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PREFACE

The Occupational Safety and Health Act of 1970 emphasizes the need 

for standards to protect the health of workers exposed to an ever 

increasing number of potential hazards at their workplace. To provide 

relevant data from which valid criteria and effective standards can be 

deduced, the National Institute for Occupational Safety and Health has 

projected a formal system of research, with priorities determined on the 

basis of specified indices.

It is intended to present successive reports as research and epidemi­

ologic studies are completed and sampling and analytical methods are 

developed. Criteria and standards will be reviewed periodically to 

ensure continuing protection of the worker.

I am pleased to acknowledge the contributions to this report on 

heat stress by members of my staff and the valuable constructive comments 

by the Review Consultants on Heat Stress to NIOSH. The NIOSH recommenda­

tions for standards are not necessarily a consensus of all the consultants 

and professional societies that reviewed this criteria document on heat 

stress. A list of the NIOSH Review Committee and Consultants appears on 

pages iii and iv. <— y

Marcus M. Key, M.D.
Director, National Institute
for Occupational Safety and Health



The Office of Research and Standards Development, 

National Institute for Occupational Safety and 

Health, had primary responsibility for development 

of the criteria and recommended standard for hot 

environments. Steven A. Coppola served as criteria 

manager and Dr. Austin Henschel had NIOSH program 

responsibility for development of the document.
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I. RECOMMENDATIONS FOR A STANDARD FOR WORK IN HOT ENVIRONMENTS

The National Institute for Occupational Safety and Health (NIOSH) 

recommends that employee exposure to heat in the workplace be controlled 

by requiring compliance with the work practice standard set forth in the 

following sections. Adherence to the precautionary procedures prescribed will 

prevent acute or chronic heat disorders and illnesses and heat induced 

unsafe acts, and will reduce the risk of harmful effects due to the 

interactions between excessive heat and toxic chemicals and physical 

agents. The standard is amenable to techniques that are valid, 

reproducible, and presently available. It will be reviewed and revised 

as necessary.

Section 1 - Definitions

(a) Acclimatization to heat means a series of physiological and 

psychological adjustments that occur in an individual during his first 

week of exposure to a hot environment so that thereafter the individual 

is capable of working in a hot environment without excessive strain.

(b) Unimpaired mental performance means the ability of an 

employee to cope with conditions where safety and health depend on 

constant alertness because he has to make critical decisions, fine 

discriminations, or fast and skillful actions.

(c) Intermittent heat exposure means exposure to hot environmental
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conditions which continues no longer than fifteen minutes without an 

interrupting interval spent either spontaneously or according to a 

prescribed schedule in a cooler environment.

(d) Continuous heat exposure means any exposure to hot environ­

mental conditions which is not an intermittent exposure.

(e) Hot environmental condition means any combination of air 

temperature, humidity, radiation and wind speed that exceeds a Wet Bulb 

Globe Temperature (WBGT) of 79°F.

Section 2 - Applicability

The provisions of this standard are applicable to all places of 

employment, indoors and outdoors, and to all employees except those 

who are required to wear impermeable protective clothing.

Section 3 - Work Practices

(a) For sedentary jobs where continuous unimpaired mental 

performance is required, no employee shall be exposed to conditions 

which exceed the limits set forth in Figure 1-1.

(b) No employee should be permitted to work without protective 

observation at high heat stress levels.

(c) When exposure of an employee is continuous for one hour or 

intermittent for a period of two hours and the time-weighted average 

WBGT exceeds 79°F for men or 76°F for women, then any one or combination 

of the following practices shall be initiated to insure that the 

employee's body care temperature does not exceed 100.4°F:
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FIGURE 1 - 1 .  UPPER LIMITS OF EXPOSURE FOR 
UNIMPAIRED MENTAL PERFORMANCE



(i) Acclimatization

(1) Unacclimatized employees shall be acclimatized over a 

period of 6 days. The acclimatization schedule shall begin with 50 

percent of the anticipated total work load and time exposure on the 

first day, followed by daily 10 percent increments building up 100 

percent total exposure on the sixth day.

(2) Regular acclimatized employees who return from nine 

or more consecutive calendar days of leave, shall undergo a four day 

acclimatization period. The acclimatization schedule shall begin with 

50 percent of the anticipated total exposure on the first day, followed 

by daily 20 percent increments building up to 100 percent total 

exposure on the fourth day.

(3) Regular acclimatized employees who return from four 

consecutive days of illness should have medical permission to return to 

the job, and should undergo a four day re-acclimatization period as 

defined in (2) above.

(ii) A work and rest regimen shall be implemented to reduce the 

peaks of physiological strain and to improve recovery during rest 

periods.

(iii) The total work load shall be evenly distributed over the 

entire work day when possible.

(iv) When possible hot jobs shall be scheduled for the coolest 

part of the work shift.
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(v) Regular breaks, consisting as a minimum of one every hour, 

shall be prescribed for employees to get water and replacement salt. 

The employer shall provide a minimum of 8 quarts of cool potable

0.1 percent salted drinking water or a minimum of 8 quarts of cool 

potable water and salt tablets per man per shift. The water supply 

shall be located as near as possible to the position where the 

employee is regularly engaged in work, but never further than 200 

feet* therefrom.

(vi) Appropriate protective clothing and equipment shall be 

provided and used.

(vii) Engineering controls to reduce the environmental heat load 

shall be utilized.

Section 4 - Environmental Measurements

(a) The WBGT index used as the parameter in determining the 

environmental conditions for implementation of work practices shall 

be calculated by the following equations:

For indoor exposure, or outdoor exposure with no solar load 

WBGT = 0.7 WB + 0.3 GT 

For outdoor sunlit exposure:

WBGT = 0.7 WB + 0.2 GT + 0.1 DB, 

where WB = the natural wet-bulb temperature obtained with 

a wetted sensor exposed to the natural air movement 

(unaspirated)

GT = globe thermometer temperature 

DB = dry-bulb temperature

*Except where a variance had been granted.



(b) The time-weighted average WBGT shall be determined by the 

equation:
Av. WBGT = (WBGT!) x  (tj) + (WBGT2) x (t2) + --- (WBGTn) x (tn)

(tx) + (t2) + ------------  (tn)

where WBGTi, WBGT2, WBGTn, are calculated values of 

WBGT for the various work and rest areas occupied during 

total time period; t̂ , t2, tn are the elapsed times in 

minutes spent in the corresponding areas which are 

determined by a time study.

(i) Where exposure to environmental conditions is continuous 

for several hours or the entire work day, the WBGT shall be calculated 

as an hourly time-weighted-average.

(ii) Where exposure is intermittent, the WBGT shall be 

calculated as a two-hour time-weighted average.

Section 5 - Medical

(a) All employees who are 45 years of age and older and who have 

not had previous occupational exposure to heat shall not be assigned 

to jobs where the environmental conditions equal or exceed 79°F WBGT 

for men and 76°F WBGT for women, until they are acclimatized.

(b) All personnel who are to be assigned to hot jobs for the first 

time shall be evaluated by a physician prior to assignment to assure that 

the individual can cope with the hot environment. In the examination 

special emphasis should be on the cardiovascular, renal, hepatic, 

endocrine, and respiratory system and the skin. The examination should
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also include a complete medical history of the worker with specific 

emphasis on previous heat-related disorders or illnesses.

(c) All employees exposed to hot environmental conditions should 

be given a periodic physical examination every 2 years for employees 

under age 45, and every year for employees 45 years of age or older, 

that should include all components of the preplacement examination.

(d) There shall be a person available during working hours, who 

shall have had first aid training in recognizing the signs and symptoms 

of any heat disorder or illness.

Section 6 - Apprisal of Employees of Hazards from Exposure to Excessive 

Heat
Each employee who may be exposed to environmental conditions that 

exceed the prescribed limits shall be given training in health and 

safety procedures through a program that shall include the following 

as a minimum:

(a) Information as to water intake for replacement purposes.

(b) Information as to salt replacement.

(c) Importance of weighing each day before and after the day's

work.

(d) Instruction on how to recognize the symptoms of heat disorders

and illnesses, including dehydration, exhaustion, heat syncope, heat

cramps, salt deficiency exhaustion, prickly heat, and heat stroke.
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(e) Information as to special caution that shall be exercised in 

situations where employees are exposed to toxic agents and/or other 

stressful physical agents which may be present in addition to and 

simultaneously with heat.

(f) Information concerning heat acclimatization. The information 

shall be kept on file and readily accessible to the worker at all 

places of employment where he may be exposed to excessive heat.

Section 7 - Warning Sign

The following warning sign shall be appropriately located at one 

or more places to be noticed by any one entering an area where 

environmental conditions are 86°F WBGT or above.

W A R N I N G  
HEAT STRESS AREA

Section 8 - Monitoring

(a) A WBGT profile shall be established for each work place for 

winter and summer seasons to serve as a guide for deciding when work 

practices shall be initiated to conform with the requirements of the 

standard. The first profile shall be established within 3 months

of the effective date of this standard.

(b) After the WBGT profiles have been established, monitoring 

shall be conducted once during July and August of each year.

Section 9 - Recordkeeping

(a) The following records shall be maintained:
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(i) Medical records for each employee.

(ii) Records of acclimatization as required by Section 3(c)(i).

(iii) Records of the WBGT for each work area as specified in 

Section 8.

(b) Records required by provisions (i) and (ii) above shall be 

maintained for a period of the employee's employment and for one year 

thereafter.

(c) Records of the WBGT as specified in (iii) above shall be 

maintained for a period determined by the Secretary of Labor with 

consultation with the Secretary of Health, Education, and Welfare.
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II. INTRODUCTION

This report presents the criteria and the standard based thereon 

which were prepared to meet the need for preventing occupational 

diseases arising from exposure to industrial heat. The necessary 

relevant data are made available for use by the Secretary, Department 

of Health, Education, and Welfare in accordance with the provision 

of the Occupational Safety and Health Act of 1970 requiring the 

development of criteria by "The Secretary, Department of Health, 

Education, and Welfare... on the basis of such research, demonstrations, 

and experiments and any other information available to him... to 

effectuate the purposes of this Act."...,"... by providing medical 

criteria which will assure insofar as practicable that no employee 

will suffer diminished health, functional capacity, or life 

expectancy as a result of his work experience"...

The National Institute for Occupational Safety and Health 

(NIOSH), after a review of data and consultations with others, 

formalized a system for the development of criteria upon which 

standards can be established to protect the health of workers from 

exposure to hazardous chemical and physical agents. It should be 

pointed out that any recommended criteria for a standard should 

enable management and labor to develop better engineering controls 

and more healthful work practices and should not be used as a final goal.
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These criteria for a standard for industrial heat are one of the 

first of the criteria developed by NIOSH. The criteria and standard speak 

only to work in a hot environment as applicable under the Occupational 

Safety and Health Act of 1970. These criteria were developed to assure 

that the standard based thereon would: (a) protect against heat induced

illnesses; (b) be amenable to techniques that are valid, reproducible, and 

available to industry and official agencies; and (c) be attainable with 

existing technology. This recommended work practices standard is designed 

to prevent primary heat disorders, heat induced unsafe acts, and harmful 

effects which may arise from the interactions between heat and toxic 

chemicals and physical agents.

This recommended standard is based upon the best currently available 

information. Research is continuing both in NIOSH and in industry to 

provide necessary data for a more detailed standard. The recommended 

standard is essentially a work practices standard. The environmental 

measurements are not intended as an upper limit for occupational 

exposure, but only as a level at which work practices must be 

implemented. Such research will serve to validate other methods for 

incorporation into this recommended standard. Additional criteria 

are hoped to be recommended to augment this recommendation in the 

future.
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III. BIOLOGIC EFFECT OF EXPOSURE

Extent of Exposure
Several field studies have been performed to assess the extent of heat 

stress to which workers in different occupations in the United States are 

exposed and to determine the. extent of physiological strain which develops 

as a consequence of this exposure.
12 3 4The field studies performed by the U.S. Public Health Service ' * ' 

investigated conditions in ferrous and non-ferrous metal factories, in 

glass and chemical industries, as well as in surface coal mining, dam building 

and other outdoor operations involving mainly heavy equipment operation.

Minard et al.^ recently reported their observations on steel workers.

The pertinent results of these field studies are summarized below.

The workers in hot jobs are a highly select population. Workers who 

feel that they cannot cope with the prevailing heat stress change their 

job for a less demanding one. As a result of this natural selection 

process, the majority of the workers in hot jobs have high levels of 

physical performance and capacity and are highly adaptable to work in heat.

Heat disorders are more likely to occur at times when the workers are 

unacclimatized as during the first hot spell in the summer or when physical 

fitness is diminished as on Mondays after a leisurely weekend or the first day 

after a vacation, or return to work after an illness.

Because jobs in hot environments may be better paid than other jobs, 

it often happens that workers try to stay with the hot job even after their 

health or fitness becomes inadequate for the job. Since there is no 

obligatory standard for physical fitness for these jobs and since periodic
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medical examinations have been haphazardly done in many industries, if done 

at all, these workers stay on the job and run a high health risk.

Oral temperatures in excess of 99.6°F (corresponding to a deep body 

temperature of 100.4°F) or first-minute recovery heart rates in excess of 

110 have been very seldom observed. They occurred mainly in jobs where the 

environmental conditions exceeded the upper limit prescriptive zone (ULPZ), 

(see part V) particularly if the workers worked overtime or worked two 

shifts in sequence.

There are many work practices in industry which are unofficial and 

are aimed at ameliorating the workers heat strain on excessively hot days. 

Such practices are:

1. Only the unavoidable operations are performed. Other less 

important jobs are postponed.

2. Workers involved in auxiliary jobs are reassigned to help out 

those who work in the hot areas.

3. The younger and more fit take over some of the work from the 

older and less fit.

