory, respiratory and

metabolic demands of the tissue (8-18).

Groups especially susceptible to the hypoxic stress of carbon monoxide
exposure would potentially be individuals with cardiovascular and obstructive lung
diseases, individuals with cerebrovascular and peripheral vascular diseases, and
individuals with anemia. In addition, hospitalized individuals suffering from tissue
hypoxia (e.g. shock) or those undergoing operations may be at increased risk.
Individuals with undetected or undiagnosed coronary artery disease as well as the

fetus, the newborn or, even pregnant women may be assumed to be at increased risk



because of the anticipated reduced capacity to accommodate hypoxic stress or some
inherent sensitivity to hypoxia. Furthermore, other populations such as those living at

high altitudes, young children, or older adults may also be at increased risk (2).

1.2 Symptoms, Diagnosis and Treatments of CO Poisoning

Symptoms and effects of CO poisoning are greatly dependent on the
concentration and duration of exposure. CO poisoning could be acute (exposure to
CO occurs and lasts no longer than 24 hrs) or chronic (exposure to CO that occurs
more than once and lasts longer than 24 hrs). Generally, chronic exposures involve
lower HbCO saturations due to lower CO exposures. Diagnosis of CO poisoning is
difficult unless the event of toxicity occurs at site of high CO concentration like a
house on fire or a blast in a coal mine. CO poisoning can be difficult to diagnose
because CO poisoning symptoms are similar to those of flu. Specific information
regarding the CO exposure duration and the concentration of CO inhaled is often
unavailable. In addition valid blood HbCO level measurements are readily obtained
but are an unreliable predictor of injury, and there are no clinical tests that can
determine the extra vascular burden of CO (e.g., a noninvasive measurement of
MbCO levels or tissue PO, in humans). Although CO poisoning does not cause a
fever, other symptoms are similar to those of the flu (including nausea, severe
headache, vomiting) and also include neurological sequellae (memory loss,
personality and behavior changes, brain damage etc), cardiac abnormalities in ECG,
abnormal ventricular function and elevated cardiac biomarkers diagnostic of
myocardial injury depending on the type of CO exposure. Treatment for CO poisoned
victims involves administering supplemental O,. The treatment is with either
normobaric hyperoxia, where 100% Oxygen (O;) is administered if the victim is
conscious and HbCO levels in the blood are less than 25%, or hyperbaric hyperoxia
where 100% Oxygen (O2) is administered, at 1-3 ATA (1 atmosphere = 760 mm of
Hg) pressure, if the victim is unconscious or the HbCO level exceeds 25%. However,
there are some problems with the treatment strategies for CO poisoning victims.

Decision of the treatment protocol is based on the measured HbCO levels in the



venous blood. Blood %HbCO is readily measurable but is thought to be an unreliable
measure of poisoning severity. Carboxymyoglobin (MbCO) levels and tissue partial
pressures of oxygen (PO;) which are more reliable indicators of CO toxicity in the
tissue are difficult to measure through any clinical procedures. Treatment strategy is
often debatable and it may not be very clear whether hyperbaric hyperoxia rather than
normobaric hyperoxia treatment is necessary (19, 20, 21, 22, 23). Despite treatment

after CO poisoning, neurological and cardiac sequellae often occur.

1.3 Motivation for the Thesis

CO hypoxia results in impaired O, delivery causing a decrease in O, uptake by
the cells. This diminished O; utilization causes alterations in biochemical (cardiac
troponin I, phosphocreatine (PCr), lactate) and physiological (cardiac output, rate
pressure product, metabolic rate) activities. Elevated cardiac biomarkers (cardiac
troponin I > 0.7ng/ml, CK-MB (Creatine kinase MB isoenzyme) mass >5.0ng/ml)
and diagnostic EKG (electrocardiogram) changes (like ST segment elevation, T-
wave changes), abnormal left ventricular (LV) function (like alternations in left
ventricular ejection fractions) and regional wall motion abnormality are observed in
moderate to severely CO poisoned patients (24). In a population of 230 CO poisoned
patients, 44% of deaths were reported to be due to cardiovascular causes such as
cardiac arrest, myocardial infarction, congestive heart failure, fatal arrhythmia (24).

Also, there is evidence that workers who are exposed to high CO concentrations
have an increased risk for cardiovascular morbidity and mortality (25, 26). The effect
of high CO exposures would pose a greater risk for injury during exercise, as there
would be increased demand for O, in the tissue accompanied with O, impairment due
to CO binding to hemoglobin and myoglobin. Exercise also increases ventilation
which, in turn, increases the amount of CO inhaled and thus the dose of CO.

Coronary circulation is very sensitive to O, deprivation as the myocardium has
a very high O, extraction fraction (Measure of quantity of O,delivered to the tissue
and is defined as ratio of arterial and venous (A- V) O; concentration difference and
arterial (A) O, concentration) to causing profound effects of CO in the myocardium.

Each molecule of myoglobin in the heart is capable of binding to one CO molecule by



means of the heme group to form carboxymyoglobin (MbCO), which would further
increase the CO content in the heart tissue causing a decrease in O; availability. Also,
the contribution of myoglobin diffusion during CO hypoxia is unclear (27, 28, 29).
All the above recent reports on cardiac impairment, occurring with CO poisoning
motivated scientists to understand the causes of cardiovascular abnormalities in CO
poisoning victims (30, 31, 32). Therefore, keeping these facts in mind, the following

hypothesis was made for the thesis:

Hypothesis: “During CO exposures and subsequent therapies, the temporal changes
of %MbCO in the heart differ from those of %HbCO; in particular, there are times

during the therapy %MbCO can sometimes increase when %HbCO is decreasing™.

The importance of this hypothesis is that CO load delivered to the heart impairs
oxygen delivery, further affecting the tissue oxygen tension (PtO;) and O; pressure
gradients. This CO load is related to both %HbCO in arterial blood perfusing the
heart and %MbCO in cardiac tissue. If %MbCO and %HbCO change in opposite
directions, then the currently-used clinical indicator of potential injury (i. e., %HbCO)
will be inaccurate and possibly misleading. Thus, determining the total CO load on

the cardiac cells (or its effect on tissue PO,) might be a better predictor of injury.

1.4 The Need for our Model

Determination of the burden of CO (vascular - %HbCO and extra vascular -
%MDbCO) and its effects on tissue PO, during uptake and washout would provide a
better assessment of risk associated with a range of exposure conditions in CO

toxicology. This specific task can be accomplished in two ways:
1. Conduct experiments involving CO exposures
2. Estimate CO burden from a “Mathematical Model”

Conducting experiments involving low CO exposures can be accomplished in
human subjects, but it would be unethical to expose subjects to high CO exposures to

understand causes of injury due to CO and predict clinical outcomes. Also, these



experiments are difficult to conduct and require detailed care, great expertise and are
also expensive. Even if these experiments are conducted, non-invasive measurements
of MbCO are not possible. Also, invasive or non-invasive reliable measurements of
tissue oxygenation in healthy human hearts are difficult to make. Experimental
measurements of human myocardial O2 tension have been reported in patient
populations with cardiovascular abnormalities (33, 34). Thus, the best option would
be to build a model to predict the burden (vascular-HbCO; extra vascular- MbCO) of
CO on the human heart by doing simulations for a range of CO exposures. If one can
implement O; interaction equations, the model can also help to predict oxygen
tension in the heart. Further, the model can be used to anticipate levels of CO that
may be lethal to the heart or to assess the risk of cardiac injury when exercise is
accompanied with CO exposure. This information would be helpful to design
treatment protocols for people exposed to CO while at work. Thus the approach I

decided to take to test the hypothesis is as follows:

Approach: ““Since O, and CO levels in heart are not measurable non-invasively in

humans, a plan to estimate these values from a model was made.”

After formulating a hypothesis, the next task was to assess the literature for the
availability of an appropriate model for predicting uptake and washout of CO. After
making a diligent search, the model developed in our lab by the authors of
reference 35 seemed most suitable. The process from setting an objective to reaching

a solution is summarized in Figure 1.4.

The reasons for selecting this model are explained in detail in section 2.1 of chapter 2.
This model consisted of lumped compartments for lungs, blood (arterial and venous),
skeletal tissue and non-muscle tissue. Mass balance equations for CO were used to
represent the compartments (35). However, this model also had some limitations and
so the model was further modified in our lab resulting in a better and more efficient
model (Bruce, Bruce, and Erupaka, in preparation) which, however, was still
inadequate for the present purposes because it did not include a compartment for the
heart. Figure 1.5 shows the different stages of model development. Thus, the next

task was to accomplish the following goals of the thesis to test the hypothesis made.



The major goals of the thesis are:
(1) Introduce a two compartment cardiac block into the model.
(2) Implement mass balance equations for O, and CO.

(3) Test and validate the model with experimental data for conditions of rest,

exercise, CO exposure and hypoxic hypoxia and hyperoxia.

(4) Use the developed and validated model to predict extravascular burden of
CO and O; tension in the cardiac tissue during short-high concentration
CO exposures, CO rebreathing studies in 100% O,, long-low
concentration CO exposure, exercise in the absence and presence of CO,

and to determine CO concentrations injurious to the heart.
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Figurel.1.1 Hemoglobin Figure 1.1.2  Oxyhemoglobin

Figure 1.1: Hemoglobin (Hb) and Oxyhemoglobin (HbO;). Hemoglobin (Figure
1.1.1) is a tetrameric heme protein present in red blood cells. O, binds to the heme

(Fe) protein present in hemoglobin to form oxyhemoglobin (Figure 1.1.2).



Figurel.2.1 Figure 1.2.2 Figure 1.2.3
Oxymyoglobin Myoglobin Carboxymyoglobin

Figure 1.2: Oxymyoglobin (MbO2), Myoglobin (Mb), Carboxymyoglobin
(MbCO). Myoglobin (Figure 1.2.2) is a monomeric heme protein present in muscle
tissue. O, binds to the heme (Fe) protein present in myoglobin to form oxymyoglobin
(Figure 1.2.2).CO also binds to the heme protein to form carboxymyoglobin (Figure
1.2.3)
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Figurel.3.1 Carboxyhemoglobin Figure 1.3.2 Carboxyhemoglobin

Figure 1.3: Carboxyhemoglobin (MbCO). CO binds to the heme (Fe) protein

present in hemoglobin to form carboxyhemoglobin.
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Current finding in CO literature-
Cardiac Injury with CO exposure

‘

Setting an Objective-
Determine risk of hypoxic injury to heart

'
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heart
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Approach-
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'
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Results and Conclusions

Figure 1.4: Overview of the Thesis
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Checle Analysis
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Figure 1.5: Stages of Model Development
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CHAPTER 2
Background

Chapter 2 provides information on models present in the scientific literature that
predict CO uptake and the limitations of these models. This chapter discusses the
basis for selecting a specific model for the thesis from the models present in the
literature and the necessity to modify the selected model to test the hypothesis made.
This chapter also gives a basic introduction to the concepts, simulation software used
and an overview of all the compartments present in the model. As it is difficult to
measure (non-invasively) carboxymyoglobin levels (MbCO) and tissue O, tension
(PtOy) in the human heart, building a model for estimating these parameters seemed
the best approach. Modification may include implementing desired features to cater to
the needs of the desired model and to overcome the limitations of the available

models.

2.1 Previous Models

The CFK (Coburn Forster Kane) model often discussed in the carbon monoxide
level (CO) literature predicts carboxyhemoglobin (COHb) levels for acute and
chronic CO exposures (Coburn et al. 1965). The CFK equation establishes a relation
between the blood COHb levels, rate of endogenous CO production, and CO
exchange rate due to respiration. However, this model has certain limitations. For
example, the model lumps the total blood volume into a single homogeneous, well
mixed compartment and also excludes the dissolved CO or oxygen (O,) in the blood
while determining the COHDb levels in the blood. The CFK model analytically solves
the linearized CFK equation by assuming a constant O;Hb concentration in the blood.

The model predictions agree well with experimental values under normal
conditions but disagree with experimental values involving transient CO exposures
(154), involving fast reactions of CO with Hb (Forster (1970), Holland (1970),
Roughton (1964), Waller et.al (1988)). Later Peterson & Stewart (1975), Bernad &
Duker (1981), Tyuma et. al (1981) and Collier & Goldsmith (1983) solved the CFK
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equation by accounting for the variation of O;Hb using iterative methods, analytical
solutions etc.

More recently, a mathematical model was developed (36) to predict alveolar
partial pressure of CO and blood HbCO as a function of exposure time and CO
concentration. CO uptake by blood was predicted taking into account the diffusion
based transport mechanisms of CO and the replacement reaction of CO with O,Hb.
Benignus et al. (1995) developed a model to predict blood COHb levels considering
variations in inhaled O,, CO, and CO concentrations. But the drawback of these
models was that they limited their CO uptake predictions to the vascular
compartments. They did not include diffusion of gases from vascular compartments
to the surrounding tissue. This results in exclusion of extravascular storage sites of
CO like myoglobin present in muscle tissue and cytochrome oxidase in mitochondria.
Also, the concept of lumping blood into one single compartment results in loss of
physiological relevance related to variability in O, concentrations (O» content is
greater at the arterial side compared to venous side) and partial pressures present in
different blood subcompartments, which affects the predicted CO load.

Bruce (2003) developed a model that predicted distribution of CO in the body
by considering CO diffusion between the vascular and extravascular compartments.
The model (Figure 2.1) had a lung compartment, blood (arterial and venous)
compartments, muscle and non-muscle tissue with vascular and extravascular
compartments. Herein this model will be referred to as the primary model in this
thesis. Mass balance equations for CO were written for all the compartments of the
model and are described in detail in (35). An example of the mass balance equation

for CO for the alveolar compartment from the above model is as follows:

v, dCA((;tO(t) =[P.CO(t) - pAco(t)]\F/)—"*— COflux 4 (1)
B

where V| is lung volume, CAoCO is the alveolar CO concentration, PACO is the
alveolar partial pressure of CO (Pco), PiCO is inhaled partial pressure of CO, t is
time, and COflux,g(t) is the CO flux from lungs to blood defined as
COflux (t) =[P,CO - (1-K,)P,.CO(t) +K ,P,CO(t-d,))]D,CO
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where Pe.CO is end-capillary PCO, d, is the mean transport delay in mixed
venous blood, P,CO is mixed venous partial pressure of CO, and K, is used to
apportion the effective pulmonary capillary PCO between the mixed venous and end-
capillary pressures. Vascular mixing in the pulmonary capillary compartment is
ignored and C¢CO is determined by adding COflux,g to the mixed venous blood,
which enters the lungs after the mean transport delay (d,) from venous blood

compartments.

In the modified model (discussed in Section of 3.2 of chapter 3) and final model
(discussed in Section 3.3 of chapter 3) the same CO mass balance equations are used
for the alveolar compartment (as shown above) and the non-muscle tissue. For the
skeletal muscle (tissue and blood subcompartments), CO mass balance equations in
the final model (model developed for thesis) are described for two tissue
subcompartments and three blood vascular subcompartments, unlike equations used
for the single blood vascular and tissue compartments discussed in (35).

To determine the partial pressure of carbon monoxide (PCO) in each blood
compartment of the primary model it was necessary to solve three simultaneous

algebraic equations of O (discussed in Reference 35):

1. Oxyhemoglobin Dissociation Curve (ODC).
2. Haldane’s Equation.
3. Blood to Tissue Oxygen Flux Equations.

2.1.1 Oxyhemoglobin Dissociation Curve

The oxyhemoglobin dissociation curve gives the saturation of oxygen as a
function of the partial pressure of oxygen. There are number of factors that affect the
binding of oxygen to hemoglobin which change the shape of the curve. Factors that
affect the ODC are variation of the hydrogen ion concentration (pH), effects of
carbon dioxide, effects of 2,3-DPG (2,3-Diphosphoglycerate), temperature, carbon
monoxide, effects of methemoglobinemia (a form of abnormal hemoglobin) and fetal

hemoglobin (37). ODC is shifted to the right by an increase in temperature, 2, 3-DPG,
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or PCO,, or a decrease in pH. In this model, for the conditions that the authors intend
to simulate the most important factor that may affect the curve is the carbon
monoxide level. In the absence of CO, the sigmoidal shaped curve approaches a
horizontal asymptote as the partial pressure of oxygen exceeds approximately 70
mmHg and declines with a steep slope toward a point of inflexion when the partial
pressure of oxygen falls approximately below 60 mmHg. Carbon monoxide also has
the effect of shifting the curve to the left. Thus, a set of equations were derived to
represent the O, dissociation relationship in the presence of CO by determining the
dependence of the Hill parameters on the HbCO level and then applying a correction
to the Hill equation at low O; pressures. The method for the derivation is detailed in
the paper (35). When the inspired CO levels are zero, the ODC retains its shape.
Except at low PO, values, a reasonable approximation to this curve for any given

level of HbCO is the Hill equation given below

PO, )’
CO2(max) ( P 2]
50
Co, = .

1+[P02J
PS 0

Where P;, = ap,[1 +exp(ap, - %COHb)] -1 and

n=an, +an, -exp(—0.025- %COHDb)
api,ap;,an;, an, are constants resulting from curve fitting for various

concentrations of CO. Ps is the PO, necessary to half-saturate the Hb.

The ODC for Mb (Figure 5 of reference 38) is also represented by a Hill
equation, but it is assumed that its parameters are independent of the
carboxymyoglobin (MbCO) level except for that of the maximum O,-binding
capacity. At each time step of the simulation, the dissociation curve for Mb and the
Haldane equation for Mb are satisfied simultaneously via an implicit solution using an

iterative procedure.
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The Hill equation for myoglobin is

[02Mb]- Pso

> 1-[0:Mb]

where PO, is the oxygen tension and [O,Mb] is the fractional O, saturation of
myoglobin. Psy is the PO, at which myoglobin is half-saturated with oxygen and is

dependent on temperature and pH.

2.1.2 Haldane’s Equation
PCO was determined by first solving for the other variables, assuming that PCO
is constant across an integration step, and then updating its value via the Haldane

equation as shown below.

MupPco  Po2
COHb O:2HDb

Mmup is the Haldane affinity ratio for hemoglobin and has a value of 218. The
volumetric carrying capacity of Hb for O, or CO is calculated as the product of Hb
concentration and the nominal maximum O, content, 1.38 ml O,/g Hb. The Haldane

equation for myoglobin is

MmbPco  PO2
COMb 0O:Mb

Mwp is the Haldane affinity ratio for myoglobin and has a value of 36. At each
time step of the simulation, the dissociation curve for Mb and the Haldane equation
for Mb were satisfied simultaneously via an implicit solution using an iterative

procedure.

2.1.3 Blood to Tissue Oxygen Flux Equations
The blood to tissue oxygen flux equations are described in (35). It was assumed

that O, diffuses from the vascular to the extravascular subcompartments of the tissues
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at rates just sufficient to meet the metabolic demand of the tissue. Endogenous CO
production was included by assuming that all endogenous CO is delivered to the

mixed venous compartment.

