- 1 Development of monoclonal antibodies to recombinant terrelysin and characterization of
- 2 expression in Aspergillus terreus

3

5

14

- 4 Ajay P. Nayak^{1, 2}, Brett J. Green¹, Sherri Friend³, Donald H. Beezhold^{1*}
- 6 1. Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National
- 7 Institute for Occupational Safety and Health, Centers for Disease Control and Prevention,
- 8 Morgantown, WV 26505.
- 9 2. Department of Microbiology, Immunology and Cell Biology, West Virginia University,
- 10 Morgantown, WV 26505.
- 3. Pathology and Physiology Research Branch, Health Effects Laboratory Division, National
- 12 Institute for Occupational Safety and Health, Centers for Disease Control and Prevention,
- 13 Morgantown, WV 26505.
- * Corresponding author.
- 16 Ajay P Nayak, M.S.
- 17 Allergy and Clinical Immunology Branch,
- 18 1095 Willowdale Road.
- 19 National Institute for Occupational Safety and Health,
- 20 Morgantown, WV 26505.
- 21 Phone: (304) 285-5721 Ext 6. Fax: (304) 285-6126.
- E-mail: fyg1@cdc.gov, ajnayak1@gmail.com
- 23 Key words: Aspergillus terreus, terrelysin, monoclonal antibodies

25 ABSTRACT

Aspergillus terreus is an emerging pathogen that mostly affects immunocompromised
patients with infections that are often difficult to manage therapeutically. Current diagnostic
strategies are limited to the detection of fungal growth using radiological methods or biopsy that
often does not enable species-specific identification. As a result, there is a critical need for
diagnostic techniques to enable early and specific identification of the causative agent. In this
study, we describe monoclonal antibodies (mAbs) developed to a previously described
recombinant terrelysin. Sixteen hybridomas of various IgG isotypes were generated to the
recombinant protein, of which seven demonstrated reactivity to the native protein in hyphal
extracts. Cross-reactivity analysis using hyphal extracts from 29 fungal species, including 12
Aspergillus species and 5 different strains of A. terreus showed that 3 mAbs (13G10, 15B5 and
10G4) were A. terreus-specific. Epitope analysis demonstrated mAbs 13G10 and 10G4
recognize the same epitope 'PSNEFE', while mAb 15B5 recognized the epitope 'LYEGQFHS'.
Time course studies showed that terrelysin expression was highest during early hyphal growth
and dramatically reduced after mycelial expansion. Immunolocalization studies demonstrated
that terrelysin is localized not only within the cytoplasm of hyphae but appeared to be more
abundant at the hyphal tip. These findings were confirmed in cultures grown at room temperature
as well as at 37 °C. Additionally, terrelysin was detected in the supernatant of A. terreus
cultures. These observations suggest terrelysin may be a candidate biomarker for A. terreus
infection.

INTRODUCTION

Bacterial hemolysins have been identified to have a functional role in microbial
pathogenesis through lysis of host cell membranes (Bhakdi et al., 1996; Chu et al., 1991; Seeger
et al., 1991). Fungal hemolysins have been studied for their pleiotropic functions as virulence
factors (Kumagai et al., 1999; Malicev et al., 2007; Rebolj et al., 2007; Zuzek et al., 2006),
lipoprotein-binding (Kudo et al., 2001; Kudo et al., 2002), fungal development (Berne et al.,
2002; Berne et al., 2007), and utility as markers of cholesterol micro-domains on eukaryotic cell
membranes (Chowdhury et al., 2008; Rebolj et al., 2006). To date, limited information is
available as to the function of these proteins in fungal biology.
Although A. fumigatus is the leading cause of invasive aspergillosis in
immunocompromised individuals, A. terreus, as well as A. flavus, A. niger and rarely A. nidulans
have also been identified as etiological agents (Balajee, 2009a; Perfect et al., 2001; Segal et al.,
1998). A. terreus is an opportunistic fungal pathogen that has been identified to cause infections
including onychomycosis (Hilmioglu-Polat et al., 2005), otitis (Tiwari et al., 1995),
endophthalmitis (Garg et al., 2003), peritonitis (Verghese et al., 2007), suppurative abscess
(Sukroongreung and Thakerngpol, 1985), and osteomyelitis (Natesan et al., 2007). Resistance of
A. terreus to amphotericin B, thermotolerance, and production of accessory conidia have been
suggested to aid in the rapid dissemination of the organism during invasive infections (Blum et
al., 2008; Pore and Larsh, 1967). Collectively, these factors are believed to contribute to the very
high mortality rates among immunocompromised patient populations and highlight the need for
species-specific diagnostic methodologies.
Fungal hemolysins have been characterized from a variety of fungal species (Ebina et al.,
1982; Van Emon et al., 2003; Vesper and Vesper, 2004; Wartenberg et al., 2011). Aspergillus