These practices, if not recognized, may give the wrong impression 

that the old and less fit worker tolerates the work in heat as well as 

the younger and more fit.

Most workers in hot jobs drink less water than they lose by sweating. 

According to many laboratory and field studies, this affects physical 

fitness adversely, particularly if the water loss is more than 1.5% of 

total body weight.6 Such dehydration could be prevented by:

1. Making drinking water of good quality easily accessible to the 

worker.
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2. Providing a 0.1 percent salt solution as drinking water, available 

from drinking fountains which cool the water.

3. Providing salt tablets for salt supplementation to the 
workers.

4. Advising the worker about the significance of drinking water 

often in small installments and using much salt on food when he is exposed 

to hot working conditions.

In many jobs the workers' heat exposure could be substantially 

reduced by relatively simple measures, such as wearing certain protective 

clothing, turning on all available fans and opening all windows, distribu­

ting the job more evenly during the workday and breaking up the work 

cycles into shorter work-rest cycles. Unfortunately, either because of 

ignorance or carelessness, the workers often expose themselves to 

greater heat stress than would be necessary.

Often with little expense the climatic conditions could be ameliorated 
or the work load diminished.

Early Historical Reports

Nearly 70 years ago concern for the health of the Cornish Tin Miners 

lead to one of the first studies of the effects of heat on the health of 

workers and stimulated the search for a method of expressing in simple 

terms the impact of a hot working environment. Except for the studies 

of Bedford,^ on the effects of atmospheric conditions on the indus­

trial worker, little progress was made until shortly before and during 

World War II. In the late 1930's the interest was directed toward 

the industrial worker and the health and safety consequences of working 

in hot industries. The classical research of Bazett,® Bedford, 7 

Dill}9 Drinker,10 Talbott,!! Yagloul^ and several others

identified the acute and chronic heat disorders and their dependence
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on the intensity of the heat stress. Recommendations for engineering 

controls and medical prevention and treatment were made which are still 

pertinent to the solution of today’s industrial heat stress problems.

Military operations in the tropics and the African Campaign of World 

War XI stimulated a major research effort on the physiological con­

sequences of exposure to high temperatures. Much of the vast quantity 

of basic information on acclimatization, water and salt requirements, 

heat disorders and permissible exposure levels developed during that 

period has been presented by Adolph et al. 13 Newburgh,^ and the 

Medical Research Council of England.15 The Thermal Standards in

Industry,12 published in 1947, recommended limits and procedures 

which are considered valid and applicable in today's industries.

During the past 25 years much effort has centered around the problem 

of expressing in relatively simple terms the total impact of the hot

working environment upon the worker. Several attempts have been made to
<

formulate a predictive scheme which would translate the heat load into 

biologically meaningful values. These predictive schemes can be roughly 

grouped into: (a) those that sought a device which would respond to the

major environmental factors in a manner similar to man's, (b) those based 

upon measured human responses which could be used to evaluate combinations 

of environmental conditions, and (c) those based on calculations to determine 

whether it is possible to maintain thermal balance under any combinations 

of the climatic factors and work intensity and if so, how much physiological 

strain is involved. Each approach has its logic as well as its failings.

A detailed discussion of the more important of the indices for estimating 

the biologic impact of a hot environment is presented later in the text.
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Epidemiological Studies

Neither prospective nor retrospective epidemiological studies have 

been made in which the health experiences of workers have been correlated 

with the length and intensity of heat exposure at the work site during the 

working life of the individuals. Health data for retrospective studies 

could probably be found in the health and medical records of some 

insurance companies and larger industries. Particularly lacking in most 

of the morbidity and mortality reports, however, are measurements of the 

level of heat exposure and the time spent on the hot jobs.

Health experience statistics for some hot industries have been 

reported over the past 50 years.1^»1^»1®>19,20,21,22 in a study of 

23,000 coal miners,!® lost time due to sickness was 63 percent higher in 

miners working at temperatures above 80°F. than in those working at 

temperatures of 70°F. or less. Death rate increase of about 35 percent 

was reported in 193720fOr miners working hotter mines. In another study, 

Britten and Thompson,21 found organic heart defects were more frequent 

in foundry workers. Enlarged hearts and arteriosclerosis were found more 

often among steel and glass workers. The frequency of industrial accidents 

increases in higher temperatures but the increase is mostly in minor 

accidents. It is not possible to generalize these reports of heat experience 

in chronic heat exposure in industry several decades ago to present-day 

industry. However, personal communications and experiences of medical 

and scientific personnel suggest that chronic exposure in hot working 

environments can have serious health and safety consequences.
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The acute effects of heat on health and safety have been documented 

by literally hundreds of carefully controlled laboratory and field studies. 

The incidence of heat illness in young men in industry and military 

service who were not acclimatized to heat has been reported in several 

studies to be between 1.5 and 3.5 per 1000 at risk in the United States, 

under conditions of environmental heat and work loads which approximate 

the 1971 ACGIH TLV for Heat Stress. Age, sex, individual tolerance 

and many other factors will influence the incidence rate.

Effects of Heat

Environmental heat (or resistance to removal of metabolic heat) 

leads to well-documented reactions in human beings: increased cardio­

vascular and respiratory activity, increased body heat content, sweating, 

etc. If the heat load is excessive or prolonged, then frank heat dis­

orders result. In this section subpathological effects will be considered 

which may modify performance, behavior or responses to other simultaneously 

imposed stresses.

Physical performance is affected by heat. Heat stress involves 

cardiovascular strain, e. g., demands are made for blood flow to the 

periphery for thermo-regulatory purposes. Cardiac output, therefore, 

is not totally available to active muscles. The competition increases 

with increasing heat load when the combined demands exceed the maximum

cardiac output, the upper limits of tolerance are reached, and work
23output must of necessity be reduced. These conditions may obtain

under emergency conditions or in highly motivated individuals. Such
24motivation can lead to overstrains. That real limits of endurance
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exist was demonstrated quantitatively by Wyndham et al.^5 Productivity 

of mining recruits varied with quality of their supervision up to saturated 

environments of 28.9°C (93°F). Further increase to a saturated environment 

of 35.5°C (95.8°F) resulted in almost total cessation of productive work.^6 

Other examples of heat-limited work are given in Leithead and Lind.-^ Because 

of these experiences and those of Minard et a l . , 2 7  upper limits for unrestricted 

work have been set at environments near the 29.5°C (85°F) effective temperature 

(ET) level. The Wet Bulb Globe Temperature Index was derived from the ET 

concept (see Section V); the recent tentative TLV for heat^® specifies 

30°C WBGT as the upper limit for continuous moderate work (approximately 200 

Kcal/hr for acclimatized men).

Recently, the tentative TLV has been challenged as being too 

c o n s e r v a t i v e . 29 Experience shows that often men have worked effectively 

for years in environments and at metabolic rates exceeding those suggested 

by the TLV with no apparent detrimental effects. Indivdual differences in 

heat tolerance and selection may in part account for this, errors in 

establishing time weighted average values for the metabolic costs of 

physical tasks and the environmental heat load may also prove to be 

partially responsible,30,31especially in the heavier jobs.

It should be noted that decrement in performance was not especially 

noted in the above cited references up to the 30°C ET (or WBGT) levels 

for tasks involving large muscle groups in gross efforts, e.g., marching, 

shoveling, heavy work in the hot industries. Lower levels of heat may 

adversely affect the efficiency with which the heavy tasks are p e r f o r m e d ^  

or may interfere with accomplishment of more skilled manipulative or 

psychological t a s k s . 23 Some of the factors that influence performance 
in the heat have recently been r e v i e w e d . 33
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Psychological performance is also affected by heat. Pepler has

reviewed the effects of heat on skilled tasks (tracking, telegraphy) or
34 35mental tasks (learning). ’ Qualitatively, there is no doubt that

heat interferes with these types of activities. It is interesting to

note that sensorimotor coordination deteriorates more rapidly in cold
35than hot environments.

It is common experience that heat exposures accelerate the onset of 

fatigue; prolonged hot conditions (e.g., summer heat waves) may further
35contribute to general fatigue by robbing the individual of sound sleep.

One effect, whether from heat directly or as an indirect effect of
36fatigue is that accuracy of response deteriorates. Studies by 

37Duggar of a delicate assembly task indicated that though production

of good pieces was maintained (subjects on incentive pay), the quantity

of scrap increased somewhat. Thus, the workers were actually having

to work harder in the heat to maintain production, a further indication

of lowered efficiency.

More recently, Pepler has studied the effects of air conditioned
38versus non-air conditioned classrooms on the process of learning. There

seems to emerge statistically that even relatively slight increases in

environmental temperatures affect learning adversely.

Several psychomotor tasks were examined in comfortable and warm
39environments (up to 80 F, 60 percent RH) by Griffiths and Boyce.

Examination of the results revealed an optimum performance at a temperature
40similar to the optimum comfort temperature. As Hatch points out, the 

establishment of criteria for upper levels of heat exposure which has as its
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primary goal to maintain physiological well-being and health should be 

determined by medical personnel. Below this level, the major considerations 

are in the province of management: decisions relative to productivity,

employee relations and the like, except perhaps as these less-than-injurious 

exposures may influence accidents.

Wherever there exists molten metal, hot surfaces, steam, etc., there 

exists the potential hazards of accidental contact of the worker with 

the hot object. Burns of varying severity result. Often the accident 

will be caused by a secondary agent, such as water escaping into molten 

metal, malfunction of pressure relief valves on water heaters and the 

like. Aside from the direct burn hazard of heat and hot objects, 

environmental heat appears to increase the frequency of other kinds of 

accidents in general.

Mechanically, the heat may tend to promote accidents due to slippery-

ness of sweaty palms or interfering with vision through fogging of safety

glasses. Beyond these obvious effects, accidents have been documented
18to increase in hot jobs (e.g., Vernon et al. ). A striking demon­

stration of environmental effect on accident rates was compiled from 

records of a steel mill over a four-year period (Figure 1). ̂  There is 

a definite parallelism between weather and accident frequency. The 

accident peaks, however, exhibit a downward trend over the years, 

most likely reflecting the efforts of intensive safety programs. Belding 

et al. have suggested the weather effect may be due to reduced general 

tonus of bodily activities and alertness related to high environmental 

temperatures. Again, increased bodily temperature and discomfort
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increase irritation, anger, and other emotional states which may induce
42workers to commit rash acts or divert attention from hazardous tasks.

In extreme heat, emotions may spill over into fights^ or other manifesta-
43tions of emotional crises, e.g.

At lesser stresses, more subtle disturbances in emotional state,

e.g., depression, may be evident. Extensive folklore has been generated

around the deleterious effects of the "Foehn" of Europe, the "Sharav"
44of Israel, and other warm "ill winds". While the correlation between

these climatic changes and illness seems real, the aetiology remains 
45controversial. Intuitively, disturbed emotional states should reduce

46alertness on the job, setting the stage for accidents.

Effects of stresses in the occupational environment have been the

subject of many quantitative studies. From these, threshold limit values

(TLV) were derived, values which have served well as guides to reduce

occupational exposures.

In general, the TLV's were established from experiments with single

stress exposures. Often, however, more than one stress will occur and,

in fact, it will be the rare case where only one stress obtains. There

has been an increasing awareness of the alteration in physiological response

to a stress where other stresses are present. Because of the

ubiquitous nature of heat stress, it has received attention as a

potentiator or mediator of response to other physical and toxic agents; and

it certainly influences the course of diseases.

In combination, heat (85°F, ET) and carbon monoxide (100 ppm)

have been shown to have a greater deleterious effect than either stress 
47alone. It is difficult to quantitate the effect; manifestations included

111-10



inability to complete the four-hour exposure, irritability, and, occasionally,

syncope. The effects were more pronounced in women than in men. The

subjects reported persistent headaches, anorexia, irritability, depression,

and general malaise. These postexposure symptoms were markedly more severe

after exposure to heat and CO than after exposure to either alone. It is

interesting to note that these were physiological disturbances and that the more

severe occurred in the hours following the exposures. No decrement in

performance on a battery of psychomotor tests (e.g., tracking tasks) was

seen from either of the stresses alone or in combination during the

exposure. It would be interesting to test the subjects on the psychomotor

tasks at intervals after the exposures.
48According to Baetjer, heat also influences the effect of drugs on

experimental animals. Certain substances, e.g., coal tar, cresols,

create exceptional photosensitivity of the skin. Even a short exposure in the
49late afternoon when the sun is low is likely to produce severe sunburn.

These problems are primarily associated with ultraviolet radiation and so 

are limited to outdoor workers.

These data indicate the complexity of the interactions of multiple 

stresses. They raise fundamental questions as to the validity of those 

TLV’s based on single stress experiments for toxic substances in the 

presence of heat.

Renshaw "^investigated the effects of noise (41, 80, 90, and 100 dBA) 

and heat (72, 78, 84, and 90°F ET) on performance on a 5-Choice Serial 

Reaction Task. The effect of heat on "gaps" was statistically significant. 

Subjects committed 18 percent more gaps at 90°ET than at 72°ET at the 

same noise level.
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It has been a common observation that mortality increases during
51prolonged hot spells, e.g., St. Louis, 1966. Similarly, the frequency of

illinesses seems to be dependent on the heat load. There are numerous

instances cited in the literature where increases in dispensary visits,

etc., accompany hot weather, even as do accidents (as noted above).
34Pepler reviewed a number of experiences reported by the several military 

services of Great Britain. The illnesses, aside from frank heat illnesses, 

ran the gamut of nonspecific complaints, general malaise, and even psycho­

neurotic illnesses.
52Bannister observed that injection of a bacterial pyrogen caused a 

sudden cessation of sweating lasting upwards of an hour. This suggests 

that concurrent infections may predispose an individual to greater 

sensitivity to heat stress.
48Heat alters the number of free alveolar macrophages in rats.