2.2 Chosen Model and Proposed Modifications

The model (primary model) developed by Bruce (2003) fit the criteria of the
model needed for the thesis as the model accounted for transport of CO in the
pulmonary compartment, CO bound to Hb and dissolved in plasma, and transport of
CO from the blood flow to surrounding tissue. This model consists of five major
compartments: 1.The arterial blood, 2. The Lungs, 3. Skeletal Muscle, 4. Non-muscle
tissue and 5. Mixed venous blood compartments (Figure 2.1). Herein this model will
be referred to as the primary model in this thesis. However, O, parameters were
assumed to be constant in this model and were passed as arguments.

Thus the primary model was chosen and certain modifications were proposed to
test the hypothesis made. The proposed modifications are as follows:

Tissue O, tension which is an important predictor of the oxygenation state of the
tissue can also be anticipated by adding equations for O, mass balances. This would
also aid in accounting for the nonlinearities in an efficient way.

The model predictions would be more physiologically relevant if the single
muscle compartment was divided into subcompartments. This would allow diffusion
of gases within the tissue resulting in better solution estimates for O, tensions and CO
load. Therefore, in our lab we intended to replace the single lumped muscle
compartment with two subcompartments. Regional heterogeneity of blood flow and
O, consumption in skeletal muscle demanded development of predictive equations to
calculate the arm, the trunk and the leg skeletal mass distributions. Also, a formula
was developed to predict an increase in cardiac output with increased COHb level in
blood. A paper on the updated model is in preparation (Bruce, Bruce, and Erupaka).

Though heart is a muscle tissue, it has a different morphology from skeletal
muscle tissue. Cardiac muscle has a different capillary density (39), resting blood
flow (Table 2.1) and metabolic rate (Table 2.2) from that of skeletal muscle (Table

2.3 and Table 2.4). Lumping the skeletal muscle and cardiac muscle into a single
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compartment would not be a good assumption to make. Thus, it would be important
to add a heart compartment to the model in order to model CO uptake and PO; in the
myocardium and relate them to cardiac injury.

Another objective was to develop better and more efficient algorithms to
determine PO; and PCO in the compartments. The algorithms used in the primary
model had convergence issues while solving the O, dissociation curves of Hb and Mb
(especially solving for PO, and PCO when certain conditions caused ODC to be flat)
and resulted in numerical errors. It was also important to modify the blood to tissue
oxygen flux equations by evaluating them as a function of pressure gradients and
diffusion coefficients of O, instead of making an assumption of equality between O,

flux and metabolic demand of the compartment.

2.3 Basic Concepts of the Model

The basic concept used in developing the model is the continuum theory of
conservation of mass. Figure 2.2 gives a summary of basic concepts needed to build a
model. Mass balance equations are written for CO and O, for all compartments. Mass

balance equations state that for any substance Q in a compartment,

dQ/dt = (rate of inflow + rate of creation)— (rate of outflow + rate of destruction)

The model diagram and dynamic equations are described in detail in chapter 3.
The simulation tool or software used to apply principles of physiology and
engineering to a model is ACSL (Advanced Continuous Simulation Language). This
tool has been exclusively developed for the purpose of modeling systems described
by time dependent, non-linear differential equations or transfer functions. ACSL
application areas include control system design, missile and aircraft simulation,
power plant dynamics, biomedical systems, vehicle handling, heat transfer analysis,
etc. Most of its basic elements are defined from FORTRAN, however the latest
version is a fusion of various other languages like C++, JAVA, etc., which supports
enhanced graphical user interface (GUI) and displays. The algorithm used for
integration is the Runge-Kutta-Fehlberg algorithm with fixed order and variable step.
The algorithm evaluates the derivative three times per step and makes a second order

advance. If any error in a state is larger than that allowed, the step size is reduced
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until the error criteria are satisfied for all the states. Apart from the integration
algorithm which is built-in in ACSL, other algorithms are developed as macros and
called to solve certain simultaneous algebraic equations which are discussed in
section 3.8 of chapter 3.

In general models have several parameters to be estimated and the values for
these parameters are either taken from the literature available or they are estimated.
When available, subject-specific values of model parameters were obtained from the
literature or directly from the investigators. Usually, the age, weight, and height of a
subject were available, and often one or more additional parameters, such as Hb
concentration, total blood volume, cardiac output (Q"), or ventilation, were provided
by the investigators. In some cases, average values for a group of subjects were used.
Predictive formulas were used to estimate Q° (when it was not measured) and tissue

volume of skeletal muscle (V,,) as functions of body weight (BW), age (A), height

(HT), and gender (G; has a value of 1 for a male and 0 for a female subject).

Predictive formulas were used from published papers,

Q =(54.1+7.9G)BW +1400 — 200G (40)

Cardiac output was calculated in ml/min

V,, =1000(0.244BW + 7.80HT + 6.6G —0.098A—-3.3)/1.04 (41)

Tissue volume of skeletal muscle was calculated in ml.

2.4 Anatomy of the Heart

The heart is the mechanical pump that circulates blood through the blood
vessels involuntarily maintaining the homeostasis of blood to tissue exchange. The
heart has several surfaces (anterior, inferior) and membranes that surround and
protect the heart without interrupting the contraction and vigorous movement of heart.
The heart wall consists of three layers namely the epicardium which is the external
layer, the myocardium which is the middle layer of the wall and the endocardium, the
inner layer of the heart wall. The myocardium is an involuntary cardiac muscle tissue

which makes up the bulk of the heart and is responsible for the pumping action of the
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heart. There exists oxygen supply and consumption heterogeneity in theses layers of
the heart wall corresponding to variable oxygen tensions (Table 2.5).

The heart has four chambers. The right and left atria which receive blood from the
great veins (superior vena cava, inferior vena cava, coronary sinus) and from the
lungs through the pulmonary veins, respectively. The right and left ventricles perform
the pumping action of blood. However, these chambers also vary in thickness
according to their function. The left ventricle pumps blood to vasculature at greater
distances with large blood flow resistance resulting in higher pressures compared to
the right ventricle. Thus the left ventricle has a thicker wall as it works harder. The
left heart is generally considered the energy source of the system. The greater work
load in the left ventricle results in higher blood flow through the cardiac muscle and
greater oxygen consumption compared to other chambers of the heart, as the tissues
match their vascular function to their metabolic needs. During resting conditions, the

myocardial oxygen extraction fraction is 60-70% (42).

It is a known fact that the heart requires energy to maintain ionic balance and
synchronous contractions. This energy is supplied by the ATP (Adenosine Tri
Phosphate), which needs oxygen for aerobic metabolism to take place. In cases of
increased myocardial stress, conditions of hypoxia, hypoxemia or CO poisoning, the
energy metabolism cycles are disrupted (43-47) and an increase in coronary supply
should occur to prevent tissue hypoxia. Thus, modeling O, delivery and demand is
needed to estimate the burden of hypoxia on the cardiac tissue. As CO impairs
oxygen delivery, causing discrepancies in the tissue-blood PO, gradients, the
objective was to develop a model to estimate the oxygen tension in the cardiac tissue

and also predict the burden of the CO load delivered to the heart.
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Table 2.1: Myocardial Blood Flow

Right
ventricle
Right
ventricle
Left
ventricle
Left
ventricle

Dog- o

closed Microspheres 59
ventricle

chest

|
Humans

Left
46212 yr PET o1

(Table also referred in Section 3.4)

Technique Reference

Microspheres 57

Dogs Microspheres 58
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Table 2.2: Myocardial Oxygen Consumption

Species

Technique

Right atrium

Left atrium

Whole heart

Human

Reference

T —

53

(Table also referred in Section 3.4)
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Table 2.3: Skeletal Muscle Blood Flow

Values(
ml/min/100ml tissue)

Reference

Brachioradialis

Tibialis
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Table 2.3 Skeletal Muscle Blood Flow (Continued)

Values(

ml/min/100ml tissue) Reference

Muscle

Leg middle

Leg distal

1.4+ 0.64 Brachiradialis 49

0.81+0.47 Flexor d1g1‘t0%'um o
superficialis

0.72+ 0.32 Flexor digitorum .

superficialis
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Table 2.3 Skeletal Muscle Blood Flow (Continued)

Values(
ml/min/100ml tissue)

Reference

1.42+1.04 Brachioradialis 64
2.06+ 0.7 "
26+12 Calf-profound Y

flexors
3.1+ 0.27 65

3.12+1.55

Femoral

(Table also referred in Section 3.1, Section 3.2.2)
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Table 2.4: Skeletal Muscle Oxygen Consumption

MRO, Value

(ml/min/100g) Reference

0.21 + 0.03
mid

0.17 + 0.02
most distal

(Table also referred in Section 3.2, Section 3.2.2)
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Table 2.5: Myocardial Tissue Oxygen Tension in Various Species

Species Mean PO2 Arterial

Value PO2

Region

Surface of
beating heart
(histogram) (~ 5
- 60 Torr)

Median PO2 =
31 mm Hg

"Steady state"
(normoxia)

Surface of
beating heart
(histogram) ( ~

10- 115 Tors) 259.3 mm Hg

(normoxia)

Mid-

28

Method Reference

Platinum
electrode 8 mm

Platinum
electrode 8 mm

LiPc crystals -
EPR




Table 2.5 Myocardial tissue Oxygen tension in various species (Continued)

c q Mean PO2 q
Species Region Value Arterial Method Reference
PO2
Left ventricular
myocardium:
deep - before 150
Dog (N=9) bypass 14.5 mm Hg 65 mm Hg Mass spec

Left ventricular Coronary

myocardium: 3 blood flow in
Dog (N=12) mmdeep- | 200 E25MM | §Ap97+

subepicardium He 3.9 ml/min el eanhy

Right ventricular
myocardium: 6

Human M
38yr

39.73 mm Hg; 168-210 mm Platinum needle
(median=28) Hg electrode
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CO is exhaled through the
lungs

CO enters through the lungs

Arterial Blood

VenousBlood Muscle Tissue
Compartment

Compartment

Non-Muscle

Tissue

Figure 2.1: Primary Model. The model consists of five major compartments. Mass
balance equations were written for CO. CO enters through the lungs and diffuses to
the muscle tissue and non-muscle tissue compartments via the arterial blood
compartment. CO then enters the venous blood compartments after a time delay. For
the detailed figure refer to 35

(Figure also referred in Section 3.1)
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Continuum theory

of conservation of mass
—y

Model Diagram and Parameter Estimation

g

Dynamic Equations ﬂ

|— Computer code

Software- Algorithms for solving
ACSL dynamic equations

Figure 2.2: Basic Concepts of Building a Model. The basic concepts for building a
model are determining the principle for the model (conservation of mass), sketching

the model diagram, determining the parameters, and choosing suitable software to
build the model.
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CHAPTER 3
Model Description

Chapter 3 discusses a brief overview of the modifications to the primary model.
The chapter explains the general form of the mass balance equations for O, and CO
for a model with two subcompartments. After a brief description of the cardiac
compartment of the model, the mass balance equations written for O, and CO for
each blood and cardiac tissue subcompartment are explained in detail. Parameter
estimation for the cardiac compartment and development of predictive equations are
also discussed in this chapter. Predictive equations are developed for: (i) estimating
the volumes of muscular regions (arms, legs and trunk) for males and females (ii)
percent increase in cardiac output and heart rate as functions of increased HbCO
levels in the blood, (ii1) cardiac output and heart rate as functions of total body
oxygen consumption, (iv) percent increase in heart rate as a function of increased
HbCO levels in the blood. Estimation equations were also developed for: (V)
myocardial oxygen consumption, and (vi) myocardial blood flow, both as functions
of heart rate. Sensitivity analysis is performed and parameters that influence the
oxygen tension in the myocardial tissue and vascular PO; are determined. This
chapter also explains the validation protocol for the cardiac compartment of the whole
body model where predicted data are compared with experimental values (from
humans and animals during conditions of normoxia, hypoxia, exercise and

hyperoxia).

3.1 Overview of Desired Model
In our lab, the initial model (referred to as the primary model in this thesis,
Figure 2.1) developed by Dr. Bruce (2003) was modified to produce a second model
(referred to as the modified model in this thesis, Figure 3.1), which accounts for mass
balance of oxygen (Bruce, Bruce, and Erupaka, manuscript in preparation).
Additions in this model include O, mass balance equations, an algorithm to calculate
PO, corresponding to the concentration of oxygen halfway between the inlet and

outlet of the vascular subcompartment of a tissue, and a regression equation to predict
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the associated increase in cardiac output due to an increase in COHb level in the
blood. Also, skeletal muscle mass was distributed into volumes of muscular regions
(arms, legs and trunk) for males and females to account for regional heterogeneities in
muscle blood flow (Table 2.3) and O, consumption (Table 2.4). The physiological
phenomenon of arterio-venous shunting was implemented in the lungs. Later, in an
enhancement of the modified model, a two subcompartment cardiac compartment
was added (referred to as the final model in this thesis, Figure 3.2). Development of

this cardiac compartment in the model is the first main goal of this thesis.

The skeletal and cardiac muscles exhibit major differences in morphology,
blood flow and O, demand. Also, cardiac muscle works constantly to pump blood
unlike the skeletal muscle, and it would be inappropriate to lump the cardiac muscle
with the resting skeletal muscle. In the process of building the cardiac compartment
various other prediction equations were developed to estimate parameters needed for
the model. Parameters like myocardial O, consumption and myocardial blood flow
were predicted as functions of heart rate; cardiac output and heart rate were calculated
from body oxygen consumption when values for heart rate and cardiac output were
not available. Also, increase in heart rate was predicted as a function of increased

COHb levels in blood.

3.2 Modified Model

The modified model consists of five major compartments: 1.The arterial blood,
2. The Lungs, 3. Skeletal Muscle with two subcompartments, 4. Non-muscle tissue
and 5. Mixed venous blood compartments (Figure 3.1). Mass balance equations are
written for oxygen (O,) and carbon monoxide (CO) for each of these compartments to
model whole body uptake of, and distribution of, CO and O,. Section 3.2.1, explains
the mass balance equation of O2 for the alveolar compartment, and Sections 3.2.2 and
3.2.3 introduce the general form of mass balance equations of O, and CO for the

vascular and tissue compartments of the modified model.
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3.2.1 Mass Balance Equations for the Alveolar Compartment
The O, mass balance equation for the alveolar compartment was added to the

model as follows,

dC,0,(t Vi
v, 9Ca 2 (1) :[Piog(t)_PAOZ(t)]P_A_OZ flux, g

dt s
where, V| is lung volume, CAO; is the alveolar O, concentration, PpO, is the

alveolar partial pressure of oxygen , PiO, is inhaled PO, t is time, V, is alveolar
ventilation, Pg is barometric pressure, and O, flux ;(t) is the oxygen flux from lungs

to blood, defined as
0, flux, (t) = Q' (1~ SF)[C,,0, (1) - C,, 0, (V)]

Where Q' is the cardiac output and SF is the shunt fraction, the percentage of
pulmonary blood flow that passes from the right to left heart without undergoing
oxygenation by the lung. Ce,0O; (1) is the end pulmonary oxygen concentration and
CmxO2 (t) is the oxygen concentration in the mixed venous compartment. It is
assumed that the end pulmonary partial pressure of oxygen (PepO») equals alveolar
partial pressure of oxygen (PaO,). CO mass balance equations for the alveolar
compartment are used from the primary model which was discussed in Section 2.1 of

chapter 2.

3.2.2 Mass Balance Equations for Blood Compartments
The mass balance equations for O; in the arterial, mixed venous and vascular
subcompartments of the skeletal muscle tissue are each described by an equation of
the general form
V. dC,0,(t) _
bt

where i is the index representing the arterial (ar), mixed venous (mx), skeletal

[C"(t)-C,0,(1)].Q; —O,Flux, (t)

muscle (subcompartment m1 or m2), or venous (v) compartments. V, is volume of

the compartment i, C!" is the concentration of O, in blood entering the compartment
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i, C, O, is the total concentration of O, in the blood compartment i, and Flux; is the

rate of diffusion of O, out of the vascular compartment i. (Mass balance equations of
0O, and CO for individual cardiac compartments are discussed in Section 3.3 of this
chapter.)

The flux is zero for the arterial and venous blood compartments. For the non-

muscle (other) - tissues (ot) blood compartment, the Flux,(t) is defined as
O, Flux,, (t) =[Pb, O, (t) - P,0,(1)].D,,0,
where, Pb,0,(t) is the mean partial pressure of O, in the arterial inflow and
venous outflow of the non-muscle vascular compartment. P,O,(t) is the partial
pressure of O in the non-muscle tissue compartment. DO, , is the blood to tissue

diffusion coefficient of oxygen. The non-muscle soft tissue in the model is a single
compartment. Because it does not contain Mb, its uptake of CO is very small.
For the skeletal muscle (m) blood subcompartments, the general form of the

equation for Flux,, (t)is as follows:

Oz Fluxm(j:1,2,3) (t) = Gsf (Pb ijz) : lDb ijZ ' (Pbmjoz (t) - Pml(or)m202 (t))J

(1)
1500 PS %SO, =V
Gsf(P):l_ &3 and Dbmjoz — m 2 mi(orym2
P 1.04
1+ ——
(1500

where j is the index of the blood vascular subcompartments j =1,2,3 for blood

subcompartments 1 ,2 and 3, respectively. D, O, is the blood to muscle tissue
diffusion coefficient. B, .O,(t)is the partial pressure of O, corresponding to the

concentration of oxygen halfway between the inlet and outlet of the vascular
subcompartment of the skeletal muscle. P 0O,(t) and P,,O,(t) are the two
subcompartment (ml, m2) tissue O, tensions. V,; and V, , are the volumes of the

muscle tissue subcompartment 1 and 2, respectively. SO, is the solubility of oxygen

in plasma and PS,, is the permeability surface area product of the skeletal muscle.
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Gsf(P) is a heuristic “gain” whose only purpose is to reduce the diffusion coefficient
in hyperbaric O, (which is not considered in this thesis). During hyperbaric O,,
hemoglobin is completely saturated with O, and dissolved O, concentrations increase,
thereby resulting in a decrease of the effective diffusion coefficient of O,. Gsf =1 for
all simulations herein. The diffusion coefficient of O, is directly proportional to
permeability surface area product. Greater permeability of the membrane for O;
means that the diffusion coefficient of O, from blood is greater and efficiency of O,
transport from blood to tissue is greater. O, flux depends on the pressure gradient and
the diffusion coefficient, Dym=12,3)O2.

The total concentration of O, in the blood compartment, C . ,50,(1), is

calculated from dissolved and Hb-bound O, concentration components so that

C 21230, (1) =0O,Hb; (1) + SO,.P,0,(1),

where O;Hb is the oxygen bound to hemoglobin, P, ,; O, (t)is the partial pressure

of O, in the muscle blood subcompartment j.