hemolysin (Asp-hemolysin) has been detected in the tissues of mice in an invasive aspergillosis animal model (Ebina *et al.*, 1982). Stachylysin, a hemolysin derived from *Stachybotrys chartarum* was reported to be detectable in sera of exposed animals and patients (Ebina *et al.*, 1982; Van Emon *et al.*, 2003). In a previous study, we used molecular methods to identify a hemolysin (terrelysin) produced by the opportunistic fungal pathogen, *A. terreus* (Nayak *et al.*, 2011a). In this study, we describe the generation of terrelysin-specific monoclonal antibodies (mAbs), and characterize the expression of native terrelysin during fungal growth.

METHODS

Production of monoclonal antibodies against recombinant terrelysin (rTerrelysin)

Three 8-10 week old BALB/c mice (The Jackson Laboratory, Bar Harbor, ME) were housed in the animal facility at the National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV. The facility is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) and animals were free of viral pathogens, parasites, mycoplasma, and *Helicobacter* spp. Animals were housed together in HEPA-filtered ventilated polycarbonate cages with autoclaved hardwood Beta-chip bedding and cotton fiber nesting material. The animals were provided with Teklad 7913 rodent chow (Harlan Laboratories, Madison, WI) and autoclaved tap water *ad libitum*. All animal procedures and immunizations were reviewed and approved by the NIOSH Animal Care and Use Committee (ACUC).

Prior to immunization, blood samples were collected from the tail vein and the serum was stored at -20 °C. Each animal was immunized 3 times, every other week with 25 μg of purified rTerrelysin (Nayak *et al.*, 2011a) emulsified 50% (v/v) in TiterMax® adjuvant (TiterMax USA, Norcross, GA). The mice were monitored for adverse health effects post immunization. Between immunizations, serum was collected from the tail vein to screen for specific IgG antibody responses.

Following the development of sufficient IgG titers, the animals were euthanized by CO₂ asphyxiation. The spleen was aseptically removed from each mouse and single cell suspensions of the splenocytes produced. Fusion of splenocytes with SP2/0-Ag 14 myeloma cells (ATCC# CRL-1581) was performed as previously described (Köhler and Milstein, 1975). Hybridomas were selected by growing cells in Dulbecco's Modified Eagle Medium (DMEM) (Life

Technologies, Rockville, MD) supplemented with 1 mM sodium pyruvate, 100 U/ml penicillin, 100 mg/ml streptomycin, 0.292 mg/ml L-glutamine, 100 mM sodium hypoxanthine, 16 mM thymidine, 10% fetal calf serum (FCS) (HyClone, Logan, UT), and 100 U/ml IL-6 (Boerhinger, Mannheim, Germany). DMEM was also supplemented with azaserine for selective propagation of hybridomas. After 10-14 days of growth, medium from individual wells with hybridoma cell growth was replenished with fresh DMEM medium. The supernatants from individual colonies were tested in a screening enzyme-linked immunosorbent assay (ELISA) to detect antibodies of varying IgG isotypes that reacted with rTerrelysin.

Supernatants of individual clones were tested twice to confirm reactivity of antibodies. Each positive well was then cloned twice by limiting dilution analysis and single positive clones were screened and selected for production of mAbs. Positive clones were frozen in 10% dimethyl sulfoxide (DMSO) and stored at -80 °C for 2 weeks and transferred to liquid nitrogen for long-term storage.

Purification, isotyping and quantification of rTerrelysin mAbs

All rTerrelysin mAbs were concentrated and partially purified by ammonium sulfate precipitation (Andrew and Titus, 1997). Briefly, mAb supernatant was collected from individual hybridomas and centrifuged at 20,000 x g for 30 min at 4 °C. The supernatant was collected and saturated ammonium sulfate was slowly added to the supernatant to 45% (v/v) and incubated overnight at 4 °C. The tubes were centrifuged for 45 min at 20,000 x g at 4 °C and the precipitate was collected and resuspended in PBS, pH 7.4. Concentration of purified antibodies and their isotype were determined using methods previously described (Nayak *et al.*, 2011b).