While somewhat afield from the problem under review here, the implications 

are that there are many subtle little understood physiological adjustments 

to heat stress whose role in rendering a worker on hot jobs more or 

less resistant to bacterial invasion is unknown.

Correlation of Exposure and Effects

The physiological and medical consequences of exposure to heat are 

not directly proportional to the intensity throughout the entire range 

of heat stress. Over a rather large range of temperatures, physiological 

functions are independent of the temperature. In the environment driven 

zone (EDZ See Part V) the physiological strain increases exponentially so 

that at high levels of heat stress a small incremental increase in stress
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results in a large increase in strain. The safety factor becomes progressively 

smaller as the total heat-work stress is increased. Consequently, as the 

heat stress becomes higher, more care and precaution must be exercised to 

insure the health and safety of the worker.

Many factors, which can exist in limitless combinations, interact

to determine relationships between exposure and effects. The more

important of these factors include the Environmental Factors, the

Human Factors, and the Task Factors (Table I). The impact of

some of these factors on performance and heat tolerance has recently been 
33reviewed. It is emphasized that for any specific environment-worker-job 

situation the total stress and health and safety consequences can be brought

to acceptable and desirable levels by adequate control of one or more of the

factors.

One of the most dramatic and successful physiological mechanisms 

possessed by man is his ability to increase his tolerance to work in heat.

The physiological and psychological processes involved in acclimatization to 

heat have been described in many technical papers and several comprehensive 
reviews»^ »̂ »̂54 Acclimatization to heat is a series of physiological 

adjustments that occur when one who is accustomed to working in a temperate 

environment is suddenly placed in a hot environment. These physiological 

adjustments which occur over a period of one to two weeks reduce the strain 

experienced on the initial exposure to heat. The physiological changes 

during acclimatization which are most easily observed are the responses of 

the body temperature and pulse rate, both of which increase during 

the first day of heat exposure and then progressively decrease with each
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succeeding day of exposure. The sequence is shown in Figure 2. On

first day of exposure to heat, ability to perform muscular work is

impaired, body temperature and pulse rates are increased and lassitude

and discomfort is experienced. When the conditions are extremely severe,

acute heat disorders may occur. After the major part of acclimatization

has taken place, work in the heat can be performed with little strain

and a major reduction in distress. The exposure-effects relationships,

therefore, are strongly dependent on the state of acclimatization of the individual.

Medical Considerations

The three major clinical disorders resulting from excessive heat

stress on susceptible workers are: (1) heat stroke, from failure of the

thermoregulatory center; (2) heat exhaustion, from depletion of body water

and/or salt; (3) heat cramps, from salt loss and dilution of tissue fluid.

Other clinical entities from heat effects are heat syncope, heat

rash, anhidrotic heat exhaustion, heat fatigue-transient, and heat 
16fatigue-chronic. (See also Figure 3.)

1. Heat Stroke

a. Diagnostic criteria: Heat stroke (the term sunstroke is

obsolete) is the most serious of the heat disorders, constituting a medical 

emergency of major magnitude.

The three cardinal signs of heat stroke are: (a) hot dry skin: red,
Omottled, or cyanotic; (b) hyperthermia: a body temperature usually of 106 F 

or higher and rising; (c) brain disorders: mental confusion, delirium, loss 

of consciousness, convulsions, and coma.
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b. Treatment: Heat stroke is uniformly fatal unless treated

promptly and adequately. Treatment consists in rapid cooling of the body 

preferably by immersion in chilled water accompanied by vigorous massage 

of the skin or alternatively by wrapping the unclothed body of the patient 

in wet sheets and fanning vigourously with cool dry air. First aid treat­

ment of the victim should always be initiated immediately and not delayed 

while waiting for transportation to a medical facility. First aid consists 

in moving the patient to a cool area and thoroughly soaking the clothing 

with cold water and fanning to increase convective cooling. Definitive 

medical treatment required rapid cooling until body temperature is reduced 

to 100-102°F, then monitoring body temperature to avoid overcooling and to 

detect recurrent rise, and treating shock if present. Major complications 

are renal failure, hepatic failure, hemorragic disorders, and myocardial 

impairment. These complications as well as the permanent brain injury 

which is a frequent sequela are in part consequences of prolonged and 

uncontrolled hyperthermia and in part the result of tissue hypoxia when 

shock supervenes. These complications can be avoided by prompt and 

effective emergency treatment.

In four groupings of cases surviving long enough to be admitted to 

a hospital for treatment and reported in the medical literature, the 

mortality rate increased in direct ratio with the increased temperature 

on admission (Minard and Copman, 1963):"^

111-15



Admission Temperature Mortality Rate
(°F)____________________No. of Cases_______________ (%)

106 188 14.9

106-108 122 20.5

108-110 155 34.2

110 or over 118 61.0

Because thermal injury to vital tissues, particularly the brain, is 

a rate limited process depending both on degree of temperature elevation and 

time, injury can occur even at relatively low body temperature; e.g., 105°F 

if hyperthermia is prolonged. By the same token, survival with complete 

recovery is possible at extreme hyperthermia; e. g., 108 or above, if 

cooling is prompt and effective.

Malamud, Haymaker, and Custer who described a wide range of pre- 

mortem brain disorders in 125 fatal cases of heat stroke occurring in 

military trainees in World War II, state that "damage to the central 

nervous system was manifest from the onset and persisted to the end. In 

cases of longer duration, dementia, asphasia, or hemiplegia indicated that 

the effect on the central nervous system was probably lasting and irreversible. 

A direct relationship between the nervous manifestations and the degree and 

duration of hyperthermia was always evident."

Early recognition and treatment of heat stroke can prevent both death 

and permanent brain damage. Between 1956 and 1960, twenty-one cases of 

heat stroke in the Marine Corps recruits were admitted to the dispensary 

at the Marine Corps Recruit Depot, Paris Island, South Carolina, with
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rectal temperatures ranging from 105.5 to 109.6°F (mean 107.1°F, S. D.1.08°F). 

All recovered. Eighteen completed both recruit and advanced training. Three 

were medically discharged. Of these, one who had presented a long history 

of heat intolerance dating from childhood recovered with no sequelae. In 

the other two, the clinical course of recovery had been complicated by acute 

renal failure. Although renal function in both eventually returned to 

normal, it was the opinion of the physical evaluation board that the risk 

of recurrent renal disease would be less incivilian life.

c. Underlying mechanisms: Hyperthermia in heat stroke results from

suppression of sweating, which may be gradual or abrupt in onset. Failure 

of the principal mechanism for dissipation of body heat under heat stress,

i.e., cooling by sweat evaporation, leads to storage of body heat, the rise 

in body temperature being more rapid in individuals whose heat production 

is elevated during work. The upward spiral of body temperature is accelerated 

by the Q^q effect, the rate of metabolic heat produced in tissue cells being 

increased between 2 and 3X for each 10°C rise in temperature. Why the 

central thermoregulatory drive for sweating fails is not known; a reduced 

response, or "fatigue" of the sweat glands, to the central drive may be a 

contributing factor.

Heat hyperpyrexia is a term sometimes applied to cases 

of thermoregulatory disorder in which body temperature is elevated to 105
Qor 106 F, but sweating is still evident and disorders of consciousness are 

mild or absent. These cases of hyperthermia may represent early stages of 

heat stroke or a transitional stage between milder heat disorders, such as 

heat exhaustion, and heat stroke. Treatment by active cooling is indicated 

unless rest in a cool area leads to immediate and positive signs of recovery.
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d. Predisposing factors: In industrial workers and military

trainees, the primary underlying factor in heat stroke is lack of accli­

matization often associated with poor physical fitness and/or obesity. 

Precipitating factors are prolonged exertion under heat stress with 

inadequate time allowances for rest and recovery.^ Recent alcoholic 

overindulgence in otherwise seasoned workers has been identified as a 
probable factor in some c a s e s . I n  elderly individuals living in poorly 
ventilated housing, the risk of heat stroke during prolonged heat waves

in northern cities is greates in those with a history of chronic cardio-
51vascular or cardiorespiratory disease. In such cases impaired circulatory 

capacity to transport heat from body core to the skin is the underlying 

cause of hyperthermia and thermoregulatory failure rather than elevated 

metabolic heat production during work.

2. Heat Exhaustion

a. Diagnostic criteria: The diagnostic term "heat exhaustion"

encompasses disorders which may vary in etiology, but manifest similar 

clinical signs and symptoms. These are chiefly weakness or extreme 

fatigue, giddiness, nausea, and headache in persons working in the heat, 

or often while resting between bouts of work. The skin is clammy and moist, 

indicating that sweating remains active. The complexion may be pale, 

muddy, or flushed. Oral temperature may be normal or low, but rectal 

temperature is usually elevated (99.5 to 101°F). If sitting, the patient 

may faint on standing with a weak thready pulse and low blood pressure.

The underlying disorder in heat exhaustion is depletion of body water due 

either to restricted water intake, or to deficient salt intake, or more 

often to both. In the water restriction type, urine is highly concentrated
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and small in volume; thirst is a prominent symptom. In the salt deficiency 

type, circulatory insufficiency is more extreme, urine is more dilute, 

larger in volume, but chlorides are absent «  1 gm/liter). Thirst is less 

evident. Blood electrolytes may be slightly elevated with hemoconcentration 

in the water restriction type and somewhat below normal in the salt defi­

ciency type. Laboratory facilities are often not available to differentiate 

the two types. Results of blood analysis, however, are not essential in 

making a diagnosis of heat exhaustion as this can be determined on the 

basis of the clinical signs and symptoms noted above.

b. Treatment: Treatment is based on correcting dehydration

which is the underlying disorder common to both types of heat exhaustion. 

Many mild cases recover spontaneously following rest in a cool area and 

taking water. The severe case of heat exhaustion should be removed to a 

treatment facility. Dehydration is corrected by administering salted fluids 

by mouth. If the patient is unconscious or vomiting, normal saline is 

infused intravenously. He should be kept at rest until the urine volume 

and salt content indicate that salt and water balances have been restored. 

Recovery is complete and usually rapid except in cases of extreme salt 

depletion in which several days of treatment may be required.

c. Underlying mechanism: Physiological control mechanisms

involving the hypothalamus, the posterior pituitary gland, the adrenal 

cortex and volume receptors in the vascular system and the kidney regulate 

the osmolarity and volume of ex-racellular fluid. With restricted water 

intake combined with losses of water and salt in the hypotonic sweat, 

extracellular fluid tends to become hypertonic. Excess salt is excreted 

via the kidney with maximum reabsorption of water through mediation of ADH.
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Osmolarity is maintained but at the cost of reduced volume of extra 

and intracellular fluid. In salt deficiency with continued intake of 

water, extracellular fluids tend to be diluted. Osmolarity is maintained 

by reduced renal reabsorption of water and retention of salt through 

release of aldosterone, acting both on the kidney and on the sweat glands. 

Intracellular fluid volume may increase. These compensatory mechanisms 

lead to dehydration from negative water balance. The effect is to reduce 

circulating blood volume.

In both types of dehydration, there is a contraction of 

circulating blood volume, more marked in the salt deficiency type. Thus, 

under heat stress, circulatory insufficiency results from the competing 

demands for blood flow to the skin to dissipate heat and for blood flow 

to the active muscles, with consequent weakness, hypotension, and syncopal 

symptoms.

d. Predisposing factors: In unacclimatized men working in

the heat, salt concentrations in sweat tend to be high. Dietary intake of 

salt, particularly if heat strain results in impaired appetite, may be 

inadequate to balance losses in the sweat. Drinking salted water (0.1 percent) 

is the best method for supplementing salt intake. Also, lack of accli­

matization in men losing up to several liters of sweat per day often leads 

to voluntary dehydration, a term indicating that the thirst mechanism fails 

to provide an adequate stimulus to drink water in sufficient quantities to 

balance the losses in sweat. Workers should be instructed to drink more 

than necessary to satisfy thirst. Failure of supervisors to provide ready 

access to water, or to provide breaks at frequent intervals, may lead to
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degrees of dehydration which cannot readily be compensated because the 

volume of water necessary to be ingested causes gastric distention and 

distress.

3. Heat Cramps

a. Diagnostic criteria: Heat cramps is a heat disorder 

characterized by painful spasms in skeletal muscles of workers who sweat 

profusely in the heat and drink large volumes of water without replacing 

salt losses. The muscles involved may be in the arms, legs, or abdomen, 

those used in performing the job being chiefly affected. Onset may be during 

or after work hours.

b. Treatment: Salted liquids may be given by mouth or

hypertonic saline infused intravenously for more immediate relief.

c. Underlying mechanisms: Water intake with continuing salt

loss in sweat leads to dilution of the extracellular fluid. Osmotic 

transfer of water into active muscle fibers causes spasm. Fatigued muscles 

are the most vulnerable.

d. Predisposing factors: Water intoxication of this type

may be observed in seasoned workers as well as in unacclimatized new 

employees. Prevention is by instructing workers to use more salt at meal 

times, or by providing 0.1 percent salt in drinking water during work.

Salt tablets as a supplement are less desirable because of individual 

intolerance to solid salt and possible excessive salt loading. Salt 

should never be taken during hot work unless ample water is also available.

