

Home Search Collections Journals About Contact us My IOPscience

Comment on 'Electromagnetic force on a moving dipole'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 Eur. J. Phys. 33 L3

(http://iopscience.iop.org/0143-0807/33/1/L02)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 158.111.4.53

The article was downloaded on 20/01/2012 at 21:53

Please note that terms and conditions apply.

doi:10.1088/0143-0807/33/1/L02

LETTERS AND COMMENTS

Comment on 'Electromagnetic force on a moving dipole'

V Hnizdo

National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA

E-mail: vhnizdo@cdc.gov

Received 18 August 2011 Published 28 November 2011 Online at stacks.iop.org/EJP/33/L3

Abstract

Using the Lagrangian formalism, the force on a moving dipole derived by Kholmetskii *et al* (2011 *Eur. J. Phys.* **32** 873–81) is found to be missing some important terms.

Recently, Kholmetskii *et al* [1] have inspected the analysis of Vekstein [2] of the force on a small system of zero net charge but with electric and magnetic dipole moments d and m, respectively, moving with velocity v in an electromagnetic field E, B. They concluded that the last term in Vekstein's expression for the force,

$$F_{V} = (d \cdot \nabla)E + \nabla(m \cdot B) + \frac{1}{c}d \times (v \cdot \nabla)B, \tag{1}$$

is erroneous and derived for the force the following expression:

$$F_{\text{KMY}} = \nabla(d \cdot E) + \nabla(m \cdot B) + \frac{1}{c} \frac{\partial}{\partial t} (d \times B). \tag{2}$$

In both (1) and (2), the dipole moments d and m may arise from the rest-frame dipole moments m_0 and d_0 according to transformations that read to first order in v/c as $[3]^1$

$$d = d_0 + \frac{1}{c}v \times m_0, \qquad m = m_0 - \frac{1}{c}v \times d_0.$$
 (3)

In this comment, we employ the Lagrangian formalism to obtain the force on a zerocharge particle with rest-frame electric and magnetic dipole moments, moving in a static electromagnetic field. The resulting force, correct to first order in v/c, is

$$F = \nabla (d \cdot E) + \nabla (m \cdot B) - \frac{1}{c} m_0 \times (v \cdot \nabla) E + \frac{1}{c} d_0 \times (v \cdot \nabla) B$$
$$- \frac{1}{c} \dot{m}_0 \times E + \frac{1}{c} \dot{d}_0 \times B. \tag{4}$$

¹ The magnetic moment $m = -v \times d_0/c$ of a moving rest-frame electric dipole d_0 is not the standard magnetic dipole moment $(1/2c) \int d^3r \, r \times J(r)$ of a divergenceless current distribution J(r). It is to be regarded as a quantity the correct use of which will yield the force on the moving dipole exerted by an external magnetic field.

L4 Letters and Comments

Here, the term $(1/c) d_0 \times (v \cdot \nabla) B$ agrees to first order in v/c with the last term in Vekstein's force (1), disputed in [1], but the term's 'dual', $-(1/c) m_0 \times (v \cdot \nabla) E$, absent in both (1) and (2), is present, too; the last two terms, where the dots denote time derivatives, are due to the possible time dependence of the dipole moments m_0 and d_0 . Note also that $\nabla (d \cdot E) = (d \cdot \nabla) E$ when the field E is static ($\nabla \times E = 0$).

The moving particle acquires moments (3), and thus its interaction with a static field E, B is

$$U = -d \cdot E - m \cdot B$$

$$= -d_0 \cdot E - \frac{1}{c} (v \times m_0) \cdot E - m_0 \cdot B + \frac{1}{c} (v \times d_0) \cdot B.$$
(5)

The nonrelativistic Lagrangian of such a particle is then

$$L = \frac{1}{2}mv^{2} - U$$

$$= \frac{1}{2}mv^{2} + (\mathbf{d}_{0} + \mathbf{v} \times \mathbf{m}_{0}/c) \cdot \mathbf{E} + (\mathbf{m}_{0} - \mathbf{v} \times \mathbf{d}_{0}/c) \cdot \mathbf{B}$$

$$= \frac{1}{2}mv^{2} + \mathbf{d}_{0} \cdot \mathbf{E} + \mathbf{m}_{0} \cdot \mathbf{B} + \frac{1}{c}\mathbf{v} \cdot (\mathbf{m}_{0} \times \mathbf{E} - \mathbf{d}_{0} \times \mathbf{B}), \tag{6}$$

yielding a canonical momentum

$$\frac{\partial L}{\partial v} = mv + \frac{1}{c} (m_0 \times E - d_0 \times B). \tag{7}$$