Mass balance equations for CO in the arterial, mixed venous and non-muscle
tissue are described in reference 35. CO mass balance equations for vascular
subcompartments of the skeletal muscle are each described by an equation of the
form

" dC.CO(t)
dt

where i=m1 or m2, the index representing skeletal muscle subcompartment 1

=[C,"CO(t) - C,CO(1)]Q"i — Flux,CO(t)

(m1), or muscle subcompartment 2 (m2). C"CO(t) is the concentration of CO in

blood entering the compartment i, C,CO is the total concentration of CO in the

blood compartment i,

C.CO(t) = COHb, (t) + SCO.P.CO(t)
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COFluyx; is the rate of diffusion of CO out of the vascular compartment.
COFIUX,y ;125 (1) = Dy, CO - (P, COM) = Py 0ryma COMD))

Dy, CO is the blood to muscle tissue diffusion coefficient and is estimated by
fitting the model to experimental data (35). R, ,CO(t)is the average partial pressure

of CO of the vascular subcompartment j of the tissue. P,,CO(t) and P,,CO(t) are the

partial pressures of CO in the muscle tissue subcompartments 1 and 2, respectively.
CO mass balance equations for non-muscle tissue are the same as those in the primary

model.

3.2.3 Mass Balance Equations for the Tissue Compartments
The mass balance equations for O, for the first skeletal muscle subcompartment
(ml) in the two subcompartment skeletal muscle model is
dC,,0,(t) _ Flux, 0,(t) _ D,0, [C,.,0,(t)-C,,0, ()]
dt \Y D

ml xm

Second subcompartment m2:

dezoz ® _ Fluxmzoz(t) + D, 0, [leoz ®-C,,0, (t)]
dt V D

m2 xm

where, DmO, 1is the diffusion coefficient of O, between the two

subcompartments (m1, m2) of the skeletal muscle tissue. C,,,O,(t) and C,0,(t)are

the partial pressures of O, of the two muscle subcompartments 1 and 2. Dyy is the

intercapillary distance. The Flux O, (t)and Flux,,O,(t) are defined as
Flux,, O, (t) = O,Flux, (t) + O,Flux; (t) -MRO

2ml

Flux,,0, (t) = O,Flux_, (t) ~MRO

2m2
where,

O,Flux,, (t), O,Flux,,(t) and O,Flux,,(t) are the O, diffusion rates of

vascular blood compartments 1, 2 and 3, respectively. MRO,y,; and MRO,,y,, are the
O, metabolic rates of the tissue subcompartments 1 and 2, respectively. O, diffuses
from the vascular to the extra vascular compartments based on the pressure gradient

between the compartments and the blood-to-tissue diffusion coefficients.
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The CO mass balance equation for the two compartment tissue model is
First subcompartment m;:

dC,,CO(t) _ Flux,, CO(t) N D, CO[C,,CO(t)-C,,COt)]
dt B v D

ml xm

Second subcompartment m,:

dC,,,CO(t) _ Flux,,,CO(t) D, CO[C,,CO(t)-C,,CO(t)]
d Vv D

m2 xm

where, the subscripts and parameters are the same as those above, except, D,,CO
is the diffusion coefficient of CO within the two subcompartments of the tissue.

C,CO() and C_,CO(t) are the CO concentrations of the two tissue
subcompartments 1 and 2, respectively. Flux, ,CO(t) and Flux ,CO(t) are defined

as

Flux,,,CO(t) = COFlux,, (t) + COFlux_,(t)
Flux,,,CO(t) = COFlux,,, (t)
where COFlux,,(t), COFlux,,(t) and COFlux,,(t) are defined in the blood

compartments. The only difference between the mass balance equations for CO and
O, is that oxygen is metabolized to meet the tissue metabolic demand while CO is not

metabolized.

3.2.4  Prediction equations in modified model:

Predictive equations were developed as part of this thesis and added into the
model to account for the blood flow and metabolic O, demand heterogeneities in the
skeletal muscle tissue. Also there is an observed increase in cardiac output during CO
exposure (68,69,70). Regulation of cardiac output in response to blood HbCO levels
has been implemented into the model.

Prediction equations to estimate the volumes of regions (arms, legs and trunk
for males and females) of skeletal muscle model: Muscle metabolic rate (MRO;,) is

reported to be 20% (88, 89) of the total body oxygen consumption (MRO,) during
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rest. The metabolic rates of O, for leg, arm and trunk muscles are different (Table
2.4). Also the blood flows to different regions of the skeletal muscle vary (Table
2.3). Thus, to incorporate these heterogeneities (different metabolic rates and blood
flows) of muscle in various regions, the skeletal mass is distributed into three muscle
volume compartments namely leg muscle volume, arm muscle volume, and trunk
muscle volume. The derivation of the equation is detailed in the appendix. The
equations (Table 3.1) for calculating the masses of trunk, leg and arm muscle are

functions of total skeletal muscle mass, Vi, (41).

Tabulated blood flows and O, consumptions for skeletal muscle tissues are

shown in table (Table 2.3 and Table 2.4) of the chapter 2. So after estimating the

volumes of the skeletal muscle regions, average values (Table 3.2) for blood flow and
oxygen consumption were determined for the muscular regions (arms, legs and
trunk). From the Table 2.2 and Table 2.3, blood flow and oxygen consumption
heterogeneity within the submuscular regions of arm (biceps, triceps, brachioradialis
etc) and leg (gastrocnemius, biceps femoris etc) muscular regions can be clearly seen.
Thus to determine the blood flow (or oxygen consumption) for the muscular regions
(arms, legs and trunk), an average of the blood flows (or oxygen consumption) from
different submuscular regions of the arm was taken. For example, to estimate the
blood flow for the arm muscular region an average of all reported blood flows ( in
ml/min/gm) for the biceps, the triceps and the brachioradialis muscles was
considered. Data for blood flow and oxygen consumption for the trunk muscles in
healthy humans has not yet been reported in the literature. Hence, blood flow and O,
consumption for the trunk muscular region was assumed to be equal to that of the leg
muscular region. Blood flow for muscles in the trunk region was reported in animals
(71, 72), but these values could not be considered due to postural differences in
humans (bipedalism) and animals (quadrupedalism). There are some constantly
working muscles in the trunk region like diaphragm (aid in breathing) which implies
that blood flow and myocardial O, consumption must be higher than the arm
muscular region. Also the muscles in the leg region work constantly against gravity to

maintain postural balance. Since the leg and trunk muscle regions are mildly working
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skeletal muscle regions, an assumption of equal blood flow and O, consumption was

made.

There is reported to be an increase in cardiac output and heart rate with
increase in carboxyhemoglobin levels in blood (68, 69, 70). When simulating
experiments, increased carboxyhemoglobin levels in the blood had to be taken into
account. Data for cardiac output, heart rate and carboxyhemoglobin (up to 50%) were
collected from reference 68 and 69. Linear or nonlinear regression was performed on
data, and statistical significance of the equations was tested using SYSTAT 9.0 after
outliers were eliminated. The resulting equation was tested with data (70) which were
not used in the regression. Then the equation was implemented into the model. A
detailed derivation of the equation below is discussed in appendix. Figure 3.3 shows
the data points used to build the regression relation and the relation fit developed for
predicting the increase in cardiac output as a function of blood HbCO Ilevels, as

shown below
%AQ = 0.572(%AHbCO)

3.3 The Cardiac Compartment

The myocardial compartment comprises three vascular subcompartments; 1, 2,
3 as shown in the Figure 3.4 and two tissue subcompartments; 1 and 2. The arterial
blood which has a partial pressure of Op, ParO, flows into the first vascular
compartment 1, which has a blood volume of Vbcml. O, in blood is present in two
forms: (1) dissolved in plasma and (2) reversibly combined with hemoglobin
molecules forming oxyhemoglobin (O,Hb). Oxygen continuously diffuses into the
tissue compartment 1 as oxygen is being utilized by the tissue to meet metabolic
demand (MRO,p,,; ), causing tissue PO, to be lower than that of the PO, in the blood.
It is assumed that O, diffuses from the vascular subcompartment 1 to the
extravascular subcompartment 1 of the tissues at a rate O,flux.,,; which is based on
the oxygen diffusion coefficient Db, O, and O, pressure gradients between the
blood and tissue. This phenomenon establishes O, concentrations of C.;, O, and
CemviOs in the first tissue and blood subcompartments, respectively. In all tissue

compartments O, bound to myoglobin is considered in addition to the prevailing O,
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concentrations. The tissue compartment 1 which has a volume V., is assumed to be
perfused by small arterioles and small venules, as well as by capillaries (Figure 3.5).
The permeability surface area product for O, in this tissue compartment is PS¢y, Os.
The oxygen tension prevailing in the blood exiting from compartment 1, Pcmy102, 1s
the source for the O, supply to the second blood compartment 2 which has a blood
volume Vb.my. There is diffusion of O, from the blood compartment 2 to the tissue
subcompartment 2 at rate of O2fluxcm2 with the diffusion coefficient being Dby, 0.
The metabolic demand of O, (MROy2), of this tissue compartment is met by
diffusion of oxygen from the vascular compartment 2 and also by diffusion from the
tissue compartment 1 with a diffusion coefficient of D.,O,. Approximately 15% of
the metabolic rate of the tissue compartment 2 is met by diffusion of O, from its
neighboring tissue compartment 1. The tissue compartment 2, which has a volume
Vema, 18 perfused mostly by capillaries (Figure 3.5) and has a permeability surface area
product of PS;,,0,. Diffusion of O, establishes O, concentrations of C.,,,0, and
Cemv20; in the second tissue and blood subcompartments, respectively. Now the
oxygen tension of blood exiting from the vascular subcompartment 2, P¢y,20; is the
O, source for the vascular compartment 3 which has a blood volume of Vb,,;. Based
on the pressure gradients established between tissue compartment 1 and the third
blood compartment 3, there is flow of O, at a rate of O,fluX.y,; from the tissue
compartment 1 into the blood compartment 3, resulting in an O, concentration of
Cemv3O2 in the third blood subcompartment. The O, diffuses with a coefficient of
Dby.m10,. However, when the tissue PO, is lower than the PO, in the third blood
compartment then O,flux.n; is positive, indicating that O, diffuses from the third
blood compartment to the tissue compartment 1. Because O, diffusivity is similar in
plasma and muscle tissue (77), the model assumes that O, diffusion coefficients from
blood to tissue or vice versa are equal. The concept of the two compartment model
was introduced to allow diffusion of oxygen within the tissue and also to implement
indirect arterio-venous shunting. Description of cardiac variables are summarized in

Table 3.3.
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3.3.1 Mass Balance Equation of the Cardiac Vascular Blood Compartments:
The equations below are the mass balance equations for the three vascular blood
compartments,
Cardiac vascular blood compartment 1:
Mass balance equations for O,

Var, 4CemiO, (1
dt

=[CarOa(t) - CeonnO, (D]Q;;, — O2Flux,, (1)

O:Fluxem(t) = G (Paam02) - [Db,,,0, -(Paa,,0, (t) — PemiO, (t))]

cml

O _ Pscmav * SOZ *chl
cml 2
1.04

Mass balance equations for CO

Db

Vemi

O'CLtCO(t) = [CaCO(t) - ComiCO(1)].Q;,, — COFIux,, (t)

COFluxemi(t) = [Db,,;CO - (P, CO(t) — PeniCO(1) )]

cml

P CO(1) = 0.5(ParCO + Pcmv1CO)

Db, CO = DuCO,| 22emO:
DbmiO2

DuCO1= D, CO{MJ

Db,,20:

where, Paa., is the partial pressure of O, corresponding to the concentration of
oxygen halfway between the arterial (inlet) and vascular subcompartment 1 (outlet).
Paacm 1s determined by an algorithm using a gradient search technique, where the
average O, concentration is calculated and then the PO, corresponding to the average
O, concentration is determined using the oxyhemoglobin saturation curve. Ppemi, 1S
the average partial pressure of CO in the blood vascular subcompartment 1. Db, CO
is the blood to tissue CO diffusion coefficient, DyCO; is the blood to muscle
diffusion coefficient of CO in blood compartment 1 and Dbcm;02 is the blood to
tissue oxygen diffusion coefficients of cardiac blood compartment 1. Dby 02,
DbmyO2 and Dy CO are blood to tissue O, and CO diffusion coefficients of muscle

blood compartments described in Section 3.2. All other variables are defined
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in Table 3.3.
Cardiac vascular blood compartment 2:

Mass balance equations for O,

dCem20, (t)
dt

O:Fluxema(t) = G, (PbbenO,) - [Db,,,0, - (Pbb,, O, (t) — Pam20, (t))]

Vem2 = [Ccmvloz(t) = Ccmvzo2 (t)] Qcm -02 FlUXcm2 (t)

PSCmcap * 802 *chz
1.04

Db

0, =

Mass balance equations for CO

dCem2CO(t)
dt

COFluxema(t) = [Db,,,CO - (P,,,,CO(t) — Pen2CO(1))]

Vema = [CcmvlCO(t) — CcmVZCO(t)].Qcm — COF'UXcm2 1)

P2 CO(1) = 0.5(Pcmv1CO + Pcmv2CO)

Db,,,CO = D,,CO * (Dbecm202/Db,,,0,)

cm2

Where Pbyey is the partial pressure of O, corresponding to the concentration of
oxygen halfway between the inlet (Pcmy1O2) and outlet (Pemy20,) of vascular
subcompartment 2. Dycm20O, is the blood to tissue diffusion coefficient. Pyemo 1S the
average partial pressures of CO in the blood vascular subcompartment 2. Db¢y,,CO is
the blood to tissue diffusion coefficient, DyCO is the blood to muscle diffusion
coefficient of CO in blood compartment 2 and Dbecm20, and Dbm20, are blood to
tissue oxygen diffusion coefficients of cardiac and muscle blood compartment 2. All

other variables are define in Table 3.3

Cardiac vascular blood compartment 3:

Mass balance equations for O,

dCcmv30z (t)
dt

Vemt = [Cemv202(t) — Ccmv3o2 (t)]Qcm -0:2 FlUXcm3 ®
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O:Fluxems(t) = G (PccenO, ) - [Dh,,,,O, - (Pcc,, 0, (t) — PeniO, (1))]

veml

vacmloz = Dbcmloz * vacm_on

Mass balance equations for CO

dCemsCO(1)
dt

COFIluxens(t) = [Db,,,,,CO - (P,,;CO(t) = PemCO(1))]

Vemi =[Cemv2CO(t) — Ccmv3CO(t)]Q(':m = COFquCm )

P,..,CO(t) = 0.5(Pcmv2CO + Pcmv2CO)

Db, CO = DuC0,| 22YemO:
DbvmiO:
Db,,, O
DuCOs = D,,COJ —YM12
Db,,,0:

where P 1s the partial pressure of O, corresponding to the concentration of oxygen
halfway between the inlet (Pcmy203) and outlet (Pemy302) of vascular subcompartment
3. Dbyem1O; is the tissue to blood diffusion coefficient, Dbycm on is the fraction of
blood volume in cardiac vascular compartment 1 (Vbcml) available for gas exchange
with (venules) cardiac vascular compartment 3 (Vbem3). Pyem3 is the average partial
pressure of CO in the blood vascular subcompartment 3. Db, CO is the blood to
tissue diffusion coefficient. Dbvem102 is the blood to tissue oxygen diffusion
coefficient of cardiac blood compartment 3. Dbvy;02, DbyO2 and DyCOs are
blood to tissue O, and CO diffusion coefficients of muscle blood compartments

described in Section 3.2. All other variables are defined in Table 3.3

The O, concentration at the input to the mixed venous compartment is
determined by a flow-weighted summation of the concentrations of O, in the venous
outflow from the tissue compartments. This input concentration then passes through
the mixed venous compartment and returns to the lungs after a time delay. Thus the

O, concentration at the input to the mixed venous compartment is

Quy) 41€,,0,(0).(20)]+[C,0, 0, (1).(Zem

CvO, (1) =[C,y O, (1).

)]
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Where,
C.t0,(1),C,0,(t),C,0O,(t) are the O, concentrations in the non-muscle,
skeletal muscle, and cardiac muscle tissues, respectively. Q.,,Q;,,Q;, are the blood

flows to the non-muscle, skeletal muscle, and cardiac muscle tissue compartments,

respectively.

3.3.2 Mass balance equation of the cardiac tissue subcompartments :
First cardiac tissue subcompartment:

The mass balance equation for O, in the first tissue subcompartment is

dCcmloz (t) _ FIUXcml
dt \Y

O, (1), Den0,[Cy,0, (1) = Cony O, (D))
D

cml

Oz(t) is defined as

Xxcm

where Flux

cml

FlUXcmloz(t) = OZFlUXcml(t) +02 FlUXcm3(t) -M Rozcml

C.0,(1),C,,0,(t) are the total O, concentrations in the first and second

O, (t) are the partial pressures of O, of the

tissue compartments, Pb_,O,(t) and Pb

cml cm2
two tissue subcompartments. O,Fluxcm; and O,Fluxcms are the blood O; fluxes of
subcompartments 1 and 3 defined in Section 3.3. MROycm1 is the metabolic rate of O,
in the tissue compartment 1.

The mass balance equation for CO in the first tissue subcompartment is

dC,,, CO(M) _ Flux,, CO(t) DCO[C,,,CO(t) - C,,,, CO(1)]
dt chl Dxcm
where Flux,,,CO(t)is defined as

FluxemCO(t) = COFluxemi(t) + COFluxems(t)
C.nCO (1),C,,,CO(t) are the CO concentrations in the first and second tissue

compartments. CO Fluxcm; and CO Flux¢ms are the rates of CO fluxes of the blood

subcompartments 1 and 3.

45



Second cardiac tissue subcompartment:

dCe,0, (1) _ Fluxe,0,(t) ~ DenO, Ve, [C..,0,(t)-C,,,0,(1)]
dt chZ chZ * Dxcm
where Flux,,,O2(t)is defined as

FlUXcmZOZ(t) =02 FlUXcmZ(t) -M Rozcmz

Cem0,(1),C,,0,(t) are the O, concentrations in the first and second tissue

compartments, Pb, O, (t) and Pb_,,O,(t)are the partial pressures of O, of the two

cml cm2

tissue subcompartments. OzFluxcmz is the blood O flux of subcompartment 2 defined

in Section 3.3. MROx¢n; is the metabolic rate of O, in the tissue compartment 2.

dC,,,CO(t) _ Flux,,,CO(t) DeCOV,, [C,,,CO(t) - C,,, CO1)]
dt ch2 ch2 . Dxcm
where Flux,,,CO(t) is defined as
Flux,,,,CO(t) = COFluxem2(t)

C.CO (t) and C_, ,CO(t) are the CO concentrations in the first and second

cm2

tissue compartments. CO Fluxcm; is the CO flux of the blood subcompartment 2.

3.4 Parameters for the Model

Estimating parameters for a model is a crucial task. The heart muscle is similar
to exercising skeletal muscle. Constant exercise results in the heart muscle parameters
being different from the skeletal muscle. There are marked regional variations in flow

and oxygen consumption (Table 2.1, Table 2.2). Blood flow, oxygen consumption

and capillary density of per unit mass are greater in cardiac muscle than in resting
skeletal muscle. Capillary density/gm is ~8 times greater in cardiac muscle than in
skeletal muscle (39). Higher capillary density promotes efficient O, transport from
blood to tissues and also within the tissue. Because blood flow and O, consumption
increase with workload and as the heart is a vigorously working blood pump, it has a
higher blood flow and a vasculature designed for efficient O delivery to match the O,
demand. There is parameter heterogeneity (blood flow, oxygen consumption, regional

tissue oxygen tension, capillary density) within the various regions of the heart, the
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epicardium, myocardium and endocardium (Table 2.5, 73, 74, 75). Also, the
chambers of the heart (right atrium, left atrium, left ventricle and right ventricle) and
the septa separating them have varied blood flow and oxygen consumption (Table
2.1,Table 2.2).The weight of the heart varies with age, gender and ethnicity of the
subject (76). Keeping in mind the inhomogeneity of heart muscle, parameters were
estimated from the available literature.