A. Other Clinical Entities

a. Heat syncope: A minor disorder characterized by syncope

in unacclimatized workers standing erect and immobile in the heat. Pooling
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of blood in dilated vessels of skin and lower part of the body results

in inadequate venous return to the heart and cerebral ischemia. Recovery

of the patient is prompt when recumbent. Intermittent activity to assist 

venous return prevents the occurrrence.

b. Heat rash: Heat rash, commonly known as prickley heat,

results from imbibition of water by keratin and plugging of the orifices 

of sweat ducts, which leads to inflammation of the glands, and is observed

as tiny red raised vesicles in the affected area. It results from

unrelieved exposure to humid heat with the skin being continuously wet with 

unevaporated sweat. It is important because if extensive, or complicated 

by infection, discomfort from heat rash may not only interfere with 

restful sleep and impair efficient performance, but can result in 

temporary total disability. Heat rash is prevented by providing cooled 

recovery or sleeping quarters to allow the skin to dry between heat 

exposures.

c. Anhidrotic heat exhaustion: Rarely seen in peacetime, this 

disorder was observed in military personnel stationed in hot climates in 

World War II and was characterized by areas of nonsweating skin on the 

trunk, and limbs which showed a papilliform eruption, like gooseflesh, on 

heat exposure. This was termed miliaria profunda and represented obstruc­

tion of sweat gland ducts deep in the skin. Hyperhidrosis of the face was 

a characteristic finding. If the nonsweating areas were extensive, 

impaired evaporative cooling led to heat intolerance with symptoms of heat 

exhaustion and moderate hyperthermia. There was usually a history of 

extensive heat rash, with occasional further skin trauma by sunburn.
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Associated with the skin disorder and heat intolerance was polyuria, a high 

cloride concentration in sweat, and a lowered blood chloride. There was no 

specific treatment but return to cooler climates led to gradual recovery.

An extensive review of the etiology of this disorder and miliaria rubra 

as well as the possible role of endocrine or other systemic factors has been 

published. ^

d. Heat fatigue - transient: This term applies to the

impairment in performance of complex sensorimotor, mental, or vigilence 

tasks on exposure to heat. The decrement in task performance produced 

by heat exposure is greater in unacclimatized and unskilled workers.

Discomfort and physiological strain rather than physiological failure of 

regulatory mechanisms are the major underlying factors. Acclimatization 

and training for work in the heat reduce the degree of impairment.

e. Heat fatigue - chronic: Formerly termed tropical fatigue, 

this designates a long term impairment in work performance and social 

behavior in workers and military personnel transferred from temperate 

home environments for long residence in tropical latitudes. Factors of 

boredom and isolation from the customary social environment interact with 

the physiological strain imposed by unremitting climatic heat and humidity to 

cause psychological strain and behavioral disorders, including lack of 

motivation for work, lowered standards of social conduct (e.g., alcoholic 

overindulgence), inability to concentrate, etc. Prevention is based on 

selection of personnel for such assignment and on their prior orientation

to life abroad (customs, climate, living conditions, recreational opportunities).
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The objectives of a preventive program are to prevent clinical 

disorders from heat stress and also to prevent aggravation of existing 

impairments by heat and to maintain optimum health and work efficiency.

The objectives can be accomplished through the following procedures: 

pre-placement and periodic medical examination, acclimatization of workers 

to heat, and monitoring of oral temperature and heart rate.
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IV. ENVIRONMENTAL DATA AND CONTROL 

Methods for control of occupational exposures to heat must be adapted 

to the nature of the heat stress, and if chosen properly, can be expected 

to ameliorate resulting physiologic strains. Control of heat hazards has 

been discussed in several publications. Engineers may wish to consult a 

comprehensive monograph issued by the American Industrial Hygiene Associa­

tion ^  which offers some details not provided here, in particular on thermal 

control of large factory spaces by ventilation. Engineering aspects of 

ventilation are also given in the ASHRAE Guide and Data Book.^
Earlier, Hertig 62 an(j Hertig and Belding 3̂ discussed methods of heat 

control. Wason ^  provided a comprehensive treatment of many aspects of the 

subject.

The ultimate goal of heat control engineering may be to create a climate 

of work in which true thermal comfort prevails. However, this seldom is 

achievable when large furnaces or sources of steam or water are present in 

the work area. In compromising with his ideal of providing comfort, the 

engineer may rationalize his shortcomings with the knowledge that man 

evolved as a tropical animal; he is well-endowed with physiologic mechanisms 

to cope with substantial levels of heat stress, particularly if he is 

acclimatized. It has been suggested that some exercise of these natural 

mechanisms among healthly individuals may, as in the case with physical 

exercise, have beneficial effects. This type of justification of hot 

working conditions is less warranted when jobs demand use of mental or 

perceptual facilities or of precise motor skills. In such cases thermal
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discomfort can distract attention; also, heat tolerance of physically 

inactive workers is less in some respects than for those whose duties 

require physical activity.

Analysis of the Problem and Options for Control

Before initiating control measures the engineer will wish to identify 

the components of the heat stress to which the worker is exposed in current 

operations or is expected to be exposed in new operations. This information 

can be used as a basis for rational selection of the means of control, and 

together with similar data obtained following adoption of control measures 

to demonstrate the effectiveness of corrective actions that have been taken.

Heat stress for the individual worker depends on: (a) the bodily heat

production, or metabolic heat, M, of the tasks which he performs; (b) the 

number and duration of exposures; (c) the heat exchanges as affected by 

the thermal environment of each task; namely, (R) (Radiant Heat Exchange),

(c) (Convective Heat Exchange), and (E) (Evaporative Heat Loss) as affected 

by tw (temperature of surrounding objects), v (air velocity), ta (air 

temperature), Pa (vapor pressure in the air) and Ps (vapor pressure on the 

skin); (d) thermal conditions of the rest area, and (e) the clothing that 

is worn.

Items (a) and (b) represent elements of behavioral control; (c) and

(d), environmental control; and (e) may be regarded as a combination of 

both.

The approach toward control may involve modification of one or more 

of these determinants of heat stress. The challenge is to select specific 

methods for attack which will be both feasible and effective. Serious 

errors can result from resorting to some single pet engineering solution.
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Consider the consequences of ducting outside air to the task site. This 

air usually is blown at the worker at a temperature as warm as the upper 

reaches of the shed where the ducts have been installed. This will enhance 

cooling by evaporation of sweat, but if the air is warmer than the skin 

(35°C, 95°F), it will increase the convective heat load. Consideration 

of the trade off between needed heat loss and increased heat gain is 

essential. The same goal might be achieved less expensively with portable 

fans.

In some situations the real mistake may be the failure to recognize 

that the heat problem derives from radiant load from a furnace which is 

not decreased by air movement. This mistake has been made less frequently 

in recent years, but elaborate ducting across the ceilings of older plants 

exist as testimony to use in the part of this inappropriate action.

Effectiveness of means used to control the five listed determinants 

of heat stress can be compared.

First to be discussed is decreasing the physical work of the task. 

Metabolic heat, M, can comprise a large fraction of the total heat load. 

However, the amount by which this factor may be reduced by control often 

is quite limited. This is because an average sized man who is simply 

standing quietly while pushing buttons will produce heat at a rate of 

100 Kcal/hr whereas one who is manually transferring fairly heavy materials 

at a steady pace will seldom have a metabolic rate higher than 300 Kcal/hr 

and usually not more than 250 K c a l / h r . Obviously, control measures, such 

as partial mechanization, can only reduce the M component of these steady 

types of work by 100 to 200 Kcal/hr; nevertheless, mechanization can also
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help by making it possible for the worker to be more isolated from the

heat source, perhaps in an air conditioned booth.

Tasks such as shovelling which involve metabolic heat production at 

rates as high as 500 or 600 Kcal/hr require that rest be taken one-half 

to two-thirds of the time simply because of the physical demands of the 

labor. Thus, the hourly contribution of M to heat load will seldom exceed 

300 Kcal/hr. It is obvious that mechanization of such work can increase 

worker productivity by making possible a decrease in the time needed for 

rest.

The second modifier warranting discussion is modifying the number 

and duration of exposures. When the task in a hot environment involves 

work that is a regularly scheduled part of the job, the combined experience 

of workers and management will have resulted in an arrangement which makes

the work tolerable most of the time for most of the workers. For example,

the relief schedule for a task which involves manual transfer of hot 

materials may involve two workers only; because of the heat and depending 

on the duress, these two workers alternate at intervals from five minutes 

up to an hour, which have been determined empirically. Under such conditions 

overall strain for the individual will be less if the cycles are short.66 

Where there is a standardized quota of hot work for each man, it is some­

times lumped at the beginning of the shift. This arrangement may be pre­

ferred by workers in cooler weather; however, there is evidence that the 

strain of such an arrangement may become excessive on hot days. The total 

strain will be less, evidenced by fewer heart beats, if the work is spread 

out. Significantly large variations in work site temperature usually occur 

during the work day. A typical continuous recording is shown in Figure 4.
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The stress of hot jobs is also dependent on vagaries of weather. A 

hot spell or an unusual rise in humidity may create overly stressful condi­

tions for a few hours or days in the summer. Non-essential tasks should be 

postponed during such emergency periods, in accordance with a prearranged 

plan. Also, assignment of an extra helper can importantly reduce heat 

exposure of members of a working team. However, there is danger in this 

practice when novices are utilized.

Many of the critically hot exposures to heat faced by employees in 

industry are incurred irregularly, as in furnace repair or emergencies, 

where levels of heat stress and physical effort are high and largely 

unpredictable, and values for the components of the stress are not readily 

assessable. Usually such exposures will force progressive rise in body 

temperature. Ideally, such physiologic measurements as body temperature 

and heart rate would be monitored and used as criteria for limiting such 

exposures on an ad hoc basis. Practically, however, the tolerance limits 

have been based on experience of the worker as well as of his supervisor. 

Fortunately, for most workers, perception of fatigue, faintness, or breath­

lessness may be relied upon most of the time for bringing individual ex­

posures to a safe ending.

The highly motivated individual, particularly the novice who desires 

acceptance, is at greater risk. In the same spirit, foremen should 

respect the opinion of an employee when he reports that he does not feel 

up to work in the heat at a particular time. Non-job personal factors 

such as low grade infection, a sleepless night, or diarrhea (dehydration 

affects sweating) which would not affect performance on most jobs, may 

adversely affect heat tolearance.
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Perhaps the best advice that can be offered for control of irregular 

exposures is (a) that formal training and indoctrination on effects of 

heat be provided both supervisors and workers, and (b) that these include 

directions to the effect that each exposure should be terminated before 

physical distress is manifest. There is abundant evidence that the physiological 

strain of an exposure which raises body temperature above 38°C is such as 

to contraindicate further exposures during the same day; it may take hours 

for complete recovery. More work can be achieved during several shorter 

exposures and with less overall strain.

The third modification to be discussed is modifying the thermal 

environment. The environmental engineer will usually identify important 

sources of heat stress in a qualitative sense, without resort to elaborate 

measurements. Thus, his experience will suggest that when air is static 

and the clothes of the workers become wet with sweat, it will help to 

provide a fan.

Nevertheless, we reiterate the advantages in making a quantitative 

analysis of the heat stress (and where possible the resulting strains) on 

workers. The effects of various approaches to control can be predicted, 

and improvements in thermal conditions at the workplace can be documented 

for higher levels of management based on measurements made before and 

after action has been taken.

We cite concrete examples to illustrate how the quantitative analytic 

approach may be used.

Case I. A case which is encountered frequently under ordinary 

conditions of hot weather.
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Let us assume a laundry where the humidity is high (Pa = 30 mm Hg) 

despite the operation of a small exhaust fan on the wall. There is no 

high level heat source so the temperature of the solid surround (reflected 

in Tg) is about the same as that of the air.

In the simplest situation we take Ta and Tg equal to the temperature 

of the skin, which may be assumed to be 35°C (95°F). This means heat 

exchange by R and C is zero. Let us examine the case on the basis 

that exposure is continuous and the average physical work is moderate 

(M = 200 Kcal/hr). The heat load, EREQ, is then,

M + R + C = EREQ 
200 + 0 + 0 = 200

The workers wear minimum clothing. The air speed is low, 15 m (50 ft)

per minute. Analysis for the seminude condition yields an indication of

maximum evaporative capacity:

EMAX = 2.0 V0,6 (42 - Pa), where 42 mm Hg is Ps 
of completely wetted skin at 35°C.

EMAX = 2 x 8.7 (42 - 30) = 200 Kcal/hr

Nominally, a worker under these conditions is just able to maintain

bodily heat balance if he keeps his skin completely wet. To do this he

must sweat extravagantly, which means some dripping. It is easy to see

why the workers wear as little clothing as possible. Wearing a long-

sleeved work shirt and trousers would reduce EMAX by about 30% or 13

Kcal/hr. The resulting excess of heat load over EMAX would result in

rise of body temperature and it can be estimated that the limit of

tolerance would be reached in about an hour.

IV-7



When, as in this case, the heat load is itself moderate, the attack 

of the control engineer should be aimed at increasing EMAX. In most such 

situations the management or the workers might find it expedient to bring 

in fans for spot "cooling." Note that since EMAX is 0.6 root function 

of air speed, tripling of air movement across the skin would result in 

doubling of EMAX. In this case an increase from 15 m/min to 45 m/min is 

easily achieved and it is predicted that such air speed will raise EMAX 

to 400 Kcal/hr. Sweat required would be reduced to about 0.35 liters/ 

min and would be evaporated at nearly 100% efficiency; the skin will no 

longer be dripping wet. It is clear that this control measure has 

limitations. If air speed were already 45 m/min, tripling would produce 

a wind which could disrupt operations.

A more effective permanent approach would be to replace the small 

exhaust fan with exhaust hoods opening over the moisture source. Adequate 

make-up air would have to be provided.

If outside high humidity rather than a large inside source of 

hot water were creating inside conditions similar to those of this 

case, the obvious solution would be installation of mechanical air 

conditioning. This would be an expensive solution for Case I.

Case II. Selected to show how the wearing of clothing can be 

advantageous and the presence of high air speed a liability under 

very hot, dry conditions.

Assume Ta = 45°C (113°F), Tg = 48°C (118°F), v = 100 m (330 ft) per 

minute, and Pa is low, 10 mm Hg. We use the same M as in Case I.
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Long-sleeved shirt and trousers are worn.