Fungal cultures and extracts

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

For time point assays, fungal cultures were grown by inoculating 50 ml minimal medium (containing glucose, nitric salts and trace elements) (Hill and Kafer, 2001; Nayak et al., 2011b), with 2.5 x 10⁷ viable A. terreus conidia. Viability was determined using the LIVE/DEAD® BacLight TM Viability kit (Molecular Probes, Inc., Eugene, OR) (Chen and Seguin-Swartz, 2002). Following inoculation, flasks were incubated at either room temperature (RT) or 37 °C depending on the specific experimental design. A. terreus cultures were grown for up to 12 days with an individual flask representing a 24 h time point. A. terreus cultures and mycelial pellets were collected in 50 ml polypropylene tubes and centrifuged at 4,100 x g for 10 min. The culture supernatant (CSN) and mycelial pellets were collected and stored at -80 °C and the lyophilized CSN residue was resuspended in PBS, and mycelial pellets were processed using a mortar and pestle in PBS containing Complete Mini Protease Inhibitor Cocktail (Roche Diagnostics, Indianapolis, IN). Mycelial slurry was then collected into 15 ml polypropylene tubes and incubated at 4 °C overnight on a shaker to facilitate the release of intracellular proteins into the lysis solution. The next day, mycelial extracts (ME) were centrifuged at 4,100 x g for 10 min, and the supernatant collected and stored at -20 °C until analysis.

For cross-reactivity studies, ME were prepared from 29 different fungal species including 12 different *Aspergillus* species using the same method (**Table 1.**) Fungi were grown until mycelial pellets had formed (3-4 days). Protein concentrations of CSN and ME were estimated using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Thermo Scientific, Wilmington, DE) as previously described (Nayak *et al.*, 2011b).

144

143

Enzyme-linked immunosorbent assays

Screening mAbs. Hybridomas producing anti-terrelysin mAbs were identified by indirect ELISA. In brief, 96-well Immuno MaxiSorp microplates (Nunc, Rochester, NY) were coated overnight with rTerrelysin (1 μg/ml) in 0.05 M carbonate coating buffer pH 9.6 (CCB), and blocked with phosphate buffered saline (PBS) containing 0.5% Tween-20 and 5% nonfat dry milk (PBSTM) for 1h. CSN from each hybridoma was incubated in duplicate wells for 1 h at 37 °C, washed with phosphate buffered saline (PBS) containing 0.5% Tween-20 (PBST), and detected using alkaline phosphatase conjugated goat-anti mouse IgG antibody (H+L) (Promega, Madison, WI) diluted 1:5000 in PBSTM for 1 h at 37 °C. The wells were then washed in PBST and developed for 30 min using 4-paranitrophenyl-phosphate substrate (Sigma). Reactivity was determined by measuring the optical density (OD) at 405 nm. To compare the reactivity of identified mAbs, each mAb was purified and used at a concentration of 1 μg/ml and assayed with various dilutions of rTerrelysin bound to the assay plate. The plates were washed 3 times between individual steps of incubation with PBST.

Inhibition ELISA for analysis of native terrelysin. An inhibition ELISA was performed over a period of 2 days. On day 1, the 'assay plate' was coated with 0.1 μg/well of rTerrelysin and a second 'inhibition plate' was blocked overnight with PBSTM to prevent protein binding. On day 2, both plates were washed with PBST and the 'assay plate' was blocked with PBSTM at RT for 2 h. In the inhibition plate, serial dilutions of ME and CSN samples (protein concentration range 5 mg/ml-0.078 mg/ml) and serially diluted rTerrelysin standard (protein concentration range 78 μg/ml-1 mg/ml) were incubated with 40 ng/ml of anti-terrelysin mAb 10G4.. Negative control wells were incubated with PBS and positive control wells were incubated with mAb 10G4 alone. The inhibition plate was incubated on a shaker at RT for 1 h at

200 rpm and for 30 min without shaking. Next, the assay plates were washed and incubated with 100 μl of the mixture from the inhibition plate at 37 °C for 1 h. Plates were washed and incubated with alkaline phosphatase conjugated goat anti-mouse IgG antibody (H+L) diluted 1:5000 in PBSTM for 1 h at 37 °C. Plates were washed and developed using 4-paranitrophenyl-phosphate substrate. Reactivity was measured at OD at 405 nm and terrelysin concentrations determined for each sample by comparing to the standard curve using regression analysis.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

174

169

170

171

172

173

Western blot analysis of rTerrelysin and fungal ME

Western blot analysis was performed for screening individual mAbs reactivity to rTerrelysin, native terrelysin (A. terreus CSN and ME extracts), and for cross-reactivity analysis. rTerrelysin (500 ng/ml) and ME (2.5 mg/ml) collected from 4 day cultures of A. terreus were individually separated using SDS-PAGE on 12% polyacrylamide gels. For cross-reactivity testing, ME (2.5 mg/ml) from 29 different fungal species were separated on 12% polyacrylamide gels. Proteins were transferred overnight to nitrocellulose membranes (0.22 µm, BioRad) and the membranes were blocked using Tris-buffered saline containing 0.1% Tween-20 (TBST) and 3% bovine serum albumin (blocking buffer). Membranes were washed with TBST and transferred to a BIO-RAD Multi Screen apparatus (BioRad, Hercules, CA). Individual lanes were incubated with 1 µg/ml of mAb diluted in blocking buffer and incubated on a rocker for 1 h. Membranes were washed 3X with TBST and incubated with alkaline phosphatase conjugated goat anti-mouse IgG antibody (H+L) diluted 1:5000 in blocking buffer for 1 h on a rocker. Membranes were then washed with TBST and developed for 15-20 min using 1-Step NBT/BCIP (Promega, Madison, WI) substrate solution. The reaction was stopped by washing the membranes with distilled water.