Nominal values for most of the parameters were obtained from the literature or
directly from the investigators whose data we simulated e. g., total body metabolic
rate, heart rate, cardiac output etc. In some cases parameters were estimated with
average values from a group of subjects or published predictive formulas in literature
e.g., volume of heart, blood volume, myocardial myoglobin concentration etc.
Parameter values were also estimated from predictive formulas described previously
in this thesis, e. g., myocardial O, consumption, myocardial blood flow etc. There are
parameters like the permeability surface area product of the compartments, which
have a value at resting conditions but linearly increase in proportion to the blood flow
(90). There are some parameters like cardiac muscle volume fraction (Fvem) and
fraction (Dbvem on) of blood volume in the cardiac vascular compartment 1
(Vbeml) available for gas exchange with (venules) cardiac vascular compartment 3
(Vbecm3) that represent quantities that are very difficult, or even impossible to
measure. Values of such parameters are unknown and estimates are made for these
values based on physiology. Parameters in this model are classified based on their
estimation method:

1. Physiological parameters
2. Model-derived parameters

3. Simulation parameters

3.4.1 Physiological parameters

These parameters are constants whose values can be found from the literature
or from experimental measurements available. Some physiological parameters are
body weight (BW), solubility of O, in plasma (SO,), blood flows to a specific

compartment, etc. Most of these parameters are estimated by taking an average of
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several published values like myoglobin concentration (Table 3.4), values present in
literature like the volume of heart, fraction of blood etc or are directly obtained from
the experimental database to be simulated. The physiological parameters are listed in

Table 3.5

3.4.2 Model-derived parameters

These are the parameters whose values are estimated in the model from
predictive equations, e.g., myocardial blood flow, myocardial O, consumption etc or
from formulas like the diffusion coefficients for O, and CO or volumes of tissue

compartments. The model-derived parameters are listed in Table 3.6

3.4.3 Simulation parameters

These parameters are intermediate values of the model which help to establish
the simulation conditions. These parameters are used in accessory equations that are
needed for evaluating the derivative functions for numerical integration; aid in
simulating experimental conditions (e, g., TW, TZSS etc.). Simulation parameters
specific to ACSL are the time step (CINT) of the algorithm, the integration algorithm
used (IALG), TMAX etc. Simulation parameters are listed in the Table 3.7

3.5 Predictive Equations in the Model
Prediction equations for estimating model parameters were implemented into
the model either from the literature (published journals) or were developed especially
for the thesis. The following prediction equation for estimating blood volume in
humans was reported in reference 78. Thus the prediction equation for estimating
blood volume (when its value is not available) was added into the model:
70

Volume of blood = (78)
JBMI _p/22(HT)?

_ bw
(HT)2

delta IBW= [%)100
- 22
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BMI p=

(delta_ IBW ]22+ 2.

where BMI is the body mass index, bw is the body weight and HT is the height
of the subject.

Estimation equations were developed for myocardial oxygen consumption and
myocardial blood flow as functions of heart rate, and for cardiac output and heart rate as
functions of total body metabolic rate. Data to establish values for parameters of these
equations were collected from various papers in the literature. Linear or nonlinear
regression was performed on data (different model/order of equations were checked) and
statistical significance of the equations was tested using SYSTAT 9.0 after outliers were
eliminated. The resulting equation was validated with data which was not used in the
regression. Then the equation was implemented into the model. The following prediction
equations were developed as part of this thesis to estimate values for unknown

parameters of the model.

3.5.1 Prediction Equations for Myocardial Oxygen Consumption and Blood
Flow

Myocardial oxygen supply and oxygen demand balance are very important for
the tissue to be viable. Data from various published papers (80-86) of myocardial
oxygen consumption and myocardial blood flow were tabulated. The strategy
followed for developing the prediction equation is shown in Figure 3.6. The data used
to develop the prediction equation had values obtained during rest and exercise
conditions. Most of the blood flow data for humans was from studies that used the
nitrous oxide dilution method. But the nitrous oxide method is reported to have
certain limitations (87) which tend to under-estimate the true blood flow; values
based on this method resulted in oxygen supply and demand mismatch when
implemented into the model. Thus, to predict the myocardial blood flows, data from a
published experiment (79) was used to derive the predictive formulas. The steps

described below were followed to establish the relations.
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1. Constructed regression relation for myocardial blood flow as a function of heart
rate. Data for regression relation was obtained from the reference 79. Myocardial
blood flow in their study was measured by dynamic PET (Positron Emission
Tomograph) accompanied by intravenous injection of labeled water (['’’OJH20).
Data used for deriving the relation and its fitted equation using linear regression is
shown in Figure 3.7

2. The next step was to correct the myocardial oxygen consumption data which was
calculated using FICK’s method, where oxygen consumption is measured as a
product of myocardial blood flow and Arterio —Venous oxygen differences.
Myocardial oxygen consumption data had to be corrected as the papers from
which (80-86) myocardial oxygen consumption data was available used blood
flow measurements based on the nitrous oxide method to calculate oxygen
consumption. The approach taken for correcting the myocardial oxygen
consumption is as follows:

(1) A-V difference was calculated as ratio of myocardial oxygen consumption
and myocardial blood flow values obtained from studies using the nitrous
oxide method.

(ii))  Corrected myocardial oxygen consumption = Product of blood flow
calculated for heart rates in the nitrous oxide papers using regression relation
developed in step 1 and A-V differences (calculated in step 2(1)).

3. After the myocardial oxygen consumption values were corrected for the
differences in the methods, a non-linear curve fit was done using MATLAB to
establish myocardial oxygen consumption as a function of heart rate. Data used to
derive the relation and its fitted equation using nonlinear regression is shown in

Figure 3.8 .The relation obtained is as follows:

. ' a-d + d
Myocardial Oxygen Consumption = 1+ (c /HR)b

where,
HR= heart rate,

a= 56.3217, asymptotic maximum,
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b= 4.8485, defines the slope of the function,
c=122.6617, c is the value of the independent variable X at the inflection point.

d=9.7643, asymptotic minimum.

Thus, to determine the myocardial oxygen consumption (ml/min/100gm) and
myocardial blood flow (ml/min/100gm), the following predictive formulas were
developed:

Myocardial Blood Flow (Qcm) = 2.18 * (HR) —27.3

563217-97643 T 97643
1+ (122.6617/HR) 4845

Myocardial Oxygen Consumption (MRO2cm) =

3.5.2 Prediction Equations for Cardiac Output

Cardiac output (Q.) was previously estimated as a function of body weight and
gender. This equation could be used only during conditions of basal rest. Since we
wanted to simulate experimental conditions of exercise where the cardiac output
increases, we developed equations to predict cardiac output as a function of total body
oxygen consumption (MRO;). Cardiac output and total body oxygen consumption
values were collected from various papers in the literature (See the appendix.). The
data were obtained at rest and various loads of exercise. The tabulated aggregated
data were fit with a 2"-order polynomial as shown in the appendix. Thus the
equation developed is

Q' =3.186+7.346xMRO; - 0.535x (MRO,)’

3.5.3 Prediction Equations for Heart Rate

Often for the experiments we simulated, the investigators provided heart rates of
the subjects at rest. In simulation cases where heart rate data were not provided we
estimated the heart rate as function of total body oxygen consumption from the
equation below. The procedure for developing the equation is detailed in the

appendix. The heart rate parameter is used for estimating the myocardial oxygen

51



consumption and myocardial blood flow which is discussed in Section 3.5.1 of this

chapter.

Heart Rate (HR) = 42.819+68.884*(MRO,)-8.26* (MRO,)*

Predicting percent increase in the heart rate (HR) as a function of percent
change of carboxyhemoglobin (% ACOHDb) levels in blood: There is reported to be an
increase in cardiac output and heart rate with increases in carboxyhemoglobin levels
in blood (68,69,70). While simulating experiments involving carbon monoxide (CO)
exposures, increased heart rate due to increased carboxyhemoglobin levels in the
blood had to be taken into account. These increases were implemented by introducing

the following equation whose derivation is discussed in the appendix.
%AHR = 0.012(%ACOHb)* + 0.26(%ACOHDb)

The heart rate (HR) was increased by %AHR respectively, calculated from the

above equations every 0.001 min of simulated time.

3.6 Sensitivity Analysis:

Sensitivity analysis is used to determine how “‘sensitive” a model is to changes in the
value of the parameters of the model and to changes in the structure of the model. It
surveys how a given model output depends upon its parameter values. It is an
important method for checking the quality, robustness and reliability of analyses and
for building confidence in the model by studying the uncertainties that are often
associated with parameters in models. It helps to determine the level of accuracy
needed for a parameter to make the model sufficiently useful and valid. The process
involves varying model parameters (one at a time, keeping other parameters constant)
over a reasonable range (especially when there is an uncertainty in values of the
varied parameter) and observing the relative changes in model response. If the testing
process reveals that the parameter varied has no significant effects on the model
response, then it may be possible to use an estimate rather than a value with greater
accuracy. But if the system behavior greatly changes with the varied parameter then

an accurate value should be determined for that parameter. If the value of the
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sensitive parameter is unknown in from the literature, then doing sensitivity analysis
helps to estimate deviations in model predictions with the parameter variation. Thus
sensitivity analysis was done to analyze the effect of model parameters on the model
predictions of myocardial tissue PO; and coronary venous PO,. It was found that the
predicted myocardial tissue PO, and coronary venous PO, are most sensitive to
variations in the myocardial blood flow (Q’cn), myocardial oxygen consumption
(MRO2.,), permeability surface area product (PScm), and volume distribution
fraction of the tissue (FVcm). Table 3.9 shows the values of predicted myocardial
tissue PO, and coronary venous PO, with variations in the input parameters. In this
table myocardial O, consumption (MRO,cm ), myocardial blood flow (Qcm), PS
product (Pscm), AV Shunt fraction (Dbvem on), volume distribution (Fvem) and,
inter capillary distance (Dxcm) were increased (and decreased) by 50% and the
response of the model predictions - i.e. tissue and blood oxygen tensions - to variation

of these parameters was tabulated (Table 3.8).

After doing the sensitivity analysis, a standard set of values for the following
parameters (PScm, Fvem,Dbvem_on, Dxcm), whose values were difficult to estimate
(due to unavailability of data) was determined. The values for these parameters are
shown in table 3.7. This standard set of parameters was arrived at after analyzing the
coronary physiology, vasculature density in myocardium and other experimental facts
such as the extent of hypoxia, exercise or CO exposure which did not cause
permanent injury or death of the subject. The volume of the cardiac compartment
(Vem) is divided into two subcompartments of volume Vem1 and Vem?2 by means of
the cardiac muscle volume fraction (Fvem). The value for Fvem was estimated to be
0.2 in order to make best estimates for tissue PO,. The permeability surface area
product of O2 for cardiac muscle model was reported to be 200 ml/min/Torr/gm by
Beard and Bassinghwaite (90). When the above reported value for permeability
surface area product was used, final model predicted myocardial tissue PO2’s were
very low. The best estimates for tissue PO2 predictions were obtained when the PS
for the first and second cardiac subcompartments were 180 ml/min/Torr/gm and 450

ml/min/Torr/gm, respectively. There is reported to be capillary recruitment during
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exercise in skeletal muscle (102). However, the extent of capillary recruitment in
myocardium during exercise is unknown. Increase in capillary recruitment would
increase the PS as the surface area available for oxygenation would increase. PS is
reported to increase with blood flow (90), thus in the final model PS increases with
increases in blood flow. The intercapillary distance in skeletal muscle in the modified
model is 0.1 cm. The capillary density in cardiac muscle is approximately 8 times
greater than that of the skeletal muscle (39), thus the intercapillary distance for
cardiac compartment in the final model is 0.0353 cm (0.1/\8). Fraction (Dbvem_on)
of blood volume in cardiac vascular compartment 1 (Vbcml) available for gas
exchange with (venules) cardiac vascular compartment 3 (Vbcm3) was estimated by
analyzing the coronary vasculature (103,104). Also from the sensitivity analysis, it
can be seen that Dbvem on does not have a significant impact on the model
predictions of myocardial tissue PO, and coronary venous PO,. A value of 9.5% was
chosen for Dbvem on as better estimates for coronary venous PO, and myocardial

tissue PO, were obtained for that value.

3.7 Validation Schema for the Cardiac Compartment
The final model (Figure 3.4) was used for the simulations to test the validity of the
predicted O, related variables of the cardiac compartment. Predictions from the
model were compared with published observations on human subjects and animal
data. The model was tested for conditions of normoxic rest (91,92,95,99,100),
hypoxic rest (91,92,93,98), hypoxic exercise (91) and hyperoxia (93,94,96,97,98)
with regard to its predictions of coronary venous PO, and tissue PO,. For validation
of human data, subject morphological data like body weight, age, etc., were used
The protocol for validation of the model was as follows:
1. Inspired levels of O, were set equal to the experimental values. Ventilation
was adjusted to achieve the measured arterial PO; in the steady state.
2. Experimentally measured values for myocardial O; consumption and
myocardial blood flow were used in the simulations.
3. Each simulation was allowed a stabilization time of 12 min (simulation time)

and the model predictions were noted after reaching steady state.
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4. The model predictions of cardiac oxygen tensions and coronary venous PO;’s
for various conditions were compared to experimental data

5. Usually, experimental tissue PO, values were available as either mean values or
as histograms. When a mean value was published, based on the size of the
electrode used to measure PO,, it was either classified as the average first
compartment (large electrode, assuming it was close to an arteriole) or second
compartment PO,. In the case of histograms, the mean value was used to
represent the average tissue PO,. An average of the PO, in the histogram
above the mean was considered as the first compartment oxygen tension and
an average of the PO, in the histogram below the mean represented the second
compartment oxygen tension.

6. Other variables validated were arterial hemoglobin saturations, venous
hemoglobin saturations and capillary PO,. But very scarce experimental data
were available for validation of these variables.

The figures showing the wvalidation of model predicted values to the
experimental measured values for oxygen tension and coronary venous PO2 are
shown in Figures 4.1- 4.3. It can be seen from the figures that the model is fairly
capable of predicting the experimental values using a standard parameter set. This set
shall be used for simulating various experimental strategies in the Results Section.
For a human subject weighing 70 kg, 1.75 m tall and 30 years old, the predicted
steady state cardiac tissue and blood oxygen tensions during normoxia (arterial PO, =

99 Torr) are tabulated in Table 3.10

3.8 Algorithms
In order to determine the partial pressure of oxygen (PO,), partial pressure of
carbon monoxide (PCO) and O, flux in each blood compartment of the model, it is

necessary to solve three simultaneous algebraic equations
1. Oxyhemoglobin dissociation curve (Section 2.2, chapter 2).

2. Haldane’s equation (Section 2.2, chapter 2).
3. Blood to Tissue oxygen flux equations (Section 3.1.2, chapter 3).
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The solutions for these equations were obtained by using algorithms based on
gradient search methods which were developed for the modified model. An additional
algorithm is also developed (bisection halving) to determine the PO, corresponding to
the average O, concentration in the blood compartment. The technique used is a
closed domain bracketing method and the root is trapped in the interval using interval
halving (bisection) method. In this algorithm, two estimates for the root (x= PO;) are
passed as arguments, which are generally the inlet (PO,max) and outlet (PO,min)
variables ( blood O, tension, tissue O, tension, total concentration of O, volume of
blood or the tissue etc) of the blood vascular subcompartments. Now the root, x= PO,
lies in the interval (PO,max , PO,min). The interval is systematically reduced based
on the evaluate function decision and the error criterion, €. The algorithm for the

search technique is shown in Figure 3.9.
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Table 3.1: Prediction Equation for Estimating Volumes of Muscular Regions (Arms,

Legs and Trunk) for Males and Females

Region | Volume in Men Volume in Women
Leg (46.63* Viy)/100 (49.53* Vin)/100
Arm (15.64* V))/100 (13.96* Vin)/100

Trunk (37.73* Vin)/100 (36.51* Vin)/100

Table 3.2: Blood flow and Oxygen Consumption Values for Muscular Regions

Muscular Blood Flow Oxygen consumption
Region (ml/min/g) (ml/min/g)

Arm 0.021 0.0014

Leg 0.03 0.002

Trunk 0.03 0.002
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Table 3.3 : Cardiac Compartment Variables and Description

Parameter | Description

SO, Solubility of oxygen in plasma

Dyem Intercapillary distance

Blood Subcompartment 1

C..0, O, concentration of arterial blood entering the blood compartment 1

PScm,y, Permeability surface area product for arterioles and venules

Vemi Volume of the cardiac tissue compartment 1

C.CO CO concentration of arterial blood entering the blood compartment 1

Partial pressures of CO in the arterial blood compartment

Blood Subcompartment 2

Cemv202 Concentration of O, in the blood compartment 2

PScap Permeability surface area product of capillaries




Table 3.3: Cardiac Compartment Variables and Description (Continued)

Parameter | Description

COFluXema Rate of CO diffusion out of the blood compartment 2

Blood Subcompartment 3

O, FluX s Rate of O, diffusion into the blood compartment 2

COFluXem3 Rate of CO diffusion into the blood compartment 2

Pecmv3CO Partial pressures of CO in the blood vascular subcompartments 3
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Table 3.4: Myoglobin Concentration of the Heart. Concentrations of myoglobin were
measure by BNII nephelometer technique in various regions of the human heart. The

values were reported by CIM Joost et al ( Am J Clin pathol 2001:115:770-777)

Region

Right atrium

Posterior wall

Left atrium

Mb Value
(g/gm wet wt)

1.0

2.4 (0.78-4.05)

Anterior wall

2.2(0.38-11.7)

Septum

2.4 (0.25-3.69)
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Table 3.5: Physiological Cardiac Parameters

Fraction of blood that allows gas exchange with
tissue compartment 1 (Section 3.6

Michales-Menton coefficient of cardiac muscle(35)

Permeability surface area product of O, for capillaries
(Section 3.6)

Concentration of myoglobin (Mb)
(Table 3.4)

Volume of left ventricle (75)

Volume of atria (75)

Distribution fraction of blood volume to the tissue (A
Indermuhle,2006)
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Table 3.6: Model -Derived Parameters

Volume of cardiac muscle in compartment 1 perfused by
arterioles/venules

Metabolic rate (MR) of O, of cardiac muscle tissue

MR of O, of skeletal muscle tissue 2

Cardiac Muscle diffusion coefficient for CO

Blood volume of cardiac blood compartment 1

Blood volume of cardiac blood compartment 3

Intercardiac tissue diffusion coefficient ofCO

Diffusion coefficient of O, from blood compartment 2 to
cardiac tissue compartment 2;

Diffusion coefficient of O, from blood compartment 2 to
cardiac tissue compartment 2

Diffusion coefficient. for CO in tissues is 75% of O,
diffusion coefficient
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Table 3.7: Simulation Parameters

Atmospheric pressure during CO exposure

Time by which the model reached steady state.