M + R + C = EREQ EMAX 
200 + 132 + 96 = 428 615 Kcal/hr

Suppose the worker wore only shorts under these circumstances. R,

C, and EMAX would be increased:

M + R + C = EREQ EMAX 
200 + 220 + 160 = 580 1020 Kcal/hr

The total heat load is increased about 150 Kcal/hr. This means an

increase in the requirement for sweating of about 0.26 liter per hour,

making a total requirement of 1.0 liter per hour as compared with 0.74

liter/hr when wearing shirt and trousers.

Thus, under conditions where Tw and Ta are above 35°C and Pwa is 

low the wearing of full clothing can provide a thermal advantage; the 

extent of this advantage must be assessed. In examining the above model 

it will be apparent that there is an optimum amount of clothing in such 

situations. This is the amount which reduces EMAX to a value slightly 

in excess of EREQ. The long shirt and trousers are just about right 

for this purpose under the given conditions of forced inlet air.

With low Pa as in a semi-arid area, a more satisfactory solution

probably could be reached through installation of an evaporative 

cooler. In Case II, inside temperature was usually 5°C hotter than 

outside, due to process heat and insulation on the roof of the shed. 

Assuming outside Ta does not exceed 40°C (104°F) and Pa is about 10 mm Hg, 

the temperature of the outside air drawn through a water spray washer in 

large volume could be reduced to approximately the prevailing out-of-door 

Twb, namely 22°C (72°F). Most of the wash water could be recycled. Pa
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of the conditioned air would be raised from 10 to 20 mm Hg. If 

temperature of the work space were reduced by this means to 30°C, a 

conservative estimate of the components of heat stress for clothed 

workers would be about

M + R + C = EREQ EMAX 
200 + 100 - 200 = 100 400 Kcal/hr

Case III. Chosen to illustrate the dramatic reduction in heat 

load achievable by provision of appropriate shielding when radiation 

from a furnace is substantial.

Practical examples of the reduction in radiant heat load achievable

by these means are provided by Lienhard, McClintock, and Hughes67, by

Haines and Hatch6®, and by others6"*’69. This case is chosen from the 

first of these references because the situation is real and physiological 

as well as environmental data are available. The task is that of skimming 

dross from molten bars of aluminum.
The worker stands at the task. Manipulation of a ladle involves 

moderate use of shoulder and arm muscles and requires an M of about 

200 Kcal/hr. The environmental temperatures before the corrective 

action were reported as Tg = 71°C (161°F), Ta = 47.8°C (118°F), and 

Twb = 30.5°C (87°F). The air speed was 240 m/min (800 fpm) as a result 

of forced ventilation directed at the worker from an overhead duct.

Note that the humidity was very high (Pa = 24 mm Hg) which is characteristic 

of the local climate. In terns of heat load and EMAX the situation was:

M + R + C = EREQ EMAX 
200 + 830 + 210 = 1240 580 Kcal/hr
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It is obvious from the deficiency of evaporation and the enormous load 

that the workers, despite full clothing and a face shield, were able to 

perform this task only for a few minutes at a time. Heat exhaustion was 

not uncommon (and might partly be attributable to the difficult hot 

conditions prevailing in the nearby rest area).

Engineers undertook control of this heat exposure by interposing 

finished aluminum sheeting between the heat source and the worker. Infra­

red reflecting glass at face level permitted seeing the task and space was 

left for access of the arms in using the ladle. As a result of these 

measures it was recorded that both Tg and Ta were reduced to 43°C (110°F). 

The same air speed was present as before and if we assume the same Pa 

we obtain:
M + R + C = EREQ EMAX 

200 + 53 + 130 = 383 580 Kcal/hr

By this action to reduce R, the heat load was brought to a level that

is reasonable for prolonged work, but did not completely eliminate

the heat stress. The predicted requirement for sweating to maintain

heat balance was reduced to about 0.7 liter/hr from the previously

impossible-to-sustain level of 2.1 liters/hr. (The before and after

average levels actually observed for two workers were not far from these

predictions, namely 1.1 and 2.1 liters/hr. The same two subjects also

showed a marked reduction in heart rate, as a result of the changes, from

an average of 146 to 108 bears/min.)

The percent reduction of the radiant load can be taken as a measure 

of the effectiveness of the reflective shielding, and in this instance 

approximates 85%. Large errors in the stimate of R are possible at 

extremely high globe temperatures, but in this case it appears that the
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maximum relief that could be expected from shielding was achieved. Haines 

and Hatch reported smaller reductions in R of 51 to 74% from interposing 

a sheet of aluminum at eleven different work sites in a glass factory. 

Others have shown reduction of 90% or more under ideal conditions not 

likely to prevail on the plant floor.

While in Case III we have dealt with some aspects of control of R 

by shielding, the two other classical approaches of industrial hygiene 

engineering, namely, control at the source and control at the man, offer 

possibilities which must be considered.

Application of insulation on a furnace wall can reduce its surface 

temperature and thereby the level of R. A by-product of such treatment 

is a saving in fuel needed to maintain internal furnace temperatures. 

Application of a polished metallic surface to a furnace wall will also 

reduce R. However, a polished metallic surface will not maintain its 

low emissivity if it is allowed to become dirty. A layer of grease or 

oil one molecule thick can change the emissivity of a polished surface 

from 0.1 to 0.9. And the emissivity of aluminum or gold paints for 

infrared is not necessarily indicated by their sheen. If the particles 

are smaller than about one micron they emit almost like a black body.

(The same is true for fabrics coated with very fine metallic particles.)

Equal or even more effective reduction of R is achievable with 

nonreflective barriers through which cool water is circulated.

The engineer is frequently baffled in shielding by the fact that 

access to the heat source is required for performance of the task. We 

have seen various solutions to this problem. One is a curtain of metal 

chains which can be parted as required and which otherwise reduces
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emission like a fireplace screen. Another is a mechanically activated 

door which is opened only during ejection or manipulation of the product. 

And finally, remotely operated tongs may be provided, taking advantage of 

the fact that radiant heating from an open portal is limited to line of 

sight and falls off as the reciprocal of the square of the distance from 

the source.

The fourth modification to be discussed is that of thermal conditions 

of the rest area. Brouha66 states "it is undeniable that the possibility 

of rest in cool surroundings reduces considerably the total cost of work 

in the heat." There is no solid information on the optimum thermal 

conditions for such areas but there are laboratory data which support 

setting the temperature near 25°C (77°F). This feels chilly upon first 

entry from the heat, but adaptation is rapid.

The placement of these areas is of some importance. The farther they 

are from the workplace, the more likely that they will be used infrequently 

or that individual work periods will be lengthened in favor of prolonged 

rest periods.

Incidentally, the same principle applies for positioning of water 

fountains. When they are remote from the worker, substantial dehydration 

is more apt to occur. The proper temperature for drinks under hot 

conditions is often asked. There is no scientific answer, but most men 

will not willingly drink fluids that are close to body temperature. They 

welcome chilled water and recognize that frequent small drinks are better 

than large draughts.
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The final modification to be discussed is clothing. Heat stress 

usually may be altered substantially through selective wearing of clothing. 

In the heat, as in the cold, the thermal function of clothing is to reduce 

heat transfer between the individual and his environment.14 Clothing may 

reduce transfer by radiation, by convection, and by evaporation of sweat.

Whether clothing will represent an advantage depends not only on its 

design but on the characteristics of the particular thermal environment 

in which the work is being performed.

1. Conventional work clothing:

We first examine what is known about the effects of ordinary 

work clothing consisting of work shirt and trousers. These will be of 

flame retardant material if fire or sparks are in the working area.

Other items normally will include cotton underwear, socks (which in hot 

weather are better if of medium to heavy weight), perhaps gloves, and 

perhaps a hard hat. The wearing of long underwear, woolen or cotton, 

represents a special case which is dealt with later.

The effect of such clothing in interfering with heat loss by R+C 

is substantial and can be illustrated. For a man doing moderately hard 

physical work (1200 Btu/hr) and wearing only shorts, comfort temperature 

would be about 70°F. In work clothing comfort temperature might well be 

55°F. If the environmental temperature actually was 70°F, the cost of 

wearing clothing, in terms of heat stress, would be equivalent to an 

added sweat rate of at least one-half pint per hour.
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Laboratory studies clearly indicate that ordinary work clothing will 

reduce radiant heat transfer by 30 to 40 percent.70 Theory yields a 

similar reduction for transfer by convection. And recent studies demonstrate 

that this clothing will reduce the potential for evaporating sweat by 

about 40 percent.

There are two important implications of these findings. Only the first 

is common experience. In warm environments, below skin temperature, 

wearing of clothing decreases heat loss and comfort. This is particularly 

true when humidity is high or the air is static. This disadvantage may 

become an advantage when air temperature and/or radiant temperature exceeds 

skin temperature. Then clothing reduces heat gain to the body. For 

example, on a 95°F day the radiation from the sun under a clear sky can 

represent the equivalent of a 20°F increase in air temperature for the 

seminude body.14 This load can be reduced to the equivalent of 8°F by 

conventional work clothing (to even less with near-white clothes). Heavier 

clothing would reduce R even more, but this advantage is nulified at the 

point such clothing interferes with evaporation of sweat. In arid climates 

adequate evaporation seldom is a problem, particularly with good air 

movement, but in an industrial plant with the high radiant heat from a 

furnace the limits on evaporation may preclude heavy clothing for prolonged 

tasks.

The implication of the above is that radiant heat which was tolerable 

for a worker wearing shirt and trousers would be excessive for a man in 

shorts. This has been demonstrated in the laboratory.70 A mean radiant
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temperature of 205°F was used in simulation of a task involving four- 

minute exposures interspersed with two-minute relief periods. This was 

tolerable when clothes, but intolerable when nude. The radiant load 

became just tolerable when reduced in intensity by about 30 percent. As 

mentioned in the preceding section, the color of skin or of clothing is 

immaterial in these exposures; they are black to infrared heat.

The highest local skin temperatures readily tolerable under such 

conditions depends on the amount of body surface area affected. For 

large areas such as the back it is about 105°F; for smaller areas such 

as a hand it may be 110°F. As an average for the whole body of an 

individual at work for prolonged periods, 95°F is about the limit; with 

higher average skin temperatures, a rise in internal body temperature 

may be expected. Additional information on time-tolerance relationships 

appears.71

Long winter-weight underwear has been adopted by many workers who 

move in and out of very hot environments. This makes sense to the extent 

that the extra layer provides a substantial buffer against extremes of 

heat gain (and loss, which is a factor in open sheds in wintertime). In 

humid slimmer weather the practice is less justified, unless there is 

ready access to air conditioned areas for recovery, because the underwear 

interferes with evaporation of sweat from the skin. The ounce-by-ounce 

efficiency of evaporation of sweat from clothing is considerably less 

than from the skin, more sweat must be produced to maintain heat balance 

and little or no more can be evaporated.
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It is obvious that ordinary work clothing itself moderates 

extremes of transient heat exposures, but this is to a lesser extent 

than when long underwear is worn.

2. Special Clothing:

This may take various forms. For example, the wearing of infra­

red reflecting face shields may be indicated when radiant heat is high.

In frequent handling of hot materials, it is good practice to provide 

several pairs of oversize insulative gloves, these having wide gauntlets 

for easy entry without using both hands.

For very hot exposures, as in relining furnaces, thick insulative 

clothing is appropriate. This acts as a heat "sponge." This sponge may 

be more effective if made of high density materials (asbestos in the 

recent past) because of the higher heat capacity, but insulation with 

minimum weight is best imparted by a thickness of trapped, still air.

It is obvious that for relatively longer intervals of exposure, high 

density and highest feasible thickness should be sought. The protective 

value of such clothing is enhanced by aluminizing its surface and sometimes 

interlining foil between insulative layers.

3. Aluminized Reflecting Clothing:

When shielding against radiant heat loads cannot be accomplished 

by fixed barriers, aluminized clothing components may often be used to 

advantage. The aluminum is vacuum deposited on the surface of the fabric. 

Interposition of such coated fabrics between a 600° to 1100°F source and 

a black globe has resulted in reflection of 90% of incident energy.60
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However, in a study using reflective clothing items while working in the 

205°F radiant heat mentioned above, efficiency was found to be much less. 

Ordinary work clothing yielded 40 percent protection, an aluminized apron 

about 50 percent and a full aluminized suit about 60 percent. In inter­

mittent work at high humidities the full suit proved a handicap because 

of its interference with evaporation of sweat. The use of full reflective 

clothing can sometimes be avoided. For example, fixed shielding to waist 

level may make possible use of only an aluminized jacket. Or a worker 

who faces the heat source may resort to a long metallic apron. When the 

coverage with reflective clothing is only partial, there is much more 

opportunity for evaporation of sweat.

It is obvious that an aluminum finish, as on the palmar surface of 

an insulative glove, will be of little use in handling materials.

4. Thermally Conditioned Clothing:

Numerous ideas have been incorporated in special clothing for 

maintaining comfort in extreme heat (or cold). Some systems supply 

appropriately cool air from a mechanical refrigerator to points under a 

jacket or coveralls. When air from a remote source is used, there are 

two problems. One is the gain of heat through the walls of the supply 

tubing. This problem has been solved in some cases by using porous 

tubing which will leak an appropriate amount of supply air to keep the 

walls suitably cool. The other problem is distribution of the air through 

the suit. With a simple, single orifice it is difficult to cool a 

sufficient area of skin and the area cooled may be too cold. Provision 

of several orifices, though better, will create bulk and restrict mobility.
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In fact, the restriction of movement resulting from tethering the worker 

to a supply line will often contraindicate this type of system. When 

such a line is used, there should always be a simple quick disconnect for 

use in emergency.

The vortex tube source of cool air has been used successfully in 

some situations.62 The device is carried on the belt. Air introduced 

tangentially at high velocity is forced into a vortex, which results in 

two separable streams of air, one cold which is distributed under the 

suit, the other hot which is discarded. Compressed air requirements to 

operate the vortex system are large.