The use of the Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v} = \frac{\partial L}{\partial r} \tag{8}$$

with the time derivative

$$\frac{\mathrm{d}}{\mathrm{d}t} (m_0 \times E - d_0 \times B) = m_0 \times (v \cdot \nabla)E + \dot{m}_0 \times E$$
$$- d_0 \times (v \cdot \nabla)B - \dot{d}_0 \times B \tag{9}$$

results in a force

$$m\dot{\mathbf{v}} = \nabla[(\mathbf{d}_0 + \mathbf{v} \times \mathbf{m}_0/c) \cdot \mathbf{E}] + \nabla[(\mathbf{m}_0 - \mathbf{v} \times \mathbf{d}_0/c) \cdot \mathbf{B}] - \frac{1}{c} \mathbf{m}_0 \times (\mathbf{v} \cdot \nabla)\mathbf{E} + \frac{1}{c} \mathbf{d}_0 \times (\mathbf{v} \cdot \nabla)\mathbf{B} - \frac{1}{c} \dot{\mathbf{m}}_0 \times \mathbf{E} + \frac{1}{c} \dot{\mathbf{d}}_0 \times \mathbf{B},$$
(10)

which, recalling transformations (3), is force (4), understood as mass times acceleration.

Let us now apply expression (4) to simplifying examples. Consider first a constant electric dipole d_0 with vanishing magnetic moment m_0 , moving with velocity v in a static magnetic field B and zero electric field E. Modelling the dipole as charges q and -q separated by a small displacement l, so that $d_0 = ql$, the force on the dipole is the net Lorentz force on these charges, which, since $B(r+l) - B(r) \approx (l \cdot \nabla)B(r)$, is given by

$$F_{L} = \frac{1}{c} v \times (d_0 \cdot \nabla) B. \tag{11}$$

But according to expression (4) with E = 0 and $\dot{d}_0 = 0$, the force on the dipole is given as

$$F = \nabla(m \cdot B) + \frac{1}{c} d_0 \times (v \cdot \nabla) B$$

$$= -\frac{1}{c} \nabla[(v \times d_0) \cdot B] + \frac{1}{c} d_0 \times (v \cdot \nabla) B,$$
(12)

Letters and Comments L5

where we used $m = -v \times d_0/c$. Let us check whether that agrees with force (11). Using standard vector calculus identities, we have

$$-\nabla[(v \times d_0) \cdot B] = \nabla[d_0 \cdot (v \times B)]$$

$$= (d_0 \cdot \nabla)(v \times B) + d_0 \times [\nabla \times (v \times B)]$$

$$= v \times (d_0 \cdot \nabla)B - d_0 \times (v \cdot \nabla)B. \tag{13}$$

Substituting (13) into (12) yields the Lorentz force (11). The term $(1/c)d_0 \times (v \cdot \nabla)B$, called into question in [1], is thus needed in expression (4) to yield the correct force (11).

Consider further a constant magnetic dipole m_0 with vanishing electric moment d_0 , moving with velocity v in a static electric field E and zero magnetic field B. According to expression (4) with B=0 and $\dot{m}_0=0$, the force on the dipole is now given by

$$F = \nabla (d \cdot E) - \frac{1}{c} m_0 \times (v \cdot \nabla) E$$

$$= \frac{1}{c} \nabla [(v \times m_0) \cdot E] - \frac{1}{c} m_0 \times (v \cdot \nabla) E,$$
(14)

where we used $d = v \times m_0/c$. Using standard identities, we have

$$\nabla[(v \times m_0) \cdot E] = -\nabla[m_0 \cdot (v \times E)]$$

$$= -(m_0 \cdot \nabla)(v \times E) - m_0 \times [\nabla \times (v \times E)]$$

$$= -(m_0 \cdot \nabla)(v \times E) - m_0 \times [(\nabla \cdot E)v - (v \cdot \nabla)E]. \tag{15}$$

Substituting (15) with $\nabla \cdot E = 4\pi \rho = 0$ (the dipole is assumed to be moving in a region where the external charge density ρ vanishes) into (14) yields

$$F = -\frac{1}{c} (m_0 \cdot \nabla)(v \times E). \tag{16}$$

This is the force on a magnetic dipole moving in a static electric field that is used in an analysis by Aharonov *et al* [4] of the Aharonov–Casher effect [5], which is the electric analogue of the well-known Aharonov–Bohm effect. In that analysis, the force is obtained by invoking the so-called hidden momentum of a magnetic dipole (see e.g. [6] and references therein), but we obtained it here directly using the transformation $d = v \times m_0/c$ and the Lagrange formalism (a similar procedure has been used in [7]). Without the term $-(1/c)m_0 \times (v \cdot \nabla)E$ in expression (4), the generally accepted quantum-mechanical nature of the Aharonov–Casher effect could be questioned [8].