Initial %CO in cardiac venous cpt.

Time step of the integration algorithm

Integration algorithm used

Concentration of CO in part per million

Ventilation at the time of treatment
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Table 3.8: Sensitivity Analysis of the Parameters

Parameter Tissue PO2_1 Venous PO2

Pscm_av

Pscm_cap

Table 3.9: Values for Standard Set Table 3.10: Steady State Values
of parameters in human
Parameter Value Parameter Value(torr)
IR
PCM202 21.47
Dxem 0.0353 PCMV202 20.23
PCMV302 20.74
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Figure 3.1: Modified Model. The model consists of lungs, arterial and mixed venous

blood, non-muscle tissue and two subcompartments within the muscle tissue. (Bruce,

Bruce, Erupaka)

(Figure also referred in Section 3.2)
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Figure 3.2: Final Model. The model consists of lungs, arterial and mixed venous blood,

non-muscle tissue, two subcompartments within the muscle tissue and the cardiac

compartment with two subcompartments.

66



50 \
O O
o O
O 40+ |
§ @) @)
‘g O
5 30r o *
8 O OO* @
*
S 4%
S 20 ° L, 2
o B * O -
= o O
) @) +F O
[2] ** O
@ K7k
o % © O
o 10r * O @) b
£ ®§ O
IS ® © 00
o @ O Original Data
L 0p O * Regression Data .
O O Test Data
o Predicted Data
O
_10 | | | | | | |

| |
5 10 15 20 25 30 35 40 45 50 55
Percent increase in COHb - %/\COHb

Figure 3.3: Cardiac Output and Carboxyhemoglobin. Figure shows the plot of the data
(o) used (68,69,70) to build the relationship and the predicted data (*). The percent
increase in carboxyhemoglobin levels of blood, %ACOHbD is plotted on the x-axis and
the percent increase in cardiac output, %AQ" on the Y-axis. Test data points (0) were
considered from experiments whose data were not included in building the relation to

check with the values (0) obtained from the predictor equation.

67



Vbcm1
ParO2 ] Pcmv102 Vbcm?2
A
PCM102 §  : PCM202
COMb1 : COMb2
VCM1 DcinCO VCM2
PScm1 PScm2 P N
<> Nl B
D@n02 2
1 4 :
Pcmv302 Vbcm3v3 Pcmv202

Figure 3.4 : Two Subcompartment Cardiac Tissue. The figure shows the two cardiac
tissue compartments -1, 2 and the three cardiac blood compartments -1, 2, and 3

surrounding the cardiac tissue.

Figure 3.5: Vasculature of Cardiac Compartment. The tissue compartment 1 is
assumed to be perfused by small arterioles (a) and small venules (v), as well as by
capillaries The tissue compartment 2, is perfused mostly by capillaries (Ca, Cv).
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1. Myocardial oxygen consumption
2. Myocardial blood flow
3 Heart Rate

Exclude data with measurement limitations like myocardial blood flow

measured using Nitrous oxide dilution method had many limitations
which tented to underestimate the myocardial blood flow prediction.
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Perform regression analysis w
Choose statistically significant prediction and validate it for
data set not used to build the relation

v

Implement the relation into the model §

Figure 3.6: Strategy for Developing Prediction Equations for the Model
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Figure 3.7: Heart Rate and Myocardial Blood Flow. Figure shows the plot of the data
(o) used to build the relationship (79) and predicted data (*).The heart rate is plotted
on the x-axis and the myocardial blood flow is plotted on the y-axis. Test data points
(0,0) were considered from experiments whose data (161) were not included in
building the relation to check with the values(*,*) obtained from the predictor

equation.
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y-axis. Test data points (0,0) were considered from experiments whose data was not
included in building the relation to check with the values(*,*) obtained from the

predictor equation.

71



CStart with interval (a=PO2max , b=PO2 minD

v
¢ = (PO2max +PO2 min)/2

'

Compute f(a)f(c)

v

a=a a=C
b=C b:b
(a,0) (c,b)
X=C
END
Compute f(a)f(c)
L————3 | Continue iteration |€¢————

until a-b< €
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CHAPTER 4

Results

Chapter 4 presents both the wvalidation results for the cardiac
compartment and model predictions of extravascular burden of CO, and the
resulting PO, levels, for various simulations. This chapter describes the
simulation conditions in detail like the inputs to the model, levels of CO
exposures, time of CO exposure, type of treatment (room air or 100% O,) and
data source etc. Also in this chapter, model predictions are graphed and
tabulated for various experimental conditions that were simulated using the
developed model.

The final model (Figure 3.2) is used for validating the cardiac compartments
and for all other simulations listed below. The validation protocol for the
cardiac compartment has already been described in Section 3.7 of Chapter 3.
Predictions from the model were compared with published observations on
human subjects and animal data (Table 4.1). The model of the cardiac

compartment is validated for conditions of hypoxia, exercise and hyperoxia.

4.1 Model Validation

Model predictions for the blood and tissue PO, were compared with
experimentally measured values from various experiments reported in the
literature (Table 4.1). These variables (myocardial tissue and blood PO,) were
evaluated for conditions of hypoxia, hyperoxia and exercise in the absence of
CO. Most of the available experimental data are from anesthetized animal

studies. Figure 4.1, Figure 4.2, and Figure 4.3 show the comparison of model

predictions (myocardial tissue and coronary venous PO;) with experimentally
measured values. From Figure 4.1 it can be seen that the model predictions
of coronary venous tend to overestimate the coronary venous PO, when
compared to the experimental data reported in the literature. The model
estimates are ~34.7% greater than the experimentally measured coronary

venous PO, values. Figure 4.2 shows the comparison of model predictions of
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myocardial tissue PO, in subcompartment 1 with experimentally measured
myocardial tissue PO, (measurement sites close to arterioles or generally a
large electrode or the average value of the upper half of PO, histograms was
used). The model predictions of the first compartment tissue PO, match well
with the experimentally measured values reported in the literature. However,
at lower experimental PO, the model tends to slightly overestimate the
predicted PO;’s. In Figure 4.3, comparison of model predictions of
myocardial tissue PO, in subcompartment 2 with experimentally measured
myocardial tissue PO, is shown. The experimental measurement made with
electrodes whose size is comparable to that of a capillary and the average
value of the lower half of PO, histograms was assumed to represent the tissue
PO, in the second compartment. The predictions made by the model for
myocardial tissue PO, of subcompartment 2 slightly underestimate the
experimentally made measurements by 28.37%. At very low experimentally
measured PO;’s, the model predicts negative tissue PO,. Values of certain
parameters like PS (permeability surface area product) and FVem (volume
distributing fraction of cardiac compartment) were determined to best fit the
model predictions with the experimental data. Thus, model validation also

helped to determine the values (Section 3.6) for some parameters.

4.2 Model Simulations
The major goal of the thesis was to predict myocardial MbCO

levels and tissue PO, levels (extravascular burden) during CO exposures and
treatment sessions. Estimating the extravascular burden of CO on the heart
will aid in understanding the severity of myocardial tissue hypoxia during (or
after) CO poisoning. The various simulations done below explain the data
source, experiment protocol, relevance of simulation, inputs to the model
available (provided by the investigators of the experiment), model parameters
determined, and predictions of extravascular burden of CO on heart and

coronary venous PO; (outputs). In all the simulations extravascular
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(myocardial tissue PO, and MbCO) burden of CO on human heart is
predicted. The following simulations have been analyzed in this thesis:

1. Simulation of short-high concentration CO exposure.
2. Simulation of long-low concentration CO exposure.
3. CO rebreathing during 100% O, administration.

4.  CO exposure during Rest and Exercise Sessions

4.2.1 Short Duration-High Concentration CO Exposure:
Data Source for the Simulation: Subject 120, Reference 154. Benignus et.al
exposed human subjects to high concentration of CO (6683 PPM) during

room air breathing for 4-6 Minutes, followed by washout on air for 4-5 hrs.

Experiment Protocol:

[
12min Smin 283 mins
T=0 TW TCO TRA Tend
6683 ppm

Tw = Time for the model to reach a steady state (12 min)
Tco= Start time of CO exposure
Tra= Start time for treatment with room air

Tend = End time of simulation
Simulation Relevance: This kind of simulation would find relevance when

trapped for 5-10 mins in a house or a coal mine which is on fire, or in a car

with its exhaust blocked.
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Parameters Provided by Investigators: age, gender, height, body weight,
concentration of CO, hemoglobin concentration in blood, barometric pressure,
temperature, cardiac output , ventilation, volume of blood, exposure and
treatment times, room air treatment, HbCO levels in radial artery and
antecubital vein sampled every minute for the first 6 min, then intermittently

thereafter.

Parameters Determined: Total body O, consumption (233 ml/min/Kg), heart
rate (Section 3.5.3), ventilation adjusted, diffusion coefficient for CO (Bruce,
Bruce and Erupaka), myocardial blood flow (Section 3.5.1), myocardial O,
consumption (Section 3.5.1), increases in cardiac output (Section 3.2.4) and
increases in heart rate (Section 3.5.3) with increases in blood HbCO levels.
These parameters are the values determined from regression relationships or

from the literature.

Model Predictions: Figure 4.4 shows the predicted HbCO levels in arterial
blood, coronary venous partial pressure of O, (PcvO;), oxygen tension in
cardiac subcompartment 1 (Pcm;O;), MbCO levels in cardiac
subcompartment 1 (MbCOcm;), oxygen tension in cardiac subcompartment 2
(Pcm,0;) and MbCO Ilevels in cardiac subcompartment 2 (MbCOcm;). The

values of the predicted variables are as shown below:

Values before begin | Values at End of Values at End of
Variable
of CO Exposure CO Exposure Treatment
% HbCO 0.73 14.17 6.19
%MbCOcm;,%MbCOcm, 0.25, 0.32 5.39,7.38 2.34,3.08
Pcm;O,, Pcm,Oy(Torr)  36.52, 19.33 21.45,13.26 36.01,21.08
PcvO, (Torr) 19.06 12.84 16.46
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As seen in Figure 4.4 MbCO levels in compartment 2 are higher than in
compartment 1, resulting in a lower tissue PO2 in compartment 2 after CO
exposure. The HbCO level in arterial blood increases, resulting in increased
cardiac output. Increase in cardiac output is achieved by increased myocardial O,
consumption accompanied with increase in myocardial blood flow. More CO load
is delivered to the tissues due to increase in blood flow to the tissue. Also, the
myocardial O, consumption increases and the tissue PO; falls resulting in higher
MbCO levels. Figure 4.5 shows comparison of the MbCO levels and tissue PO of
resting skeletal muscle and cardiac muscle tissues for the same CO exposure
protocol. It can be seen from the Figure 4.5 that the MbCO levels are lower and
the tissue PO, are greater in skeletal muscle than that of cardiac muscle. Lower
MDbCO levels in resting skeletal muscle are due to lower oxygen consumption,
lower blood flow, less CO load delivered and higher PO, than that of cardiac
muscle, which is a rigorously working muscle. The values for the resting skeletal

muscle are as shown below

Variable Values before | Values at End Values at End of
begin of CO | of CO Treatment
Exposure Exposure
6.19 0.73 14.1
% HbCO
7
1.99, 2.05 0.39, 0.48 2.3, 1.57

%MbCOcm;,%MbCOcm,

Pm,;0,, Pm,O, (Torr) 42.03, 35.9, 22.16 39.16,
27.75 25.09

4.2.2 Long Duration-Low Concentration CO Exposure

Data Source for the Simulation: The same parameters used in section 4.2.1
were used for this simulation. But the experiment protocol is different for this
simulation. Subject 120 is exposed to 90 ppm of CO for a period of 8 hrs.

There is no treatment in this protocol.
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Simulation Relevance: This kind of simulation would find relevance when

there is a faulty heater at work place or a faulty furnace at home.

Experiment Protocol:
L

12min 480 mins

T=0 Tw TCO Tend
90 ppm

Model Predictions: Figure 4.6 shows the predicted HbCO levels, coronary
venous PO2, PcvO,, MbCO levels, MbCOcm; and MbCOcm; and myocardial
oxygen tensions, Pcm;O, and PcmyO,,. The predicted values before CO
exposure are similar to the values of the simulation above (Section 4.2.1).
Simulating this experimental protocol would help to understand the impact of
CO load on the heart for a greater length of time and its resulting effect on the
myocardial O, tension. Concentration of CO exposure is lower in this
simulation but is present for a greater length of time. The HbCO levels in
blood reach ~9.6% resulting in MbCO levels of 3.84% and 5.24% in cardiac
subcompartments 1 and 2. The tissue PO2 in the first subcompartment is 32
Torr, which is a reasonable PO, however, the tissue PO, is slightly lower in
the subcompartment 2 (which is a major subcompartment of the heart model)
for a long duration of time, resulting in tissue hypoxia. If the duration of CO
exposure or concentration of CO would be increased, then the cardiac tissue
would be O, impaired for longer duration of time resulting in imbalance of
homeostasis of O, delivery and metabolism of heart. The values of the

predicted variables are as follows:

Variable Values at End of CO
Exposure
% HbCO 9.5904
% MbCO 3.84,5.24
Tissue PO2 (Torr) 32,15.12
Cardiac Venous Po2 (Torr) 14.91
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4.2.3 CO Rebreathing During 100% O, Administration

Data Source for the Simulation: Subject 1, Reference 155. Burge & Skinner
had conducted CO rebreathing experiments in hyperoxia (100% Oy) to
estimate the total blood volume. Subjects in this study rebreathed 60-70ml of
CO for a period of 40 mins while breathing 100% oxygen.

Simulation Relevance: This method is a standard one used for determining
total blood volume of a subject. Also, the closed breathing design of the
experiment helps in estimating the blood-to-tissue diffusion coefficient of CO
(35) because the slow decrease in %HbCO after 10 min is sensitive to this

coefficient.

Experiment Protocol:

12min 40 mins

T=0 TW ( T02 »TCO ) Tend
70 ml

Too= Start time for treatment with 100% O2

Parameters Provided by Investigators: age, gender, height, body weight,
injected volume of CO, barometric pressure, temperature, volume of blood,
exposure and hyperoxia breathing times, and volume of the rebreathing

circuit.

Parameters Determined: Total body O, consumption (233 ml/min/kg),
cardiac output (Section 3.5.2), heart rate (Section 3.5.3), ventilation is
assumed to be 0 during rebreathing, diffusion coefficient for CO (Bruce,

Bruce and Erupaka), myocardial blood flow (Section 3.5.1), myocardial O2
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consumption (Section 3.5.1), increases in cardiac output (Section 3.2.4) and
increases in heart rate (Section 3.5.3) with increases in blood HbCO levels
The parameters during 100% oxygen breathing are not known. Regression
equations developed for determining parameters during normoxia were

applied for predicting cardiac ouput, heart rate etc., during hyperoxia.

Model Predictions: Figure 4.7 shows the predicted HbCO and MbCO levels in
arterial blood and tissue subcompartments, coronary venous partial pressure of
O, (PcvOy) and myocardial oxygen tensions. MbCO levels of
subcompartment 1 are greater by 2% than the subcompartment 2 during the
intial 5-6 mins of the experiment and then the MbCO Ilevels in the two
subcompartments reach equilibrium. The tissue PO, falls approximately by 46
Torr in the subcompartment 1 and 7 Torr in the subcompartment 2. However
after the end of CO exposure, the tissue PO, of cm1 increases approximately
to 92 (close to value before CO exposure) Torr, and the PO, of cm2 increases
to 20.31 Torr. However the tissue PO, in cm2 does not increases as much as
expected during 100% O, breathing. This could be due to errors in
determining the parameters during treatment protocol. The values of the

predicted variables are as follows:

Values before begin | Values at End of

Variable of CO Exposure CO Exposure
% HbCO 1.07 10.94
%MbCOcm;,%MbCOcm,| 1.07, 0.92 3.96, 3.56
Pcm;0,, PcmyOy(Torr) |~ 96.4,22.56 50, 17.3
PcvO, (Torr) 23.29 17.07

4.2.4 CO Exposure During Exercise

Data Source for the Simulation: Subject 21, Reference 69. Kizakevitch

et al. conducted experiments where the subjects performed lower body
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exercise using a treadmill. Subjects underwent air exposures at their base
level HbCO (0-2%) and CO exposures to fours levels of HbCO (5%, 10%,
15%, 20%). At each level of HbCO, subjects underwent exercise sessions
comprised of rest and three 5 min exercise periods (R, E1, E2, E3). The
exercise intensity was increased in a step wise fashion and the experiment was

conducted over two days.

Simulation Relevance: Working groups exposed to CO concentrations higher
than the permissible levels are more susceptible to severe tissue hypoxia
because increased work increases the oxygen demand in the tissue, but CO
interferes with O, delivery by binding to hemoglobin. Myoglobin
functionality is also impaired as CO binds to myoglobin, further impairing O,
availability. Predicting tissue oxygenation and MbCO levels in the cardiac
compartment during CO exposures will estimate the extent of tissue hypoxia

in the heart.

Parameters Provided by Investigators: age, gender, height, body weight,
concentration of CO in inspired air (1000 ppm for 5% HbCO, 3000 ppm for
10%, 15% and 20% HbCO levels. 27 ppm, 55ppm, 83ppm and 100 ppm were
used to maintain HbCO concentrations at 5%, 10%, 15% and 20%
respectively), total body metabolic rate, ventilation , cardiac output, heart

rate, times for begin of exercise stages and time of 100% O, exposure.

Experiment Protocol:
The protocol the authors followed was as follows:
E = Exercise; R= Rest

Day 1: Baseline HbCO (R, E1, E2, E3) - 5% HbCO(R, E1, E2, E3) -
15% HbCO — (R, E1, E2, E3)- Administer 100% O2
Day 2: Baseline HbCO (R, El1, E2, E3) - 10% HbCO(R, E1, E2, E3) - 20%
HbCO — (R, E1, E2, E3) - Administer 100% O2.
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Parameters Determined: Diffusion coefficient for CO (2.5 ml/min/Torr),
myocardial blood flow (Section 3.5.1), myocardial O, consumption (Section
3.5.1), blood volume, ventilation adjusted to maintain normoxic arterial PO,

cardiac output (Section 3.5.2,3.5.3) and heart rate during O, administration .