Self-contained sources of conditioned air which can be backpacked 

have also been developed. One involves a liquid refrigerant which is 

sealed into a finned container. After being cooled in a deep freeze, 

the container is placed in the pack. A small battery-driven fan circulates 

air across the fins and into the suit. A single charging of this device 

may extend tolerance for relining furnace walls from several minutes to 

30 or 60 minutes.

More sophisticated devices employ a closed system with liquid as 

the coolant and a fairly elaborate network of small tubes for distribution.

The nuisance factor must be considered for all such devices. Men will 

not go to the trouble of donning them unless they recognize more than a 

marginal advantage. On the other hand, with such devices, it has sometimes 

been possible to change hot tasks which required long rest pauses and 

multiple workers into single worker, continuous duty operations.
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V. DEVELOPMENT OF STANDARD 

Basis for Previous Standards

There are a great number of recommendations for permissible 

exposure limits to work in hot environments. The recommended limits 

were expressed in terms of different indices, most of which were 

designed to consolidate into a single value the four climatic factors, 

air temperature, humidity, radiant heat, and wind velocity, and often 

the work load as well. Some other indices expressed the recommended 

exposure limits in values on a scale which was the result of a ratio 

with an upper limit value of 100.7 7 Again other indices expressed the 

limits in terms of magnitude of one or more physiological responses.

All these indices were recently evaluated.7^,73,74 Also, the World 

Health Organization (WHO) convened a panel of experts to review the 

heat stress indices.^ They found shortcomings in all the existing 

indices as well as in the proposed upper limits set forth in each of 

these indices.

A. Validity of Indices

Most of the indices are derived from laboratory experiments, 

thus their relevance to industrial conditions is questionable. Furthermore, 

the subjects observed in these laboratory studies were mainly young 

university students or military personnel or, as in Wyndham’s^ 

studies, Bantu miners. The responses of such a subject group may not 

be identical to responses of an industrial worker population. An
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Important problem is whether the severity of physiological strain 

correlates with the scale of different indices. P e t e r s o n ? 4 showed 

in his study that while some indices correlate well with some 

physiological responses, none of them correlates well with all 

physiological responses. He recommends the use of at least three 

indices simultaneously to evaluate adequately the heat strain of 

an exposed man.

Another problem plaguing some indices is that in order to make 

them simple enough for use in industry, certain assumptions had to 

be made which were by no means proven and equations had to be 

simplified which further reduced the accuracy of the index.^

B. Validity of Proposed Limits

A number of limits, such as recommended by Yaglou and Minard,^ 

Brief, 6 0  and W y n d h a m ^  in terms of the WBGT or ET indices are empirical 

and are intended to reduce the frequency of heat casualties. Such 

criteria are not applicable to industrial workers because they 

do not give a satisfactory margin of safety.

Another common objection which has been raised aeainst almost all 
earlier proposed limits is that they are not based on observations 

of industrial worker populations. Those limits mentioned in the 

foregoing paragraph are based on data obtained on marine recruitŝ "* 

and Bantu miners,^ who are young, physically fit people and are 

exposed only for 1 - 2  years to hot working conditions. In addition 

most of the limits are based on the averages of the observations; thus 

the limits are theoretically safe only for 50% of the observed 

population.
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The only index?7 which recommends specific allowances for 

individual differences in age, sex, fitness, body build, acclimatization, 

hydration, and other conditions which may reduce tolerance to work 

in heat without causing apparent diseases is the Relative Strain 

Index. Unfortunately, these recommendations are too vague to be 

used as bases for an industrial standard. They were originally 

prepared for use in Civil Defense Shelters.

The first U. S. standard?® for work in hot environments dates 

back to 1941, when a Committee on Atmospheric Comfort published 

their report entitled Thermal Standards in Industry. The criteria 

of this standard are not spelled out clearly and the permissible 

exposure limits are intended only as a guide. The Committee 

recommended that each indusry must develop its own standard because 

of the complexity of industrial work and the individual differences 

between workers. As general criteria the Committee quoted comfort 

and health of individuals, their work output, and their physiological 

and psychological reaction to work. They applied the Effective Temperature 

(ET) as the index with which to express their proposed limits. However, 

since the ET does not include the work load factor, they limited them­

selves to exposure limits for only two levels of work. The higher 

level is given at 432 Kcal/hr and the lower is given only in 

qualitative terms as "light sedentary activities." As far as women are
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concerned, there is only a comment stating that females are less fit than

males. However, since the criteria by which they arrived at these limits

are not described, this recommended standard could not be used as a basis
66for a NIOSH recommendation. Brouha and later F u l l e r recommended limits 

based on the concept of accumulation of cardiovascular strain. Their limits 

are based on the concept that the first minute post exercise recovery 

heart rate (P]) should not exceed 110 beats per minute, and that within 

3 minutes recovery time the pulse rate should decrease at least by 10 

beats per minute. The recovery heart rate is estimated by counting the 

pulse rate during the second thirty seconds of any given minute during 

recovery and multiplying this count by two. The validity of this
2Qprinciple seemed to be upheld in recent studies in industry.

The WHO panel of experts^ recommended that a deep body temperature 

of 38°C should be considered as the limit of permissible exposure 

to work in heat. This is also in agreement with several observations 

which showed that above a body temperature of 38°C the probability of 

suffering a heat disorder or illness gradually i n c r e a s e d ,  a -^s o

in agreement with Lind’s studies on the prescriptive zone.®0 

Considerations for a Recommended Standard

The principal criteria for a heat stress index for industrial use are:

1. Applicability should be proven in industrial use.

2. All important factors should be included.

3. The measurements and calculations required should be simple.

4. The included factors should have a valid weight in relation to total 

physiologic strain.
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5. Applicable and feasible for setting regulatory limits.

There are four indices which satisfy the first criterion: the Effective

Temperature (ET) , WBGT index,the HSI of Belding and Hatch,®! an(j the 

Predicted Four Hour Sweat Rate (P4SR). All of these indices include the 

four climatic factors: air temperature, humidity, radiant heat, and wind

velocity. However, the work load is not included in the ET and WBGT.

This fact weighs in favor of HSI and P4SR. On the other hand, the 

calculation of these latter two indices is much more complicated than that 

of ET and WGBT, even when the available monograms are used. Between ET 

and WBGT, the latter one wins out in simplicity of calculation. Another aspect 

which makes WBGT more desirable is that while wind velocity must be measured 

for the other three indices, for WBGT this is not required. This is a 

very important consideration in view of the difficulty NIOSH has experienced in 

field studieŝ " in establishing an hourly time-weighted average value 

for this factor. One important reason for this is that as man moves around 

while performing his job, he is exposed to wind velocities which vary con­

siderably and often suddenly.

As far as the fourth criterion is concerned, all four indices have 

some shortcomings, as pointed out in the previous section. Thus, from 

this point of view, none of the four indices has an advantage over the other.

The HSI has many advantages from the point of view of the fifth 

criterion, the greatest one being that it makes it possible to calculate 

the allowable exposure time as well as the minimum recovery time for a
QOgiven heat stress condition.
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The studies performed by Lind on the prescriptive zone (PZ) were 

used as a basis for the determination of the environmental conditions (including 

different combinations of climatic and work load), which can be tolerated 

by 95% of the worker population with body temperatures not in excess of 

38° C.

The essence of this principle is shown in Figure 5. Each point on 

the graph represents the result of an experiment lasting until the rectal 

temperature of the observed subject reached a steady state. This took 

about 30-to-60 minutes depending on the intensity of the combined heat- 

work exposure. It becomes apparent from the graph that up to a certain 

level of effective temperature (ET) the equilibrium rectal temperatures 

follow a straight horizontal line, i.e., they do not increase, no matter 

how much the ET is increased in the heat chamber. However, the rectal 

temperature is higher when the work rate is higher. Thus, in this range 

of environmental heat the rectal temperature is determined only by the work 

intensity. This range is called the prescriptive zone (PZ).

Over a certain level of environmental heat each of the three curves 

in the graph show a sudden turn upward, indicating that over this level the 

equilibrium rectal temperatures increased each time the climatic conditions 

became hotter. Thus, in this range of environmental heat the deep body 

temperature becomes sensitive to changes in climatic conditions and man 

can easily lose his ability to maintain an equilibrium temperature, thus 

leading to heat disorders. This range of climatic conditions is called 

the environment driven zone ( E D Z ). The environmental temperatures 

at the border between the PZ and EDZ are called the upper limit of 

prescriptive zone ( U L P Z ) .
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The value of the ULPZ varies for different individuals. It is 

higher for men who are acclimatized to heat, by approximately 4.0°F ET, 

and is lower the more clothing an individual wears.

To make sure that 95% of a heat acclimatized population wearing

worker uniforms will not have a rectal temperature in excess of 38°C,

it must be established at what level of environmental heat will the 

5 percentile man reach his ULPZ, and this value has to be corrected for 

the level of acclimatization and clothing. This ULPZ was found in a 

paper of Lind and Liddell®^ in which they tested the ULPZ of a 

group of 128 men of average physical fitness. Figure 6 shows that 

about 95% of the men could reach an equilibrium deep body temperature 

in the 3-hour exercise test if the climatic conditions did not exceed 

80.5°F. Thus, at a work load of 300 Kcal/hr the 5 percentile man's 

ULPZ lies about 1.0°C lower than that of the subjects' observed by 

Lind in his first study of the PZ.®® This result was adopted as 

a guideline to correct the ULPZ values orginally recommended by Lind

as shown in Figure 7. As can be seen, it was assumed that a larger

correction is required at higher levels of work load when the rectal 

temperature in the PZ is already very close to 38°C and no correction 

was applied at the lowest level of work load where the rectal temperature 

in the PZ is much lower than 38°C. Another justification for applying 

this upward adjustment for heavy work and downward adjustment for light 

work comes from the study of Kraning et al.®^ this study evidence 

was presented that the heat generated by work metabolism causes 

about twice as much strain on the cardiovascular system as the same 

amount of heat taken up from the environment. Studies performed by NIOSH
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have confirmed these findings.
Corrections would also be needed for clothing because Lind's

subjects were tested wearing shorts and sneakers only whereas the workers

in hot industries wear underwear and work uniforms as well as boots.

This would require a lowering of the ULPZ value. However, an increase

would be permitted because it is assumed that the workers in hot jobs

will be acclimatized. These two factors then cancel out each other.

The ULPZ values read from the abscissa in Figure 7 are expressed in
86terms of basic ET. They were converted by using Minard's graph showing

the correlation between ET and WBGT. In this graph, however, the normal

ET is stated for semi-nude men. Thus the ULPZ values read from Figure 7

were first converted to normal ET values, then to WBGT values.

Justification for using time-weighted average hourly work-load
87values for intermittent work comes from another study by Lind. The 

results showed that from the point of view of the ULPZ it does not matter 

whether a certain hourly amount of work is performed at a lower rate 

continuously or at a higher rate but interrupted with rest periods.

The permissible exposure limits for heat stress cannot be based on 

8-hour average values because if excessive exposure persists for longer 

than 1 hour, the worker may accumulate enough heat in his body to cause 

him to suffer an acute heat disorder or heat illness; thus in continuous 

heat exposure, hourly averages are necessary. However, if the exposure 

is intermittent the accumulation of heat will be slowed down; thus, it is 

permissible to average the exposure every 2 hours.
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The ULPZ was found to be the same for men of different ages,
88thus no correction for age is required according to Lind et al. However, 

when older men are exposed to strenuous heat load an increased caution is 

advisable because of their lowered physiological capacities and increased 

susceptibility to diseases.

A sex difference in the pattern and magnitude of physiological 

responses to work in heat has been demonstrated. Whether the observed 

differences in the responses reflect real differences in heat tolerance 

or in work performance is not fully proven (see references 33, 43, and 89 

thru 96).

In resting-in-heat studies the young female subjects had a higher

body temperature and a lower sweat production than did the young males
89for the same heat exposure. The onset of sweating occurred at a higher body 

temperature in the females, which resulted in a time delay in the onset 

of sweating during both severe and mild heat stress. Actual tolerance time 

in the severe heat was shorter in the females even though the maximum 

endurable body temperature was the same in both sexes. The symptoms present 

when an individual collasped from the heat stress were comparable even 

though the females found the stress intolerable sooner with work-in-stress. 

Women started to sweat at a higher skin temperature and had a lower sweat 

production for any specific heat load. Calculated skin temperatures at 

the onset of sweating were about 4°F higher in female than male subjects 

and for equal sweat rates the skin temperature was 1.8°F lower in the males.
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In spite of the greater strain in women, they are capable of 

effective heat acclimatization. However, even after acclimatization the 

sweat rate is lower in the females, and they may have more subjective 

distress. Resistance to naturally occurring heat waves seems to be 

lower in women. Apparently there is no real difference in the degree 

of acclimatization that can be reached in men and women, but they may 

achieve equal acclimatization in different ways using different 

configurations of components of the regulating process.

The question arises whether the lower sweat production in 

females may be due to fewer active sweat glands during the heat exposure. 

Both the total number of sweat glands and the number per unit area 

of skin surface are greater in females. In lean females one hundred 

sweat glands per square centimeter of skin were counted while fifty-nine 

per square centimeter were found in males. In obese females there were 

seventy-five per square centimeter and in obese males, forty-seven per 

square centimeter. A recent WHO report questions this difference in sweat
QAqrates after acclimatization.