Interestingly, Schwinger scattering [9], which is the scattering of neutrons by the electric field of an atomic nucleus, can be shown to be due to force (16). The Schwinger-scattering Hamiltonian,

$$H = -\frac{\hbar^2}{2m} \nabla^2 + \frac{i\mu\hbar}{mc} \boldsymbol{\sigma} \cdot (\boldsymbol{E} \times \boldsymbol{\nabla})$$
 (17)

(see [10], equation (42.1)), is transformed into a classical Hamiltonian by the replacements $-i\hbar\nabla \to P$ and $\mu\sigma \to m_0$, where P and m_0 are the classical canonical momentum and magnetic dipole moment, respectively:

$$H = \frac{1}{2m} P^2 - \frac{1}{mc} \boldsymbol{m}_0 \cdot (\boldsymbol{E} \times \boldsymbol{P})$$

= $\frac{1}{2m} P^2 - \frac{1}{mc} \boldsymbol{P} \cdot (\boldsymbol{m}_0 \times \boldsymbol{E}).$ (18)

If this Hamiltonian can be derived from the Lagrangian

$$L = \frac{1}{2}mv^2 + \frac{1}{c}v \cdot (m_0 \times E), \tag{19}$$

L6 Letters and Comments

which is that of equation (6) with $d_0 = 0$ and B = 0 and thus it yields force (16) when $\dot{m}_0 = 0$, then the force implied by Hamiltonian (18) is the same, at least to order v/c. But Lagrangian (19) yields a canonical momentum

$$P = \frac{\partial L}{\partial v} = mv + \frac{1}{c} (m_0 \times E), \tag{20}$$

and thus the Lagrange transformation [11] results in a Hamiltonian

$$H = \mathbf{P} \cdot \mathbf{v} - L = \frac{1}{2} m v^{2}$$

$$= \frac{1}{2m} (\mathbf{P} - \mathbf{m}_{0} \times \mathbf{E}/c)^{2}$$

$$\approx \frac{1}{2m} P^{2} - \frac{1}{mc} \mathbf{P} \cdot (\mathbf{m}_{0} \times \mathbf{E}),$$
(21)

dropping in the last line a term proportional to $1/c^2$ in accordance with the fact that the Schwinger Hamiltonian (17) is nonrelativistic. The last line of (21) is indeed Hamiltonian (18).

Acknowledgments

The author acknowledges correspondence with Alexander Kholmetskii and Oleg Missevitch, and with Grigory Vekstein, who communicated to the author a preprint of his comment on [1]. This comment was written by the author in his private capacity. No official support or endorsement by the Centers for Disease Control and Prevention is intended or should be inferred.

References

- Kholmetskii A L, Missevitch O V and Yarman T 2011 Electromagnetic force on a moving dipole Eur. J. Phys. 32 873–81
- [2] Vekstein G E 1997 On the electromagnetic force on a moving dipole Eur. J. Phys. 18 113-17
- [3] Panofsky W K H and Phillips M 2005 Classical Electricity and Magnetism 2nd edn (New York: Dover) section 18-6
- [4] Aharonov Y, Pearle P and Vaidman L 1988 Comment on 'Proposed Aharonov-Casher effect: another example of an Aharonov-Bohm effect arising from a classical lag' *Phys. Rev.* A 37 4052-55
- [5] Aharonov Y and Casher A 1984 Topological quantum effects for neutral particles Phys. Rev. Lett. 53 319-21
- [6] Hnizdo V 1997 Hidden mechanical momentum and the field momentum in stationary electromagnetic and gravitational systems Am. J. Phys. 65 515–18
- [7] Al Jaber S M, Zhu X and Hennenberger W C 1991 Interaction of a moving magnetic dipole with a static field Eur. J. Phys. 12 266–70
- [8] Boyer T H 1987 Proposed Aharonov-Casher effect: another example of an Aharonov-Bohm effect arising from a classical lag *Phys. Rev.* A 36 5083–86
- [9] Schwinger J 1948 On the polarization of fast neutrons Phys. Rev. 73 407-9
- [10] Berestetskii V B, Lifshitz E M and Pitaevskii L P 1982 Quantum Electrodynamics (Oxford: Butterworth–Heinemann)
- [11] Landau L D and Lifshitz E M 1976 Mechanics (Oxford: Butterworth-Heinemann) section 40