Experiment Protocol

1.9% 5 0% 10.0% 15.0% 200%
~| Segment]| | |Segment? | |Segmentd | | Segment4 | | Segment5|100%
= Oxygen
h‘-{a 33— -3 —3 —3 | Treatment
— 2— i . e
£ - 2 2 | 60 min
g 11— | | |
—=
0 0 0 0
Day 1, Day 2 Day 1 Day 2 Day 1 Day 2 Day 1, Day 2
20 min 20 min 20 min 20 min 20 min
Time (min)
Rest—0 load—1 Lload—2 load -3  COexposure— I

Model Predictions:

4.2.4.1 Baseline HbCO (1.9%) at Rest and Three Levels of Exercise:
(Figure 4.8). Myocardial tissue and venous PO; decrease from rest in a
stepwise fashion with exercise stages 1 and 2. At the beginning of exercise
stage 3, the PO, in the myocardial tissue and blood subcompartments
increase. The MbCO levels in the subcompartments increase but are
insignificant. There is a significant decrease in tissue PO, (decreases by 10
Torr and 6 Torr, respectively) of cm1 and cm2 at the end of exercise stage 2.
There is an increase in tissue oxygen tensions during exercise stage 3. With
increased exercise load one would expect the tissue PO; to fall, but the tissue
PO, increases because the cardiac output increases by 2.6 times the resting
value. Increase in cardiac output results in increased blood flow to the heart

and there is more O, available for delivery to the tissues. Also the HbCO
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levels are minimal, resulting in noncompetitive binding of O, with

hemoglobin, there by resulting in increased tissue PO,. The values are

Variables Rest Exercise 1 Exercise 2 Exercise 3
% HbCO 1.9 1.9 1.9 1.9

% MbCO 0.68, 0.87 0.73, 0.98 0.86, 1.24 0.73, 0.95
Tissue PO, (Torr) 34.26,18.66  28,15.8 24.43,12.36 32.5,18.2
Cardiac Venous PO, | 20.9 Torr 17.8 Torr 15.09 Torr 19.54 Torr

4.2.4.2 HbCO (10%) at Rest and Three Levels of Exercise (Figure 4.9)

The subcompartment MbCO levels increase with stages of exercise, though
the HbCO levels are maintained at 10%. The PO, (tissue and blood) in the
cardiac subcompartments decrease and MbCO levels increase linearly till the
constant HbCO levels of 10% are attained. There is a negligible increase
noticed in MbCO levels during the 5 min rest period, followed by a steep
increase during exercise stages 1 and 2 and then a linear increase during

exercise stage 3.

Variables Rest Exercisel Exercise 2 Exercise 3
% HbCO 9.94 10 9.97 10

% MbCO 3.76, 5.09 4.12,5.62 4.05,5.51 48,7.1
TissuePO2 32.03, 15.33 31.14, 14.15 31.22,14.17 25.15,10.45
(Torr)

Cardiac Venous | 16.61 Torr 15.76 Torr 15.74 Torr 12.85 Torr
Po2

The tissue and blood PO;’s of heart decrease by 1-2 Torr initially during the
rest session, then fall by few Torr and are maintained constant during stages 1
and 2 of exercise. There is a significant drop of PO, in tissue and blood
subcompartments during exercise stage 3, especially in tissue subcompartment
2. The heart rate during stage 3 increases approximately by 98% due to

exercise and increase in blood HbCO levels. Increased heart rate increases
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myocardial Oy consumption and myocardial blood flow. Also the cardiac
ouput increases due to exercise and CO exposure. This results in more CO
load being delivered to the heart, as CO has more affinity than O; to bind to
hemoglobin. It results in higher MbCO levels and lower tissue PO; in the

subcompartments of the heart.

4.2.4.3 HbCO (20%) at Rest and Three Levels of Exercise (Figure 4.10)

The subcompartment MbCO levels increase with stages of exercise, though
the HbCO levels are maintained at 20%. After reaching constant HbCO level
of 20%, there is a step wise decrease in PO,’s (of myocardial tissue and blood
subcomparments) with exercise stages. There is a decrease of tissue and
blood PO; in the cardiac subcompartments with linear increase of tissue
MbCO levels. There is a significant large drop in the oxygen tensions of tissue
subcompartment 2 during exercise stage 1 and exercise stage 2 compared to
exercise stage 3. The cardiac output increases by 81%, 102% and 119%
respectively compared to the rest session at 20% HbCO levels. Increasing
metabolic demand of O2 with exercise stages and poor tissue oxygenation due
to increased CO load (due to increasing blood flow) results in PO, of 3.7 Torr
and 2.28 Torr. If these tissue PO, persists for longer time, then the metabolic

oxygen demands may be met with anaerobic metabolism.

Variables Rest Exercisel Exercise 2 Exercise 3
% HbCO 19.78 19.73 19.7 19.6

% MbCO 8.81, 12.74 11.07, 17.49 14.25,25.25 18.75, 33.93
TissuePO2 23.8,10.29 20.03, 6.66 14.55,3.71 9.19, 1.92
(Torr)

Cardiac Venous = 11.91 Torr 8.8 Torr 5.6 Torr 2.28 Torr
Po2
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4.2.4.4 HbCO (20%) at Rest and Three Levels of Exercise Followed with 100% O2
Treatment:

After the third stage of exercise, the subject breathed 100% O, for 60 mins
(Figure 4.11). The model predictions at the end of 60 mins are as follows

Variables Rest End of therapy
% HbCO 1.9 13.78

% MbCO 0.68, 0.87 6.97, 8.38
TissuePO2 (Torr) 34.26, 18.66 108, 17
Cardiac Venous Po2 | 20.9 Torr 18.45 Torr

100 % O, breathing after CO exposure decreases the HDCO and MbCO levels in
arterial blood and the cardiac tissue subcompartment (Figure 4.11). There is an
increase in myocardial blood and tissue PO,’s with 100% O; breathing. A
significant increase in the tissue PO, of cardiac subcompartment 1 is observed
with 100% O, breathing. However, the PO, of tissue subcompartment 2 only
increases to 17 Torr after 100% O, breathing. The MbCO levels in cm2 are 8.38%
after breathing 100% O,. The cardiac output for this session (breathing 100% O5)
was determined from the predictive equation considering the total body O;
consumption at rest (during 20% HbCO). Making this assumption may have
effected the prediction for second compartment myocardial tissue PO,. The
determined cardiac output may have been underestimated for the hyperoxia
session which resulted in lower blood flow to the heart compartment. Also the
MbCO levels were higher in the second compartment accompanied with lower
blood flow during hyperoxia which resulted in lower tissue PO, in cm2 at end of
therapy (recovery) session. Figure 4.12 compares the model predictions for
extravascular burden of CO (PO; and MbCO) while breathing 100% O, vs Room
air after CO exposure. It can be seen from the figure that breathing 100% O, after
exposure shows higher tissue PO, and lower MbCO levels than breathing room

air.
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4.2.4.5 Baseline HbCO (1.9%) - HbCO (5%) - HbCO (15%) (Each session at
Rest and Three Levels of Exercise) Followed with 100% O2 Treatment.
Figure 4.13

There is a step wise decrease in PO;’s (of myocardial tissue and blood
subcomparments) with exercise stages and increasing HbCO levels. There is an
increase in myocardial blood and tissue PO;’s with 100% O, breathing. Also, the
HbCO and MbCO levels in arterial blood and the cardiac tissue subcompartment
decreases with 100 % O, breathing after CO exposure. The responses of decreases
in PO, and increases in MbCO levels (of the cardiac subcompartments) are
qualitatively similar to the exercise simulations discussed above for 10% and 20%
HbCO levels but the values reach are quantitatively different as the current
simulation involves lower HbCO levels of 5% and 15 % compared to 10% and
20%. Thus we can expect that with increasing HbCO levels, the quantitative
values attained may be different but the same qualitative response pattern may be

followed.
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Table 4.1 : Validation of the Model.

. 13.77764
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21.26861 0.54
30.68439

21.41581
33.0111

21.26861

R= Reference, Exp.= Experimental, ParO, = Arterial PO,, PcmO, = Coronary Venous POy,

PtO, = Cardiac Tissue PO, Pcm10, = Cardiac Subcompartment 1 PO,, Pcm10, = Cardiac
Subcompartment 1 PO,;, Qcm= Myocardial Blood Flow, mrO,em = Myocardial Oxygen

Consumption.
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Figure 4.1: Comparison of Coronary Venous PO2. Comparison of model
predictions of coronary venous PO, (y-axis) with experimentally measured
coronary venous PO, (x-axis). (Table 4.1). The dashed line represents the

regression equation.

Statistical Significance:

Model Coronary Venous PO, = 0.742 x Experimental Coronary Venous PO, +
6.812

Standard error of estimate: 3.566

Regression coefficient, R: 0.743
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Subcompartment 1 Tissue PO,
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Figure 4.2 : Comparison of Myocardial Tissue PO; in Subcompartment 1.
Comparison of model predictions of myocardial tissue PO, (y-axis) in
subcompartment 1 with experimentally measured (x-axis) myocardial tissue PO,
(measurement sites close to arterioles or generally large electrode was used).

(Table 4.1). The dashed line represents the regression equation.

Statistical Significance:
Model Compartment 1 PO, = 0.918 x Experimental Compartment 1 PO, + 6.532
Standard error of estimate: 6.387

Regression coefficient , R: 0.643
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Subcompartment 2 Tissue PO2
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Figure 4.3: Comparison of Myocardial Tissue PO; in Subcompartment 2.
Comparison of model predictions of myocardial tissue PO, (y-axis) in
subcompartment 2 with experimentally measured (x-axis) myocardial tissue PO,
(measurements made with electrodes whose size is comparable to that of size of a

capillary). (Table 4.1). The dashed line represents the regression equation.

Statistical Significance:
Model Compartment 2 PO, = 1.396 x Experimental Compartment 2 PO, -8.007
Standard error of estimate: 2.803

Regression coefficient , R: 0.913
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HbCO and MbCO Levels in Percentile PO, in Torr
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Figure 4.4: Prediction for Short Duration-High Concentration CO Exposure.
Figure shows the predicted %HbCO levels in arterial blood, coronary venous
partial pressure of O, (PcmvO,), oxygen tension in cardiac subcompartment 1
(Pcm;0,), MbCO levels in cardiac subcompartment 1 (%MbCOcm;), oxygen
tension in cardiac subcompartment 2 (Pcm,0,) and MbCO levels in cardiac
subcompartment 2 (%MbCOcmy;) for a short (Smin) CO exposure (6683 ppm).
The point (¢) shows the start of therapy (room air administration) at t = 5 min,
lasting for 283mins after CO exposure. Simulation time is plotted on the x-axis

and the model predicted variables are plotted on the y-axis.

92



%HbCO, %MbCO

J
0 50 100 150 200 250 300

Time (min)
50(

B 40-

[

ke

@ 30-

()

|_

§ 20-

:

>

X

O 10 ! ! ! ! ! |

0 50 100 150 200 250 300

Time (min)

Figure 4.5: Prediction Summary for Short Duration-High Concentration CO
Exposure. Figure shows the predicted %HbCO (blue) levels in arterial blood, %
MbCO levels in cardiac subcompartment 1 (red solid) and cardiac
subcompartment 2 (red dashed), oxygen tension in cardiac subcompartment 1
(green solid) and cardiac subcompartment 2 (green dashed); % MbCO levels in
resting skeletal muscle subcompartment 1 (magenta solid) and resting skeletal
muscle subcompartment 2 (magenta dashed), oxygen tension in skeletal muscle
subcompartment 1 (cyan solid) and skeletal muscle subcompartment 2 (cyan
dashed) for a short (5min) CO exposure (6683 ppm). Simulation time is plotted on

the x-axis and the model predicted variables are plotted on the y-axis.
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HbCO and MbCO Levels in Percentile PO, in Torr
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Figure 4.6 :Prediction for Long Duration-Low Concentration CO Exposure.
Figure shows the predicted %HbCO levels in arterial blood, coronary venous
partial pressure of O, (PcmvO,), oxygen tension in cardiac subcompartment 1
(Pcm;0,), MbCO levels in cardiac subcompartment 1 (%MbCOcm;), oxygen
tension in cardiac subcompartment 2 (Pcm,0,) and MbCO levels in cardiac
subcompartment 2 (%MbCOcm;) for a long (480min) CO exposure (90 ppm).
The point (¢) shows the start time of CO exposure. Simulation time is plotted on

the x-axis and the model predicted variables are plotted on the y-axis.
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Figure 4.7: CO Rebreathing During 100% O, Administration. Figure shows the
predicted %HbCO (blue) levels in arterial blood, % MbCO levels in cardiac

subcompartment 1( red solid) and cardiac subcompartment 2 (red dashed),

coronary venous PO, (blue solid) oxygen tension in cardiac subcompartment

I(green solid) and cardiac subcompartment 2( green dashed) for a period 480

mins with CO concentrations being 90ppm. The point (¢) shows the start of CO

exposure. Simulation time is plotted on the x-axis and the model predicted

variables are plotted on the y-axis.
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HbCO and MbCO Levels in Percentile PO, in Torr

2 30
9 g2
o 1 §
= o}
o\o 0 10
0l o o 0L oo o
0 10 20 30 0 10 20 30
1 40
5 P et N w
Q o
O 05 s 20
2 O
= o
B
0 o . . . 0 ° o o o
0 10 20 30 0 10 20 30
1.5 20
5 e
O 1ﬁ N
Q OC\I
O s 10
2 05 a°
RS
0 . . . . 0 . . . .
0 10 20 30 0 10 20 30
Time (min) Time (min)

Figure 4.8: Baseline HbCO (1.9%) at Rest and Three Levels of Exercise. Figure
shows the predicted %HbCO levels in arterial blood, coronary venous partial
pressure of O2 (PcmvO,), oxygen tension in cardiac subcompartment 1(Pcm;05),
MbCO levels in cardiac subcompartment 1(%MbCOcm;), oxygen tension in
cardiac subcompartment 2(Pcm,0,) and MbCO levels in cardiac subcompartment
2(%MbCOcm;. The points (¢) show the end times of 5 min sessions of rest,
exercise 1, exercise 2 and exercise 3. The sessions are simulated at baseline
HbCO levels of 1.9%. Simulation time is plotted on the x-axis and the model

predicted variables are plotted on the y-axis.
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HbCO and MbCO Levels in Percentile PO, in Torr
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Figure 4.9 : HbCO (10%) at Rest and Three Levels of Exercise. Figure shows the
predicted %HbCO levels in arterial blood, coronary venous partial pressure of O;
(PcmvQO,), oxygen tension in cardiac subcompartment 1(Pcm;0O,), MbCO levels
in cardiac subcompartment 1(%MbCOcm;), oxygen tension in cardiac
subcompartment 2(Pcm,0,) and MbCO levels in cardiac subcompartment
2(%MbCOcm,. The points (¢) show the start times of 5 min sessions of rest,
exercise 1, exercise 2 and exercise 3. The sessions are simulated at baseline
HbCO levels of 10%. Simulation time is plotted on the x-axis and the model

predicted variables are plotted on the y-axis.
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Figure 4.10 : HbCO (20%) at Rest and Three Levels of Exercise. Figure shows

the predicted %HbCO levels in arterial blood, coronary venous partial pressure of

02 (PecmvQO;), oxygen tension in cardiac subcompartment 1(Pcm;0O,), MbCO

levels in cardiac subcompartment 1(%MbCOcm;), oxygen tension in cardiac

subcompartment 2(Pcm;0;) and MbCO levels in cardiac subcompartment 2

(%MbCOcm;).The points () show the start times of 5 min sessions of rest,

exercise 1, exercise 2 and exercise 3. The sessions are simulated at baseline

HbCO levels of 20%. Simulation time is plotted on the x-axis and the model

predicted variables are plotted on the y-axis.
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HbCO and MbCO Levels in Percentile PO, in Torr
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Figure 4.11: HbCO (20%) at Rest and Three Levels of Exercise Followed with
100% O, Treatment. Figure shows the predicted %HbCO levels in arterial blood,
coronary venous partial pressure of O, (PcmvO;), oxygen tension in cardiac
subcompartment 1(Pcm;0;), MbCO levels in cardiac subcompartment
1(%MbCOcm;), oxygen tension in cardiac subcompartment 2(Pcm;0,) and
MbCO levels in cardiac subcompartment 2(%MbCOcm,).The points (*) show the
end times of 5 min sessions of rest, exercise 1, exercise 2, exercise 3 and start
time of 100% O2 breathing for period of 60 mins. The sessions are simulated at
baseline HbCO levels of 20%. Simulation time is plotted on the x-axis and the

model predicted variables are plotted on the y-axis.

99



HbCO and MbCO Levels in Percentile PO, in Torr

30 30— -
2 >
I =
® 10 1 210
0 > oo oo 0] > oo
0 50 100 0] 50 100
20 150
OQEJ S 100
O 10 s
o]
> D_O 50
IS
0 oo oo 0] * oo
0 50 100 0] 50 100
40 20
S
Q o,
(_Q) 20 1 g 10
= o
R
0 *—o-ooo . 0 e ocoo .
0 50 100 0] 50 100
Time (min) Time (min)

Figure 4.12: Comparison of 100% O2 and Room Air breathing after CO
exposure. Comparison of 100% O2 VS. Room Air Treatment During 20% HbCO
at Rest and Three Levels of Exercise: Figure shows the predicted %HbCO levels
in arterial blood, coronary venous partial pressure of O, (PcmvO;), oxygen
tension in cardiac subcompartment 1(Pcm;0;), MbCO levels in cardiac
subcompartment 1(%MbCOcm;), oxygen tension in cardiac subcompartment
2(Pcmy0,) and MbCO levels in cardiac subcompartment 2(%MbCOcm,).The
points (¢) show the start times of 5 min sessions of rest, exercise 1, exercise 2,
exercise 3 and start time of 100% O, (blue) or room air (red) breathing for
period of 60 mins. The sessions are simulated at baseline HbCO levels of 20%.
Simulation time is plotted on the x-axis and the model predicted variables are

plotted on the y-axis.
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Figure 4.13: Baseline HbCO (1.9%) - HbCO (5%) - HbCO (15%) (Each session
at Rest and Three Levels of Exercise) Followed with 100% O2 Treatment. Figure
shows the predicted %HbCO (blue) levels in arterial blood, % MbCO levels in
cardiac subcompartment 1( red solid) and cardiac subcompartment 2 (red dashed),
oxygen tension in cardiac subcompartment 1 (green solid) and cardiac
subcompartment 2 ( green dashed). The point (¢) shows the 5 min end time
session of rest (-), exercise 1(--), exercise 2 (-.-.-) and exercise 3 (....). The HbCO
level attained are , 5% and . Simulation time is plotted on the x-axis

and the model predicted variables are plotted on the y-axis.
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CHAPTER 5

Discussion

This chapter summarizes the modifications made to the selected primary model
(Figure 2.1), and discusses the limitations of the current model, issues related to

parameter estimations, and concerns regarding the model validation and results.

The most essential step in modeling is to determine the exact need for the
model. In this thesis we need the model to predict the amount of CO entering the
blood and the cardiac tissues and to determine the effects of CO on tissue
oxygenation (PcmO,, tissue PO; of the cardiac compartment). Uptake of CO by blood
can be determined by measuring the COHDb levels in the venous blood. But it is
difficult to measure MbCO (carboxymyoglobin) levels and tissue PO, in the human
heart noninvasively. It is not expected from the model that the predictions be literally
true but one can insist that the models provide useful approximations and their

usefulness is measured against the value of the proposed objectives.