Differences in pulse rate responses to a standard work-in-heat 

test between both young and old men and women have been found.^ At 

the lower levels of work the women had pulse rates ten to twelve beats 

per minute higher than the men. For the high levels of work the 

differences were twenty to thirty beats per minute higher in the 

females. The higher pulse rates in the women reflect both the heat 

stress and the physical work and are higher in the women mainly because 

the work is relatively harder for them. Oxygen consumption expressed as
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milliliters per kilogram of body weight was about 15 to 20% higher

in women than in men. The highest level of physical work used in the test required

about 43% of the predicted maximum aerobic capacity for the older men, 30% for

the young men, 66% for the older women, and 44% for the younger women.

W i n g 9 ?  reviewed the results of 15 studies performed in different

laboratories on the effect thermal stress has on mental performance. It

is quite apparent from these studies that thermal stress is an 

important factor where the worker has to make critical decisions, make fine 

discriminations, or has to perform fast and skillful actions because 

safety will depend on constant alertness. The number of errors made 

will increase if the worker is exposed to heat even before body temperature 

or pulse rate reaches critical levels.

Figure 1-1 in the recommended standard is adapted from Wing's97 review 

paper. Although Wing recommended these limits only as tentative upper 

performance limits, they are considered to be the best presently available.

Since Wing's values were expressed in ET, they were converted by using 

Walters'9® graph on correlation between ET and WBGT.

As shown in Figure 1-1 of the recommended standard, unimpaired mental 

performance can be maintained below 86°F WBGT for 4 hours and probably 

even longer, although this needs experimental confirmation. Since 

environmental conditions above 86°F WBGT are permissible only for jobs 

with a work load below 200 Kcal/hr for men and below 150 Kcal/hr for women,

Figure 1-1 of the recommended standard has to be taken into consideration 

only in sedentary jobs.
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It is impossible that for unimpaired mental performance as work 

loads above 200 Kcal/hr, the 86°F WBGT may be too high. However, there are 

no data available either supporting or contradicting this assumption.

Since then this problem was investigated in several studies and 

discussed at two Workshop sessions at the University of Pittsburgh.

At these workshops the leading experts in problems of industrial heat 

stress agreed that the Brouha method should be used as a means of 

monitoring cardiovascular strain in industry.

Figure 8 shows data obtained in PHS field studies on the 

dehydration of workers exposed to hot environments. There is a 

correlation between daily sweat loss and dehydration: the higher

the sweat loss the more dehydrated the worker will be at the end of the 

work shift. However, this correlation was quite different in the four 

plants. The heavy equipment operators sweated the least, but dehydrated 

most. At about the same level of daily sweat loss, the foundry men and 

chemical plant workers dehydrated significantly less. Finally, the 

aluminum reduction workers whose daily sweat loss was the highest did not 

dehydrate more than workers of the chemical plant.
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When analyzing for causes of the differences in the extent of 

dehydration, it was discovered that aluminum reduction plant workers 

were supplied from their drinking fountains a 0.1% salt solution. Thus, 

it was made sure that the salt they lost by sweating was replaced each 

work day. For the chemical plant workers and the foundry men salt tablets 

were available at the drinking fountains. The heavy equipment operators 

were not supplied with any additional salt, except that salt ingested with 

their midday lunch.

These results suggest that salt supplementation may play an 

important role in preventing dehydration.

Another difference between the working condition of the heavy equip­

ment operators and the workers of the other three plants was in the avail­

ability of drinking water. Whereas the heavy equipment operators had to 

go out of their regular path and disembark from their vehicles to have a 

drink of water, all the workers in the rest of the plants had to do was 

to go a few steps to the nearest drinking fountain. This circumstance 

may have also contributed to the higher level of dehydration of the heavy 

equipment operators. Indeed, it was observed that the workers were not 

drinking as often as necessary to replace their water loss if they had 

to make some effort to reach the source of water. These results indicate 

the importance of making drinking water available close to the job site and 

recovery places where the workers* daily sweat loss exceeds 2 liters.

In Figure 8 a horizontal broken line is drawn at the 1.5% dehydration 

level. This is done because the results of earlier NIOSH studies 

suggested that if the level of dehydration exceeds 1.5% of body weight the
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physiological responses, such as the body temperature and heart rate, 

start to increase, indicating an increase of strain. In this respect it 

may be worth mentioning that among the heavy equipment operators the accident 

frequency was double that observed at other locations where the same 

operations were performed, but in comfortable climatic conditions.

It may be assumed that the dehydrated heavy equipment operators, 

unaware of their diminished performance capacity, may have been unable 

to react fast enough and correctly in situations where sudden action would 

have been necessary to prevent an accident. This again may be interpreted 

as a warning as to the importance of proper fluid and salt replacement 

in hot jobs.

Summary of the Basis for the Work Practices Standard

The work of L i n d e , 84 £n the development of the prescriptive zone (PZ) 

is undoubtedly the basis for the best approach for the development of an 

environmental standard for heat stress because it combines both the 

climatic and work load conditions that are imposed upon the worker in 

hot industries. There are, however, a number of practical shortcomings 

and unresolved questions related to this approach.

These unresolved questions which will require additional research 

to validate the hypotheses presently proposed as the best technique for 

evaluation of heat stress conditions dictates the necessity for the development 

of the work practices standard as outlined in this document as opposed to an 

environmental standard. The additional research is such that it would be impossible 

to utilize an environmental standard at this time without stringent 

limitations being placed upon both the worker and management. Such an 

approach would be unrealistic.
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The validation of the Upper Limit of Prescriptive Zone (ULPZ) concept 

is essential. It is necessary that this approach be validated with 

additional data from a normal industrial work force. More data is needed 

on age and sex distribution of the work force. Another shortcoming 

that must be clarified is effect of the process of natural selection that 

normally occurs in the industrial situation where the worker himself 

determines his ability to endure high heat stresses. This particular 

consideration is one which may have resulted in heat stress standards 

in the past that were unrealistic for an industrial population. The 

intermittent exposures that are normal in the industrial population 

represent another significant factor which was not thoroughly considered 

in the previous recommendation. The lack of data regarding intermittent 

exposures to heat is one of the major unresolved questions of the effect 

of heat stress on the work force. Differences in sweat loss under a 

wide variety of industrial conditions still has also not been thoroughly 

studied. In addition, the wide variety of work loads and the inter- 

mittency of work loads that are normal in industrial operations have a 

major effect upon heat stress. This also must be studied prior to the 

development of a practical environmental heat stress level. The 

previous studies have been conducted with s o l d i e r s , usually stripped 

to the waist, or have been under conditions where the subjects are 

stripped to the waist or are wearing minimal amounts of c l o t h i n g .

This must also be considered in relationship to the normal work clothes of 

the industrial worker, as well as any other protective clothing that 

such a worker may be wearing.
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All of the above factors can have a significant impact upon 

the level of heat stress to which a worker might be permitted to be 

exposed without adverse affects. At this time, such factors without 

sufficient validation would result in severe limitations on any 

environmental levels that might be proposed. The information does 

exist, however, to allow for environmental measurements that can be 

utilized to initiate work practices that will protect the industrial worker. 

Additional research is being conducted with regard to how the questions, 

indicated above, might be resolved.
Environmental Measurements

The climatic conditions are expressed in wet-bulb globe temperature 

(WBGT) on both the Fahrenheit and Centigrade scales.

Assessment of the WBGT Index

The numerical value of the WBGT Index is calculated by the following 

equations:

1. Indoors or outdoors with no solar load

WBGT = 0.7 WB + 0.3 GT

2. Outdoors with solar load

WBGT = 0.7 WB + 0.2 GT + 0.1 DB

Where WB = natural wet-bulb temperature obtained with a wetted 

sensor exposed to the natural air movement (unaspirated)

GT = globe thermometer temperature 

DB = dry-bulb temperature
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The time-weighted average WBGT shall be determined by the equation:
(WBGT!) x (tx) + (WBGT2) x (t2) +  (WBGTn) x (t )

Av. WBGT = _________________________________________________
(t-,) + (t,) +  (t )

where

WBGT^, WBGT2, ... WBGTn are calculated values of WBGT for the various 

work or rest areas occupied during the total time period, t]_, t2,... tn 

are the elapsed times in minutes spent in the corresponding area. This 

same equation shall be used to calculate the average WBGT for a workman 

who toils at various work stations at various work rates and/or under 

different environmental conditions.

Time-weighted average WBGT values should be calculated on an hourly 

basis in continuous heat exposure and on a two-hourly basis in inter­

mittent heat exposure.

Instrumentation

The instruments required for determining the WBGT Index are a natural 

wet-bulb thermometer, a globe thermometer, and when outdoors in sunshine, 

a dry-bulb thermometer.

A satisfactory wet-bulb thermometer may be constructed using a 

mercury-in-glass thermometer having a range of 30 to 120°F with 0.5°F 

graduations, and guaranteed to be accurate within + 0.5°F throughout 

its range. A centigrade thermometer of comparable accuracy may also 

be used. A highly absorbent woven cotton wick shall cover the thermo­

meter bulb and at least 1-1/4 inches of the thermometer stem above the 

bulb. The lower end of the wick shall be immersed in a reservoir of
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distilled water. There shall be one inch of wetted wick exposed to 

the air between the top of the reservoir and the bottom of the bulb.

The wick should be wet to the top at all times. Under unusually hot 

or dry conditions this may be difficult to achieve, and special pro­

visions may be necessary, such as an auxiliary water supply or manual 

wetting.

The globe thermometer should consist of a 6-inch diameter thin 

copper sphere, the outside of which is painted a matte black. Either 

Krylon No. 1602 Ultra Flat Black Enamel or 3 M No. 101-C10 Nextel 

Black Velvet coating is available in spray cans and will provide an 

satisfactory surface. A mercury-in-glass thermometer, having a range 

of 30 to 220°F with 1°F graduations and guaranteed to be accurate to 

+ 1°F, should be inserted through the shell with the thermometer bulb 

located at the center of the globe. The thermometer mounting and the 

globe support may be arranged in several ways. One convenient method 

is to use a globe having a spud with a 1/A inch pipe tapping. The 

thermometer can be inserted through a hole drilled through the spud 

and supported at the proper height by a ring of rubber tubing, and 

the complete assembly can be supported by a clamp around a 1/A inch 

nipple screwed into the spud. Another satisfactory method is to insert 

the thermometer through a rubber stopper in a hole in the top of the 

globe. The globe is then supported from the bottom by a 3/16 inch rod 

threaded into a matching spud. The globe thermometer should be allowed 

20 minutes to reach equilibrium.
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When a dry-bulb temperature is necessary it may be obtained with 

a mercury-in-glass thermometer as specified above for the wet-bulb thermo­

meter. The dry-bulb thermometer should be shielded from solar radiation, 

but shielding must be applied in such a manner that air circulation 

over the thermometer bulb is not restricted.

Mercury-in-glass thermometers have been indicated as the sensing 

elements in the above described instruments. Thermocouples, thermistors, 

or any other sensors which will provide the same accuracy are equally 

acceptable. In some cases these may have an advantage over the ordinary 

thermometer in that the signals from such sensors may be readily recorded.

A suggested arrangement of the instruments is given in Figure 9. 

Further instrument details and techniques for their use may be found in 

references.99’100’101
In addition to the above described instrumentation which requires 

the calculation of the WBGT index value, there are instruments described in
Qo in9 ihqthe literature ’ ’ or available on the market which sense the required

temperatures and automatically integrate them to give a readout in WBGT* 

Another such instrument is currently (March, 1972) being developed by 
NIOSH.

Instrumentation for the determination of the WBGT Index should always 

be located so that the readings obtained will be truly representative 

of the environmental conditions to which the workman is exposed. Sensors 

should be at about the mean height of the worker, and due consideration 

should be given to the location of radiation sources and the direction of 

air movement. A record shall be maintained of the WBGT Index observed 

at each of the various hot work sites.
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Medical

The purpose of the pre-placement examination of persons applying 

for hot jobs is the same as for evaluating the health status of a 

prospective employee for any job, namely, to determine his mental, physical 

and emotional qualifications to perform his job assignment with reasonable 

efficiency and without risk to his own health and safety or to that of 

his fellow employees.10^
The examining physician, however, will recognize the particular 

requirements for persons whose jobs involve significant heat exposure.

He should be probing in taking the employees' history, both medical and 

occupational, in order to discern possible evidence of intolerance co 

heat either occupational or off the job.

By the same token, a history of successful adaptation to heat 

exposure on previous jobs is perhaps the best criterion on which to 

predict effectiveness of a worker's future performance under heat stress, 

assuming that levels of work demands and heat exposure are equivalent and 

that no significant alteration has occurred in his health status since 

his previous employment.

For new employees without previous occupational exposure to heat, 

they should not be assigned to hot jobs where the environmental conditions 

exceed 79°F WBGT for men and 76°F WBGT for women until they are 

acclimatized. It has been established that both heat tolerance and also 

physical work capacity decline with age.10^’10^

During both the history taking and the physical examination, the 

examiner should direct careful attention particularly to detect evidence of 

chronic functional or organic impairments not only of the cardiovascular system
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but also of the kidneys, liver, endocrines, lungs, and skin. Significant 

disease of any of these systems should be disqualifying for new employement 

on jobs involving severe heat exposure, or for those previously employed 

on such jobs if the disease is progressive despite treatment.

Careful inquiry should be made on use of drugs, particularly hypotensive 

agents, diuretics, antispasmodics, sedatives, tranquilizers, and anti­

depressants as well as the abuse of drugs, particularly amphetamines, hard 

narcotics, and alcohol. Many of these drugs impair normal responses to 

heat stress and others alter behaviour, thus, exposing the employee or 

fellow workers to health and safety hazards. Evidence of therapeutic use 

of one or more of these categories of drugs or personal abuse of alcohol 

and other drugs should be disqualifying.
Other qualifications depend on the job demands independently from

heat exposure, for example, statutory requirements to qualify as a vehicle 

operator, craneman, locomotive engineer, etc., would obviously need to be 

met as well as nonstatutory requirements for jobs in a particular industry.