5.1 Model Modifications

The following modifications were made to enhance the model predictions:

5.1.1 Implementing O, Mass Balance Equations

The primary model (35) has been enhanced and modified in many aspects. CO
impairs O, delivery to the tissues, so the primary issue is to predict impairment of O,
delivery in the presence of CO and its effect on tissue PO,. At the same time, the
extravascular burden of CO depends on the O, levels of the tissue. That is, the CO -
O, interaction involves a feedback loop, making it difficult to calculate the deliveries
of O, and CO unless the O, mass balance equations are included. Thus to predict the
CO load delivered, it is important to understand O, availability (PO;) in the tissue.
Hence mass balance equations for O, were added for all compartments of the model.

In the initial model O, parameters were passed as constants, while in the current
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model all O, parameters are calculated within the model. They are determined by
solving simultaneous algebraic equations for oxyhemoglobin dissociation curves, and
integrating the differential mass balance equations as described in Section 3.8 of
chapter 3. We know that impaired O, delivery (CO hypoxia, hypoxic hypoxia,
increased demand for oxygen while performing high stress exercise), and insufficient
O, availability (coronary artery diseases, occlusion and ischemia) can disturb the
homeostasis of energy metabolism (ATP production), blood flow and O, pressure
gradients. Incorporating O, mass balance equations into the model has enhanced the
ability of the model to predict O, tensions (which are difficult to measure
experimentally) in the cardiac compartment and extended its application to simulate

hypoxia, exercise and other conditions resulting in O, insufficiency.

5.1.2 Model Architecture and Flow Design

Modifying the model design to incorporate two subcompartments instead of a
single compartment to represent the heart and the skeletal muscle helped in
addressing the limitations related to O,/CO diffusion and arterio-venous shunting, and
the well-known fact that PO, is not the same throughout a tissue. Maintaining the
balance of the O, supply and demand is very important in determining tissue oxygen
tension. Attributing the skeletal muscle with regional flow and metabolic demand has
allowed a better prediction of O, tension and CO load. Blood to tissue oxygen flux
equations (Section 2.1.3, chapter 1) were modified by estimating them as a function
of pressure gradients and the diffusion coefficient of O, (Section 3.2.2, chapter 3)
instead of making an assumption of equality between O, flux and metabolic demand
of the compartment (35). Also, in the current model, the nonlinear changes in O, and
CO are being better accounted for due to improved algorithms (Section 3.8, chapter
3). I also implemented a new algorithm to solve the simultaneous algebraic equations
to calculate the partial pressure of O, corresponding to the concentration of oxygen
halfway between the inlet and outlet of the vascular subcompartment of the tissue
(Section 3.8, chapter 3).
Adding a Cardiac Compartment to the Model: A two-subcompartment cardiac

compartment was added to the model which is one of the main goals of the thesis.
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The skeletal and cardiac muscle exhibit major differences in anatomy, blood flow,
and O, demand. Unlike skeletal muscle, cardiac muscle works constantly to pump
blood and it would, therefore, be inappropriate to lump the cardiac muscle with the
resting skeletal muscle. Implementing a cardiac compartment made noninvasive
predictions of MbCO levels and oxygen tension in the tissues possible. These values

are difficult to measure experimentally (noninvasivly) in the human heart.

5.1.3 Physiological Relevance

Regulation of cardiac output with respect to increased blood HbCO
(carboxyhemoglobin) levels was implemented into the model by means of a
predictive equation (68, 69, 70). Blood volume was estimated for individual subjects
by means of a regression equation reported in the literature (78). Estimating
myocardial O, consumption and myocardial blood flow as a function of heart rate
(increases in heart rate would increase the work load of the heart resulting in higher
O, demand and increased O, supply to meet the increased O, demand) helps in
calculating estimates close to physiological values with increased heart rate.
Permeability surface area product increases linearly with increases in blood flow,
contributing to efficient diffusion of O, in times of O, impairment; this phenomenon

was also added to the model.

Model application: Applying these modifications has enhanced the capability of
the model to make predictions of tissue oxygen tension in the human heart during

hypoxic hypoxia, exercise, higher altitude and other O, insufficiency conditions.

5.2 Model Limitations

The foremost limitation of the model is that it has lumped component
parameters causing aggregation errors. This results in loss of anatomic resolution and
functional representation of the organ, such as in the case of cardiac component layers
of the heart (epicardium, midmyocardium, endocardium) and chambers of the heart
(atria and ventricles) which display varied heterogeneity in blood flow, O,

consumption, capillary density and tissue volume. But if one had to model the cardiac
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muscle tissue for the purpose of this thesis, the best choice to model would be the
region of left ventricular mid myocardium, as this region is especially susceptible to
injury during CO exposure due to its high O, demand and the fact that CO
interferences cause impairment of O, delivery. The heart is a dual pump, the left and
right sides of the heart pump blood separately, but simultaneously, into the systemic
and pulmonary systems. In order to pump blood efficiently, it is required for the right
and left atria to contract first followed immediately by contraction of the right or left
ventricle, respectively. Spreading of action potentials from one myocyte to other and
depolarization of the plasma membrane triggers contraction of the cardiac muscle.
Thus, mismatch of O, supply and demand in the most susceptible left ventricular
myocardial region may cause alterations in myocyte functionality (spreading of action
potential) in this region, resulting in disruption of synchronous functionality
(sequence of excitation) of the heart leading to arrhythmia. Thus, most of the
predictive equations for determining the blood flow and O, consumption were built
for the left ventricular region (left ventricle and intraventricular septum) of the heart.
When the model was tested using experimentally measured values of regional
myocardial blood flow and O; consumption as inputs, model predictions of
experimental coronary venous PO, were able to match the experimental values
obtained as seen from Figure 4.1 of chapter 4. However, limitations due to diffusion
and capillary heterogeneity were overcome to an extent by implementing two
subcompartments. This allowed intertissue diffusion of O, and CO. Also, using two
subcompartments allowed indirect arterio-venous O, and CO shunting within the
tissue. However, the design for incorporating two subcompartments instead of a
single compartment raises issues regarding the maximum number of
subcompartments that can be implemented. This concern must be considered in
relation to the thesis objective of predicting injury to the heart due to CO exposure.
Our main concern here is to model the CO uptake by the blood and the cardiac tissue.
We are basically predicting the average MbCO and PO, levels of the tissue by means
of the model. Thus by distributing cardiac muscle into two compartments, we assume
that the first compartment is the tissue perfused with small arterioles and small

venules, as well as by capillaries, and the second compartment is perfused by
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capillaries. By making this assumption, we are making an attempt to understand the
behavior of tissue with respect to its distance from a capillary, arteriole or venule
during CO hypoxia. The MbCO levels and tissue PO, in the first compartment would
reflect experimental measurements of values made near an arteriole while the second
compartment predictions would be comparable to measurements made in the tissue
close to a capillary. Also, one has to make a trade off between computational expense
and achieved numerical accuracy in model predictions. Thus, considering all these
issues, the two subcompartment cardiac model seems to be a reasonable compromise.
Another limitation of the model is that it does not incorporate details of
metabolic pathways (change from aerobic to anaerobic metabolism), coupling with
electro-physiological events (action potential due to K', Na” Ca®" channels)
regulating coronary venous PO, (156) and biochemical events (Pcr, pH). The human
heart, being a complex system, has many other backup regulation modules to restore
homeostasis during conditions of diminished O, availability such as CO exposure or
increase in O, demand as in exercise. Regulation of cardiac output and heart rate was
implemented into the model by adding predictive equations to estimate variations in
both cardiac output and heart rate as functions of blood HbCO levels. The effect of
vasodilatation and capillary recruitment on blood-tissue gas exchange was
implemented by increasing the permeability surface area product (PScm) as a linear
function of increases in blood flow to the heart. Apart from increases in cardiac
output, HR and vasodilatation which are implemented into the model, there are other
functional mechanisms taking place like the change of metabolic pathways from
aerobic cycle to anaerobic cycle due to diminished O levels in tissue, variation in
blood pressure, etc. Also, the role of myoglobin facilitated diffusion and cytochrome
C oxidase interactions with CO is not clear (130,150). Gutierrez (1986), Waller et al.,
(1988), Forster (1970), Holland (1970), Roughton (1964), Sharan et al., (1990) ,
Corpes et al., (1989) have shown the dependence of rate of CO uptake by blood on a
series of chemical reactions of O, and CO in the blood (association and dissociation
rate coefficients of O, and CO with Hb), pH and PO,. Representation of kinetics of
O, and CO with hemoglobin (Hb) in modeling O, and CO transport in the blood

flowing through pulmonary and systemic circulation is difficult as the order of
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magnitude of association and dissociation rate coefficients of O, and CO with Hb are
unknown (Sharan et al.,1989). pH was found to have second order effect on CO
uptake. The effects of PO, were considered in models built by Benignus et al., Bruce
et al. and also in the present model (by solving for the oxyhemoglobin dissociation
curves for Hb and Mb (myoglobin), Haldane equation and blood to tissue O, flux

equations).

5.3 Parameter Estimation Concerns

Estimating the parameters for a model is a crucial issue. Models have several
parameters, some of which may greatly impact the model behavior while other
parameters may not affect the model behavior at all. The impact of the parameters on
the model behavior becomes important when there is scarce or no data available for
the parameters. In such cases sensitivity analysis is conducted for the parameters to
determine their impact on model behavior. For the cardiac compartment in the model,
average values from experimental data were considered for most of the parameters.
Predictive equations were developed for estimating myocardial blood flow and
oxygen consumption.

Prediction formulas were also used to estimate cardiac output and heart rate
when actual values were not available. Subject variability is one major concern in
using average values or prediction equations to estimate parameters. The estimates
made for the parameters using predictive formulas would be valid for a specific group
(age, ethnicity, gender, geographical area being at higher altitudes or below sea level,
method of measurement) from which they were developed. Appling a prediction
equation or an average value obtained from a specific subject group to a varied
population set may tend to underestimate or overestimate the model predictions.
However, after developing these formulas, their statistical significance and validity
were tested for data which were not used for developing the relationships (Section
3.5, chapter 3). For predicting the myocardial O, consumption and myocardial blood
flow, a more reliable prediction could have been made by calculating the estimates
from heart rate-blood pressure product. But blood pressure was unavailable for many

databases we planned to simulate although heart rate was a parameter which was
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readily available and can also be calculated from total body metabolic rate. But no
such relationship could be applied to estimate blood pressure as it is a greatly varying
physiological parameter. Predicting myocardial O, consumption and blood flow as
functions of cardiac output seems to be an alternative estimation approach, but
information supporting functional relations between cardiac output, myocardial O,
consumption and blood flow is currently unavailable in the literature.

Estimating a value for resting permeability surface area product for the two
cardiac subcompartments was very difficult due to unavailability of data. The initial
guess values were obtained from models from Beard and Bassinghwaite and then the
resting values were scaled to match the size of the tissue, type of the tissue, and the
species. The permeability surface area products increased as a linear function of
blood flow. This was to indirectly implement coronary vasodilatation and capillary
recruitment into the model.

The values for distribution of volume in each of the compartments (Fvem) and
for the fraction of venous cardiac blood compartment 3 perfusing the tissue
compartment 1 was estimated by analyzing data available on vascular distribution in
heart, coronary physiology, and statistics on density of arterioles, capillaries and
venules in the heart (103,104). The sensitivity analysis of these parameters is shown
in table 3.8 of chapter 3, so that one can estimate the deviations in the predicted
model values for variation in the parameters (to which model predictions are

sensitive).

5.4 Model Validation Concerns

The major concern in validating the model was unavailability of human data for
testing the model predictions. Animal data, however, were available for model
validation. Data are shown in table 4.1. One can see from the table the extent of
variability and heterogeneity in the data available. Though data for dogs, swine and
rats were available, the experimental values obtained from experiments involving
swine were emphasized due to the similarity with human coronary anatomy and
vasculature. Also, most of the data available are from anesthetized animals. Type of

anesthesia used in the experiment can have a significant effect on the experimental
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values measured (96). Another issue related to the experimental data available is the
method of measurement. Most of the methods available for measuring myocardial
tissue O, tension are invasive. Reported values may have 10- 15% error due to the
measurement electrodes consuming O,, errors due to diffusion of oxygen from blood
or tissue to the electrode, shift in electrode position due to beating of the heart etc.
Also insertion of the some electrodes (like needle electrodes) causes damage to tissue
and cells and bleeding, thereby possibly contaminating the measured values. From the

Figures 4.1-4.3 shown in chapter 4, it can be seen that coronary venous PO; and

compartmental tissue PO, model predictions are close to the experimental values.
Also, the predicted myocardial tissue PO;’s are in agreement with other models (95,
101,104) that utilized a single heart compartment or a distributed (finite-element)

model.

5.5 Concerns Related to Simulated Experiments

In this model heart rate is required to estimate myocardial O, consumption and
blood flow. In the experimental data provided by Benignus et. al and Burge &
Skinner, heart rate information is unavailable. Heart rate might have been estimated
by using the regression equation described in Section 3.5.3 of chapter 3, where heart
rate is calculated as a function of total body O, consumption. But total body O,
consumption was not measured by the investigators (Benignus et. al and Burge &
Skinner), thus heart rate for simulations in Section 4.2.1- 4.2.3 was estimated using an
average metabolic rate of 0.0032 ml/gm/min. Total body O, consumption, heart rate,
myocardial O, consumption and blood flow estimated in the model may differ from
actual values at the time of experiments. Errors in estimation of the above parameters,
especially heart rate, may have significant effects on the model predictions. For
simulations having exercise sessions (Section 4.2.4), CO diffusion coefficient of
lungs (DLCO), shunt fraction SF are assumed to be constants. Zavorsky et al. (2004),
Demirjian (1980) and Paoletti (1985) have reported age dependent changes in DLCO
with varying exercise intensity. Also the shunt fraction is reported to increase with

increases in exercise intensity (159, 160).
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5.6 Simulation Findings

In all the simulations of Section 4.2, except for the simulation in Section 4.2.3 (where
the subject rebreathes CO during 100% O,), the MbCO levels of cardiac
subcompartment 2 (MbCOcm,) are higher than the MbCO levels in subcompartment
1 (MbCOcm;). Higher MbCO levels in subcompartment 2 may be explained as
follows: when CO is inhaled, it diffuses through the lung and binds with Hb in blood,
resulting in elevated HbCO levels. CO then leaves blood and diffuses into the cardiac
subcompartment 1, resulting in increased MbCO levels in the compartment initially.
CO then diffuses into subcompartment 2 from the blood subcompartment 2 and also
from the tissue subcompartment 1, thereby resulting in higher MbCO levels in
subcompartment 2. Also, with increase in blood HbCO levels the cardiac output
increases. Increased cardiac output would result in increased myocardial O,
consumption and myocardial blood flow. This means that CO delivery to the heart
increases with increase in cardiac blood flow, resulting in increased myocardial O,
consumption and fall in tissue PO,, facilitating an increase in MbCO. This effect is
more significant in the subcompartment 2 as the amount of CO delivered, blood flow
and metabolic rate of this subcompartment is greater than subcompartment 1 resulting
in lower tissue PO, and higher MbCO levels. In the case of the simulation of CO
rebreathing during 100% O,, the MbCO levels in the two subcompartments reach
equilibrium after few minutes as seen in Figure 4.7 of chapter 4. The HbCO and
MbCO levels are 10% and 4.5%, respectively, and the PO, in the cardiac
subcompartments decreases by ~1-2 Torr from base line. The reason for the heart
compartments not being hypoxic during CO rebreathing is that the subject is
breathing 100% O,. During hyperoxia, dissolved O, plays a major role in tissue
oxygenation. At the end of the simulation although the subject breaths 100% O,, a
significant increase in PO, of cardiac subcompartment 2 is not seen.

Another interesting observation in all the simulations discussed in Section 4.4.4 is
that the MbCO levels of the two tissue subcompartments increase with exercise,
though the HbCO levels are maintained constant. This means that increase in exercise
increases the CO load on heart due to increased blood flow. Also, increased intensity

of exercise causes a rise in O, consumption, requiring higher O, demand, thus
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resulting in tissue hypoxia. This observation also supports the reported observations
of a higher risk of cardiac injury in a working population exposed to CO.

The developed model is capable of predicting myocardial tissue and blood PO,
during all transients (different exercise sessions at different HbCO levels, long and
short CO exposures etc) in the simulations. However, tissue PO, in cardiac
subcompartment 2 being maintained at 19 torr during hyperoxia (administration of
100% O; after 3 graded levels of exercise with 20% HbCO) after 60 min of breathing
100% O, seems to be a concern. Prediction of lower PO, during hyperoxia may be
due to the following reason: insufficient treatment time (simulation can be done by
increasing the treatment time from 60 mins to 300-400 mins and see if the PO, in
subcompartment 2 increases), or due to errors in model parameters in the treatment
protocol (as parameters were not measured by the investigators).

Decreases in coronary venous PO, with increased exercise intensity have been
reported (156). The cardiac compartment venous PO, decreases with exercise as seen
from Figure 4.5. However changes in coronary venous PO, during combined exercise
and CO exposure have not been reported in human or swine in the current literature.
Thus validating the simulation results becomes difficult. Tissue PO, of 6-7 Torr have
been reported in mild exercising skeletal muscle tissue of humans whose steady state
resting values at baseline HbCO levels are 35 Torr (158). An average myocardial
tissue PO, of 3.36 Torr at the end of third stage of moderate exercise (E3) at 20%
HbCO levels seems reasonable. Prediction of tissue PO, by the model in the range of
0.5-1 Torr for a time span of 8-9 mins may be considered lethal (75,130,132,133).
The model can be validated further if experimentally measured data for myocardial
blood and tissue PO, would be available in humans or swine during CO exposures at

rest, exercise, hyperoxia and O, hypoxia.

As seen in Figure 4.5 there is a sharp increase in the MbCO levels of the cardiac
compartments with increase in HbCO levels of the blood, whereas the MbCO levels
of the skeletal muscle increase gradually after the HDCO blood levels decrease. This
sharp immediate increase in MbCO levels suggest that the CO released from

hemoglobin binds to the myoglobin present in the cardiac muscle. Also the cardiac
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tissue PO, decreases with increases in HOCO and MbCO levels, suggesting greater
risk of injury than skeletal muscle. The cardiac muscle has higher O, consumption,
blood flow and capillary density than that of resting skeletal muscle and
unavailability of O, store would result in greater degree of hypoxia. As seen in Figure
4.6, during long-low CO exposure the MbCO levels of the cardiac compartment
increase with increase in HbCO levels and after a certain amount of time exceed
HbCO levels in the blood, suggesting that myocardial tissue hypoxia is the
combination of impaired O, carrying capacity of blood and impaired O, storage in
myoglobin. Thus one can confirm that the response of various tissue to CO exposure
is different, based on their functionality and oxygen consumption. Thus it would not

be valid to apply the same response to all the tissues.

The hypothesis tested for the thesis was that during CO exposures and subsequent
therapies, the temporal changes of %MDbCO in the heart differ from those of %HbCO
was tested. From the various simulations, it was found that HbCO and MbCO levels
in the heart greatly depend on the type of CO exposure. In the case of short-high CO
exposures, the MbCO levels positively correlate with HbCO, while in long-low CO
exposures, the MbCO levels increase with increasing HbCO initially but later increase
to levels higher than blood HbCO levels. During exercise though the HbCO levels are
constant, the MbCO levels increase resulting in decreased tissue oxygen tensions.
Thus, the results obtained support the hypothesis made. The CO load is related to
both %HbDCO in arterial blood perfusing the heart and %MbCO in cardiac tissue. In
long-low CO exposures myocardial hypoxia occurs due to impaired O, transport
(decrease in %HbO,) and unavailability of O, storage (%MbO;) where as in short-
high CO exposures, tissue hypoxia is mainly due to impaired O transport and in
exercise protocols the cardiac hypoxia is mainly due to unavailability of O, storage
(%MbCO). Thus basing the treatment on the currently-used clinical indicator of
potential injury (i.e., %HbCO) will be inaccurate and possibly misleading. Thus,
determining the total CO load on the cardiac cells (or its effect on tissue POy) is likely

to be a better predictor of injury.
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Overall, the developed model proves to be an excellent tool for predicting

extravascular burden (MbCO levels and tissue PO;) of CO on human heart.
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CHAPTER 6

Conclusion

Noninvasive measurement of myocardial tissue PtO, and MbCO levels during or after
CO exposure is difficult. The main goal of the thesis was to develop a model that is
capable of predicting extravascular burden of CO in the human heart and its effects
on tissue oxygenation. A multi compartment model was developed consisting of six
major compartments: 1.The arterial blood, 2. The Lungs, 3. Skeletal Muscle with two
subcompartments, 4. Non-muscle tissue, 5. Cardiac Muscle with two
subcompartments and 6. Mixed venous blood compartments. Mass balance equations
are written for O, and CO for each of these compartments. In each blood
compartment, to determine PO,, PCO and O, flux we solve three simultaneous
algebraic equations: the oxyhemoglobin dissociation curve, Haldane’s equation, and
the blood-to-tissue flux equation for oxygen. Myocardial blood flow and oxygen
consumption are estimated from regression equations developed for the thesis. The
model is simulated on a Windows XP system using ACSL™ software which is
capable of solving nonlinear differential equations. Sensitivity analysis is performed
and the myocardial tissue PO, (P:O;) is shown to be sensitive to myocardial blood
flow, myocardial oxygen consumption, volume distribution fraction of the tissue,
diffusion coefficient of O, and the permeability surface area product. The developed
model was used for the simulations to test the validity of the predicted variables of
the cardiac compartment with published observations on human subjects and
anesthetized animals. The model was validated for conditions of normoxic rest,
hypoxic rest, hypoxic exercise and hyperoxia with regard to its predictions of
coronary venous PO; and tissue PO,. Simulation of short-high concentration CO
exposure, long-low concentration CO exposure, CO rebreathing during 100% O,
administration and CO exposure during rest and exercise sessions for different levels
of HbCO have been analyzed. In short-high concentration exposures, the tissue
MDbCO levels increase sharply unlike in long-low concentration exposures where the
MbCO Ilevels increase gradually. The tissue PO, levels seem to be correlated more

with %HbCO levels than with %MbCO levels in short-high CO exposures. This
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would suggest that there is impaired O, delivery to tissues due to impaired O,
transport. During long-low CO exposures, the tissue PO, correlates with MbCO
levels i.e., it decreases with increase in MbCO. In the simulation where subject
rebreathes CO during 100% O, administration, the tissue PO;‘s correlate with
%HDbCO levels and %MbCO levels increase with corresponding decreases in %HbCO
levels suggesting that during hyperoxia, CO dislodged from hemoglobin is taken up
by myoglobin. During exercise, the tissue PO;‘s are strongly correlated with MbCO
levels, suggesting that myocardial tissue hypoxia occurs during elevated levels of
MbCO. Also, during room air treatment the MbCO and HbCO levels fall slowly
compared to treatment with 100% O, indicating that 100% O, can be an effective
treatment for CO hypoxia in cardiac muscle. The hypothesis that CO load (%HbCO,
%MbCO) delivered to the heart impairs oxygen delivery further affecting the tissue
oxygen tension (PtO;). Thus during CO exposures and therapies, the temporal
changes of %MbCO in the heart differ from those of %HbCO depending on the type
of exposure. %MbCO levels can increase when %HbCO is maintained constant
(during exercise) or is decreasing (in case of hyperoxia treatment). This CO load is
related to both %HDCO in arterial blood perfusing the heart and %MbCO in cardiac
tissue. The correlation of %HbCO, %MbCO and tissue PO, should be clearly
understood for different types of CO exposure to consider them as clinical indicators
of potential injury. The decreasing tissue PO; in the cardiac muscle during short-high
CO exposure correlates with increasing %HbCO levels while the %MbCO of skeletal
muscle shows a correlation with %HbCO after a delay. The %MbCO levels of the
cardiac compartment show sharp increases unlike gradual increases as seen in skeletal
muscle. This is a very important observation as it emphasizes the fact that cardiac
muscle is at higher risk than resting skeletal muscle. During elevated %MbCO levels,
the PO, stores may diminish resulting in the tissue being further hypoxic.

The cardiac muscle is a rigorously working muscle with high metabolic demands
for oxygen. Myoglobin provides the storage site for O, in times of increased O,
demand. During CO exposure the storage site of O is lost as CO binds to myoglobin,
resulting in increased %MbCO levels and tissue oxygen deprivation, thus resulting in

severe hypoxia. A tissue PO; in the range of 0.5 to 1 Torr is assumed to be indicative

115



of injury. O; is needed for the heart to maintain its functions and lack of O, supply
can cause severe injury to the tissue. Thus the risk of injury would be greater when
someone is exercising and is exposed to CO. Also in a patient population with
congestive heart failure or coronary artery disease where myocardial perfusion is not
normal, exercise or exposure to CO may be fatal to the myocardial tissue.

Thus, determining the CO load on the cardiac tissue seems to be an important
predictor of injury. The model proves to be an effective tool for noninvasive
determination of the MbCO levels and oxygen tensions in a human heart during and

after CO exposure.
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1)

2)

3)

4)

CHAPTER 7
Future Work

Compare CO dose to myocardium with occurrence of abnormal features in ECG
(ElectroCardioGram). Myocardial hypoxia during CO exposures has been
reported to produce changes in ECG (S-T segment elevation, QT dispersion, T
wave changes). The extent to which the CO load (HbCO and MbCO Ilevels)
contributes to ECG alterations seen in CO poisoning victims is unknown.
Assesing the correlations between the occurrence of predicted peak MbCO and
HbCO levels with occurrence of abnormalities in ECG will aid in understanding
the CO poisoning related increased risk of cardiac injury.

Investigate effects of DcmCO (diffusion coefficient of CO for cardiac muscle) in
exercise. Determination of DcmCO is difficult. The time for blood-tissue
equilibrium of partial pressure of CO is dependent on DcmCO. The rate of
exchange of CO between tissues and blood is determined by the value of DcmCO,
thus determining the values for this parameter is important. If a large value of
DcmCO better explains data, it would imply that the equilibrium between tissue
and blood occurs at a faster rate, but if a smaller value for DcmCO would better
fit the data, then it would support the concept of slow equilibration between tissue
and blood. Understanding the effects of DcmCO during exercise will result in
further understanding the value for DcmCO.

Prediction of the extravascular burden for all subjects of references 69,154,155.
Applying the model to predict extravasuclar burden and assessing the produced
response for different types of CO exposure conditions and population will help in
improving the validation of the model. Also, if the same kind of response is
displayed by the subject population, then the result can be better trusted. By
fitting the model to a number of individuals, we can determine the mean as well
as the range of responses in the normal population.

Implement changes in DLCO (diffusion coefficient of CO in lungs) and SF (shunt
fraction) with exercise. Adding effects of changing DLCO and SF into the model
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5)

6)

7)

8)

as function of exercise intensity, age, gender etc. will further enhance the
accuracy of model predictions.

Predict CO burden on different regions (epicardium, endocardium) and chambers
of the heart. Knowing that the heart displays heterogeneity in blood flow,
capillary density, oxygen consumption etc., it would be interesting to predict
cardiac injury in various regions to determine the region at higher risk for injury
with CO exposure.

Conduct experiments in swine to measure myocardial O consumption,
myocardial blood flow, heart rate, blood lactate levels, weight of the heart,
multiple measurements of myocardial tissue PO, in various regions of the heart,
coronary venous PO,, myocardial arterial PO, during rest, graded levels of
exercise, hypoxic hypoxia and CO hypoxia in order to validate the model. There
is scarce data available in the literature for efficiently validating the model. Thus,
if one conducts an experiment and measures all the above parameters, then the
model can be better validated and also determination of parameters like
permeability surface area product etc., will be more reasonable.

Design effective treatment protocols. As seen from the results, the CO load would
differ with type (short-high, long-low or during exercise) of CO exposure, thus it
would not be advisable to treat all the CO - poisoned victims with the same
protocol. Using the model to simulate different treatment protocols that may
include mixed session of room air, 100% O; breathing or hyperbaric treatment to
improve tissue oxygenation will be a effective approach for efficient treatment
strategies. The model may use the CO victim’s parameters and simulate different
treatment protocols, which would be quick and easy to accomplish unlike
conducting clinical trials.

Estimate concentration and duration of CO exposure after the fact. Knowing the
concentration and time for which the victim was subjected to CO would better
determine the load of CO on organs at high risk like heart and brain during
exposure and treatment. If it is a short CO exposure at high concentrations, then
myocardial hypoxia would be produced due to impaired O, capacity of blood

unlike in long-low CO concentration CO exposures, where tissue hypoxia is
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9)

produced due to impaired O, transport accompanied with impaired O, storage as
hemoglobin as well as myoglobin are bound to CO. Thus, estimating
concentration and duration of CO exposure would be very crucial in designing an
effective treatment protocol.

Implement equations for CO; in to the model. During both exercise and hypoxic
hypoxia, the tissue PO, are dependent on the partial pressure of CO. Thus
implementing equation for CO; into the model will enhance the model to better
predict the tissue PO, and also conditions of hypoxic hypoxia can be better
predicted. Also the effects of pH can be implemented into the model. These
additions will result in enhanced model predictions as the oxygen dissociation
curve which is solved to determine tissue PO, and PCO would be dependent on

CO; and pH.

10) Modify the model to predict myocardial oxygen tension in patient population with

coronary artery diseases etc. The model can also be used to predict myocardial O,
tensions apart from using it for predicting MbCO and HbCO levels. Generally in
patients with coronary artery diseases, there is decreased blood flow to the heart
due to narrowed or blocked arteries. Thus the blood flow to the myocardium can
be reduced depending on the degree of blockage and myocardial oxygen tensions
can be predicted. Also, conditions of exercise can be simulated for this population
and the predicted myocardial tissue PO,‘s can be correlated with abnormalities in

ECG.

11) The model can also be modified for predicting outcomes of hyperbaric O,

treatment. It is often debated if hyperbaric (breathing 100% O; at 2-3 ATA)
treatment would have better treatment outcomes than hyperoxia treatment

(breathing 100% O3).

12) Implementing metabolic pathways into the model may be suggested to understand

the effects on model prediction with changes in metabolic cycles from aerobic to

anerobic during exercise, hypoxia or ischemia.

13) Introduce interactions of cytochrome ¢ oxidase with CO. Cytochrome c oxidase is

also known to bind irreversibly with CO. Understanding the contribution of this

protein will further enhance the knowledge database for CO toxicity.
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Appendix

Skeletal muscle mass distributed to trunk muscle, leg muscle and arm muscle:
Oxygen consumption for the skeletal muscle was found to be 250% of total body oxygen
consumption at rest when calculated in the simulated model. According to the following
books;

1. An introduction to cardiovascular physiology by J.Rodney Levick

2. Medical physiology by Philip Bard
Muscle metabolic rate (MRO,m) should be 20% of the total body oxygen consumption
(MRO,). It is known that metabolic rates of leg, arm and trunk muscles are different.
Thus, to incorporate different metabolic rates of muscle in various regions we distributed
the skeletal mass into three muscle volume compartments namely leg muscle volume,
arm muscle volume and trunk muscle volume. Distributions of skeletal mass were
calculated from the references 105-115. From the papers we had data for lean mass of
trunk, arms, legs, upper legs, upper arms and also total skeletal mass. Data were entered
only from normal men and women. The abbreviations used are as follows:
%asm: percent arm skeletal mass
%tsm: percent trunk skeletal mass
%Ism: percent leg skeletal mass

The final result obtained after taking average of data obtained :

MEN: WOMEN:
%Ism %asm %tsm %Ism %asm %tsm
46.63981 15.66698 37.76795 49.52738 13.96499 36.50763

Validation for the relationship obtained was done by selecting a random subject record
from the database and calculating the values using the obtained relationship and
comparing them with the measured values. The differences in the values can be explained
as follows:

1. Total lean soft tissue included muscle as well as soft tissue

2. Reference involved study on Japanese subjects in the age group of 19-24yrs. We

know that muscle mass is effected with age and also ethnicity.
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3. Also one can consider errors due to averaging, pooling data from various sources
which have different methods of measurement, varying number of subjects,

different age population, ethnicity etc.

gender Men  (total lean soft tissue=| Women (total lean soft tissue=
57.8kg) 40kg)

parameter Ism asm tsm Ism asm tsm

measured 20.9 8.7 28.2 14.8 4.9 20.3

calculated 26.9 9.05 21.82 19.8 5.58 14.6

Prediction equation for cardiac output:

Equation to predict the cardiac output in the initial model was based on gender and body
weight. Q '=(54.1+7.9G).BW +1400-200.G

But after modifying the model, we intended to simulate experiments that involved
exercise, CO exposure etc. It was clear that cardiac output Q changed with exercise,
postural changes and age. Thus to implement variation of cardiac output, we
implemented the following prediction equation,

Q’ =3.186+7.346* (MRO,)-0.535*(MRO,)*

Where, cardiac output Q° is calculated as a quadratic expression function of total body
metabolic rate (MRO,). Also this equation was very helpful in predicting the cardiac
output when experimental data did not provide the value. Literature survey established
the fact that cardiac output can best be predicted as a function of total body oxygen
consumption (references). Thus, to work on this idea, various journals were searched for
data from humans at rest and exercise for cardiac output and total body oxygen
consumption (MRO;).The inclusive criterion for the data was that it was considered from
healthy, non smoking untrained individual subjects. The method of measurement for
MRO, was either Fick’s method or the Douglas bag method. Cardiac output was
calculated from dye dilution method, Fick’s method etc. Though the measurement
techniques were different, the values obtained for cardiac output for specific oxygen body
consumption did not vary significantly. Data from references 137-144 were used to

implement the relationship. The reason for building a quadratic expression was to have a
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regression relation with strong statistical significance and also cardiac output is known to

reach a plateau as maximal body oxygen consumption is reached.
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Figure above shows the plot of the data (0) used to build the relationship and predicted
data (*). On the X-axis we have the myocardial O, consumption and on the Y-axis is the
cardiac output. Test data points (0,0) were considered from experiments whose data were
not included in building the relation to check with the values(*,”) obtained from the
predictor equation. Cardiac output (Q") and myocardial oxygen consumption (MRO,) are
specified and calculated in the unit of liter/min. When implemented into the model they

are converted into milliliter. MRO?2 is in STPD and is converted to BTPS in the model.

Order of relation Regression coefficient | Error of estimate
Q =b.MRO; +¢c 0.907 1.949
Q' =a.(MRO,)*+b.MRO2+ ¢ | 0.962 1.75

Prediction equations for Heart rate: In most of the experiments, heart rate was

mentioned. But in the case of data where information regarding heart rate was missing, it
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was estimated from the following equation: Heart Rate (HR) =42.819+68.884*(MRO2)-
8.26* (MRO,)*

The main purpose for developing a prediction equation for heart rate was to estimate the
myocardial blood flow and myocardial oxygen consumption for the cardiac compartment
discussed in Chapter 3. Heart rate is often considered to be a predictor of extent of
myocardial activity. Heart rate and blood pressure product would have been a better
predictor of myocardial parameters like myocardial blood flow and oxygen consumption
than just heart rate. But it was difficult to predict blood pressure from body oxygen
consumption or cardiac output due to unavailability of sufficient data. Thus, heart rate
was expressed as a function of MRO2. The following references (68-70), were
considered to obtain a relationship between heart rate (HR) and body oxygen

consumption (MRO2).
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Figure above shows the plot of the data (o) used to build the relationship and predicted
data (*). On the X-axis we have the myocardial O2 consumption and on the Y-axis is the

Heart rate. Test data points (0,0) were considered from experiments whose data was not
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used to estimate the above regression relation to check with the values(*,*) obtained from

the predictor equation.

Order of relation Regression coefficient | Error of estimate
HR =b.MRO; +¢ 0.592 23.678
HR = a.(MRO,)*+b.MRO2+ ¢ | 0.664 21.5

Predicting percent increases in cardiac output (Q°) and heart rate (HR) as functions
of percent carboxyhemoglobin (%A COHDb) levels in blood:
There is a reported increase in cardiac output and heart rate with increase in
carboxyhemoglobin levels in blood (68, 69). While simulating experiments involving
carbon monoxide (CO) exposures, increased cardiac output and heart rate due to
increased carboxyhemoglobin levels in the blood had to be taken into account. These
increases were implemented by introducing the following equations

%AQ" =0.572 x ( %ACOHDb)

%AHR =0.012 x (%ACOHDb) >+ 0.26 x (%ACOHb)
The cardiac output Q" and heart rate (HR) were increased by %AQ and %AHR,
respectively, calculated from the above equations in the discrete section of the program.
Data for cardiac output, heart rate and carboxyhemoglobin (up to 50%) were tabulated
from references 68,69.
Linear regression was performed on the data. Outliers of the data were removed.
Statistical significance of the relationships was tested and the best relation was chosen
and implemented into the model to incorporate the changing effects in cardiac output and
heart rate with increasing CO levels in the body.

Cardiac output and Carboxyhemoglobin levels in blood:

Order of relation Regression coefficient | Error estimate
%AQ" =a ( %ACOHD) + ¢ 0.377 15.155
%AQ"™=a(%ACOHb)*+b(%ACOHb)+c | 0.178 15.184
%AQ" =a ( %ACOHD) 0.713 12.483
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Figure above shows the plot of the data (o) used to build the relationship and predicted
data (*). On the X-axis we have the percent increase in carboxyhemoglobin levels of
blood, %ACOHDb and on the Y-axis is the percent increase in cardiac output, %AQ".
Cardiac output and Carboxyhemoglobin levels in blood:
Figure below shows the plot of the data (o) used to build the relationship and predicted
data (*). On the X-axis we have the percent increase in carboxyhemoglobin levels of

blood, %ACOHb and on the Y-axis is the percent increase in cardiac output, %AHR.
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Order of relation Regression coefficient | Error estimate
%AHR=a(%ACOHb)"+b(%ACOHb)+c | 0.422 9.962
%AHR=a(%ACOHb)” +c 0.422 9.961
%AHR=a(%ACOHb)"+b(%ACOHb) 0.612 9.958
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