A glucose tolerance test, renal clearance studies, X-ray examination 

of the renal pelvis and biliary system with contrast media, pulmonary 

function tests and other special tests are recommended when indicated in 

addition to routine 12-lead ECG 14" x 17" chest X-ray, and the usual blood 

and urine analyses.

Workers employed on jobs which regularly expose them to levels of 

heat stress which have been determined to approach or equal permissible 

limits prescribed by the heat standard should be examined periodically 
on an annual basis or more frequently if indicated. The examination should 

be conducted during the summer season. In employees after the age of
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forty-five, physical and laboratory examinations should be designed to 

detect conset of chronic impairments of the cardiocirculatory and cardio­

respiratory systems and also to detect metabolic, skin, and renal disease. 

In cases of older employees who had not undergone the pre-placement 

examination, and whose health records indicated pre-existing chronic 

diseases of the systems referred to in the section on pre-employment 

examination, the examination should determine the extent to which such 

impairments have progressed. For all employees on hot jobs undergoing 

periodic examination, any history of acute illness or injury, either 

occupational or nonoccupational, during the interval between examinations, 

should be carefully evaluated. Repeated accidental injuries on the job 

or frequent sick absence should alert the physician to possible heat 

intolerance of the employee or the possibility of an aggravating stress 

with heat in combination, such as CO. Nutritional status should be 

noted and advice offered to correct overweight.

In industrial establishments in which heat stress approaches or 

equals permissible limits only during the summer season, periodic examin­

ations should be administered during the summer. In establishments in 

which heat stress at the permissible level occurs throughout the year, 

the periodic examination can be administered at any time regardless of 

season. The first periodic examination of workers already employed on 

hot jobs who had not undergone the pre-placement examination required 

for new employees should be conducted within a year. Guidelines for 

qualifications should be the same as for new employees but with due 

allowance made for successful performance on the job, which as indicated 

earlier is perhaps the most important criterion in evaluating a worker's 

capacity to adapt to heat stress on the job.
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In cases of those previously employed but with a record of health 

impairment or significant impairments found first on periodic examinations, 

the examiner should determine whether pre-existing impairments had been 

effectively controlled by treatment. If progressive, despite treatment, 

these findings should disqualify the employee from continuing on the same 

job. In case of impairments detected for the first time, the examiner 

should evaluate these in light of possible aggravation by heat stress.

If such a likelihood exists, the employee should be reevaluated 

periodically at intervals shorter than those recommended for routine 

periodic examinations.

For a new employee undergoing his first periodic examination, the 

examiner should note evidence of heat intolerance, including a history 

of repeated accidental injury on the job, episodes of heat disorder, or 

frequent sick absence. In such cases, the examiner should assess the 

employees capacity to continue on the same job and consider recommending 

his transfer if indicated.

The supervisor and selected personnel should be trained in recognizing 

the signs and symptoms of heat disorder and in administering first aid.

As described earlier, the most serious emergency is heat stroke signaled 

by the signs of dry, hot, red, or mottled skin, mental confusion, delirium, 

convulsions, or coma, and a high and rising rectal temperature, usually 

106°F and above but occasionally lower, between 104 and 106°F.

First aid treatment requires immediate removal to a cooler area, soaking 

the clothing in cold water, and fanning vigorously. The final treatment 

is conducted in a medical facility but first aid must not be delayed.
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In severe heat exhaustion, the victim may faint on standing, but 

unlike heat stroke the skin is wet and cool. He should be given water 

by mouth if conscious, and transported to the medical facility without delay.

Medical facilities to treat heat disorders should be as close as possible 

to work areas. Qualified personnel as appropriate must be available. In 

treating heat stroke an air conditioned room should be available, and 

provided with a tub and ice for immersion and massage treatment or a suitable 

table on which the patient may be placed, wrapped in wet sheets, and exposed 

to vigorous fanning. A special table is described by Leithead and Lind, 1964.^

Chlorpromazine, as an adjuvant to cooling treatment, may be administered 

in dosages of 25 to 50 mg I.V. This tends to reduce shivering and increases 

rate of heat dissipation.

Body temperature should be measured every 3 to 5 minutes and cooling 

interrupted when the rectal temperature reaches a level of 100 to 101°F. 

Monitoring is then continued to detect recurrence of hyperthermia or continued 

drop in temperature to hypothermic levels. This is avoided by reducing heat 

loss with blankets.

Shock may be present on admission to the medical facility. This is 

often corrected by the cooling treatment. If shock persists after adequate 

cooling, treatment should include oxygen inhalation, with careful administra­

tion of I.V. fluids, and use of pressor agents. With prompt first aid and 

emergency treatment by cooling, shock will rarely be a complication.

Heat exhaustion is treated by oral administration of salted liquids or 

by I.V. infusion of normal saline if the patient is unconscious or vomiting.
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In heat cramps, treatment is by I.V. infusion of normal saline, with 

rapid administration of 250 ml within 5 to 10 minutes. The patient then 

continues to replace body salt by ingesting salted foods and liquids. In 

moderate to severe cases bed rest for 24 hours is indicated.

Apprisal of Employees of Health and Safety Practices in Hot Environments

Exposure to hot environmental conditions can lead to primary heat 

illnesses, to unsafe acts, or to increased susceptibility to toxic 

chemicals and physical substances. Through the application of basic health 

and safety procedures, the individual may by proper precautions reduce the 

likelihood of ill effects from a hot work environment. Each employee who 

may be exposed to heat and each supervisor should through a safety training 

and indoctrination program be made aware, as a minimum, of the points 

discussed below:

It is essential that water intake during the workday should about equal 

the amount of sweat produced. Work in a hot environment may result in 

sweat productions of 1 to 3 gallons a day. If this water lost in the sweat 

is not replaced, dehydration with its debiliating effects will result.

Thirst is an inadequate drive to stimulate one to drink that much more 

water. An ample supply of cool water readily available to the workers is 

required and the worker should be encouraged to take a drink of water each 

15 to 20 minutes preferably using disposable paper cups rather than 

drinking directly from the fountain.

Large amounts of salt may be lost in the sweat particularly by the 

individual not acclimatized to heat. The salt must be replaced daily to 

prevent heat induced salt deficiency heat illness.

The acclimatized individual looses much less salt in his sweat. Salt
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can be replaced by liberally salting ones food or by using a 0.1% salt 

solution drinking water. About 1 level tablespoon of table salt to fifteen 

quarts of water will make a 0.1% salt solution. Enteric coated salt tablets 

may also be used; however, they must be taken with ample water to prevent 

gastric irritation. It is particularly important that salt depletion is 

prevented by supplemental salt intake during the first few days of heat 

exposure when the worker is not yet acclimatized.

Each employee exposed to heat should weigh himself at the beginning 

and end of the workday to insure that fluid intake has been sufficient to 

prevent serious dehydration. Weight loss at the end of the workday should 

not exceed 1.5% of the worker's body weight.

Each employee should be instructed on how to recognize the symptoms 

of heat disorders and illnesses including dehydration exhaustion, heat 

syncope, heat cramps, salt deficiency exhaustion, prickly heat and heat 

stroke. Recognition of early warning signs so that corrective or evasive 

action can be taken is one of the best means of preventing health damage.

The major heat disorders are shown in Figure 3 and have been discussed in 

the section on Medical Considerations.

The most prevalent of the heat disorders is undoubtedly heat syncope 

(possibly along with heat edema) which is seldom a debilitating disorder. 

Fainting may follow prolonged standing, sudden postural changes, unaccustomed 

exercise, particularly if the exercise involves stooping or heavy lifting or 

standing upright after exercise. Fainting of this nature is not unusual 

in hot surroundings and in heat unacclimatized individuals. It is seldom 

reported among those who are accustomed to and experienced in living in 

hot climates, a fact that can be related partly to the development of

V-26



acclimatization and partly to "learning to live with hot climates".

Heat syncope is usually self-limiting, since recovery follows assumption 

of the recumbent position; but if an individual faints in a confined area and 

is unable to fall down, death can and does result. Fainting at the job site 

can also have serious safety consequences. Treatment of the patient involves 

removal to cool surroundings where he or she is allowed to rest. The disorder 

is readily prevented by education of the unacclimatized as to the causes of 

the disorder, by careful introduction of the uninitiated to the problems 

associated with lack of acclimatization, and by grading the amount of work 

until acclimatization is achieved.

It Is not possible to assign specific levels of heat stress in which 

heat syncope may be expected; the reasons for this lies in the wide degree 

of individual variation on exposure to heat and the relatively different 

response of individuals to work in the heat depending on 1) their physical 

condition and 2) their state of acclimatization. Hence, heat syncope is an 

unpredictable disorder, but is preventable by proper indoctrination and 

education in sensible "hot-weather hygiene".

Other important problems are disorders of water and electrolyte balance. 

The principle disorders in this category are water-depletion heat exhaustion 

and salt-depletion heat exhaustion. Neither need occur in industry. Both 

disorders occur following continued heavy sweating. It is not uncommon for 

industrial workers to lose 10-12 liters (20-25 pints) of sweat each day^^ 

and if that much water is not replaced, water depletion occurs. Irrespective 

of whether water depletion occurs rapidly (e.g., in a day) or progressively
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(over many days), the end result is the same. In extreme examples, as

for men lost in a desert with no water to drink to replace sweat losses,
16death can occur in 12 hours and is usually inevitable within 48 hours.

Even for individuals in a temperate climate, such as castaways at sea, water 

deprivation will usually result in death in 7-10 days. Death from water 

depletion will occur if 9-10 liters (18-20 pints) is lost from the body, and 

loss of 4 liters (8 pints) without replacement leads to intense thirst, a 

rapid heart rate, and a high body temperature. Water intake must equal the 

water loss by sweat if this disorder is to be avoided; workers exposed to 

hot climates must be encouraged to drink an ample supply of water or flavored 

drinks which must be readily available to them. Again, there is no specific 

environmental condition above which this disorder occurs, since it depends 

simply on the replacement of the fluid loss which occurs even in comfortable 

conditions; however, the hotter the environment is, the greater is the fluid 

loss by sweating and the worker will thereby come closer to water depletion.

Salt is also lost in the sweat. The concentration of salt in the sweat 

is higher in unacclimatized men than in acclimatized men, but the concentration 

also depends on the dietary salt intake, which is usually in excess of the 
body's n e e d s . I f  salt lost in the sweat exceeds the dietary intake, a 

salt depletion occurs. If this is not corrected, a vicious cycle can occur, 

since salt depletion can lead to loss of appetite and nausea, leading in turn 

to a further salt depletion; moderately severe salt depletion results in 

vomiting and diarrhea, with further loss of salt. If this cycle is not inter­

rupted, death inevitably follows. Those who suffer salt depletion complain 

of weariness and weakness and may suffer muscle cramps; headaches, giddiness,
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and other symptoms are common. While those who are not acclimatized are at 

greatest risk, the disorder can occur in any individual who sweats a lot 

and whose dietary salt intake is low. Supplementary salt of 5 to 15g daily 

may be required by unacclimatized men to avoid salt depletion, though this 

may be reduced by half or more after 10 days of work in the heat. While at 

least some of this supplementary salt can be obtained by the additional 

salting of food, it may be necessary to supply salted drinks or salt tablets 

to be taken with drinking water.

The most severe heat disorder is heatstroke, the mortality rate for
16which has been found to be between 25% and 75%. The variability in 

mortality depends on the length of time elapsing between the onset of the 

disorder and the start of treatment and the highest body temperature attained 

during the episode. Heatstroke always constitutes an urgent medical emergency, 

in which the basic requirement is to cool the patient rapidly.

Heatstroke is a state of thermoregulatory failure usually of sudden onset, 

following exposure to hot environments, and is characterized by a disturbance 

of the central nervous system (often expressed as convulsions), by a failure 

of sweating (so that the skin is hot and dry), and by a high deep body temper­

ature. The body temperature at the time of onset of the disorder is usually 

in excess of 40.5°C (105°F) although cases have been reported at 39.5°C (103°F). 

The treatment of heatstroke must be vigorous and immediate, under the careful 

control of a physician.

The environmental conditions in which heatstroke has been reported have 

been plotted on a psychrometric chart (Figure 10) and are surprisingly low.
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But the values reported do not include the degree of radiant heat load, nor 

do they disclose the rate of work of the victims prior to the onset of the 

disorder; both of these contributions to the total heat load were probably 

high in many cases. Nevertheless, heatstroke has been known to occur in 

environmental conditions that are not particularly severe. Additional 

contributory causes can be of many origins - heavy clothing, water depletion, 

age, cardiovascular, or other concurrent disease, obesity, hard physical 

work, etc. It is not uncommon for heat disorders to co-exist and for one 

to predispose the individual to another. But heat syncope and heatstroke 

are mutually exclusive - syncope will in this event protect the individual 

from the more severe disorder.

This brief summary of heat disorders outlines the origins of and the 

methods of prevention of the commoner disorders; further and detailed infor­

mation is available in the extensive review by Leithead.^
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Fig. z .  Typical average rectal temperatures(*)--------
and pulse rates (A ).-------

on successive days of exposure to heat 
and work .
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Figure 9» Suggested Instrument Arrangement for Environmental 
Measurements
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TABLE I

Factors Important in Determining Exposure-Effects 

Environmental Factors Human Factors

Temperature
Humidity
Wind
Long Wave Radiation 
Solar Radiation 
Dust
Aerosols
Gases
Fumes
Barometric Pressure 
Clothing

Age
Sex
Physical Fitness 
Body Build 
Health
Acclimatization 
Nutrition & Hydration 
Motivation 
Training
Physical Capabilities 
Mental Capabilities 
Emotional Stability 
Ethnic Characteristics

Relationships

Job Factors

Complexity of Task 
Duration of Task 
Physical Load 
Mental Load 
Perceptual-motor Load 
Sensorimotor Load 
Skill Required
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