Epitope mapping

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

Epitope mapping was performed using synthetic peptide synthesized by Sigma Genosys (JPT Peptide Technologies GmbH, Berlin, Germany). For peptide scans, 68 peptides spanning the entire rTerrelysin sequence (including the *Strep*-tag II sequence) were synthesized as linear decapeptides overlapping by 2 amino acids. Peptides were covalently bound to a Whatman 50 cellulose support (PepSpots membrane) at the C-terminus and the N-terminus was acetylated for higher stability. The membranes were processed for epitope mapping per the manufacturer's instructions.

In brief, the PepSpots membrane was rinsed in methanol for 5 min, washed 3X with TBS for 10 min, blocked overnight at 4 °C on a shaker with TBS containing 3% BSA. The membrane was incubated with 5 µg/ml of rTerrelysin mAbs for 3 h at RT on a shaker. The mAb 9B4, an IgG₁ isotype which recognizes a Stachybotrys chartarum conidial surface protein served as a negative control (Schmechel et al., 2006). The membrane was washed in TBST 3X for 5 min each and then incubated with goat anti-mouse IgG horseradish peroxidase (HRP) conjugated antibody (Promega, Madison, WI) diluted 1:50,000 in blocking buffer for 1 h at RT on a shaker. The membrane was washed thoroughly in TBST 3X for 5 min each and developed with ECL Western blotting substrate (Promega) as per manufacturer's instructions. After a brief incubation, excess substrate was discarded and the membrane was exposed to CL-XPosure TM clear blue X-Ray film (Thermo Scientific, Rockford, IL) and developed using a SRX-101A tabletop processor (Konica Minolta, Ramsey, New Jersey). For regeneration, the PepSpots membrane was washed twice with water for 10 min each and then incubated with regeneration buffer I (62.5 mM TRIS containing 2% SDS, pH 6.7; 100 mM 2-mercaptoethanol) at 50 °C using four 30 min incubations. The membranes were washed 3X for 20 min with PBS (10X), 3X with TBST, and 3X with TBS for 10 min at RT. The membrane was analyzed to ensure efficient removal of bound primary and secondary antibody prior to analysis of new mAbs.

Microscopic examination of A. terreus morphology

In order to correlate the expression of terrelysin to associated growth changes in *A. terreus*, we cultivated *A. terreus* in 24-well plates containing 2 ml of minimal medium. Wells were inoculated with 1 x 10⁶ viable *A. terreus* conidia and incubated on a shaker at either RT or 37 °C. Growth of *A. terreus* was monitored at various time points using an Olympus IX70 microscope (Olympus Corporation, Tokyo, Japan) and images were captured using a QImaging Retiga 2000R Fast camera (QImaging, Surrey, Canada) and processed using the SimplePCI6 software (Hamamatsu Corporation, Sewickley, PA).

Confocal Scanning Laser Microscopy localization of native A. terreus terrelysin

Immunolocalization of terrelysin was studied using a slight modification of previously described methods (Osmani *et al.*, 1988; Xiang *et al.*, 1995). Briefly, *A. terreus* FGSC 1156 cultures were grown on alcohol-sterilized cover slips in 6-well tissue culture plates that contained minimal medium. Cultures were incubated at 37 °C under static conditions for 24 h. Cover slips were fixed with 8% formalin buffered saline that contained 50 mM PIPES (pH 6.7), 25 mM EGTA, 1% DMSO and 5 mM MgSO₄ for 1 h at RT and the cover slips were then rinsed with MTSB (50 mM PIPES (pH 6.7), 5 mM EGTA and 5 mM MgSO₄). Cell wall digestion was carried out for 1 h at RT with an enzyme solution containing 2.5% Driselase® (Sigma, St. Louis, MO), 1% lysozyme from chicken egg white (Sigma) and 2 mM EGTA. Cells were rinsed with H₂O and then treated with 0.1% Triton X-100 in TBS pH 7.4 for 10 min. Cells were then rinsed

in MTSB and TBS once each. Cells were then blocked with 3% bovine serum albumin in TBS (TBSB) overnight at 4 °C with gentle shaking. Next, the cover slips were incubated with mAb 15B5 (3 µg/ml) in TBSB for 3 h with gentle shaking. mAb 9B4 (*S. chartarum* conidial surface protein) served as an negative control and mAb 13E11 that reacts with an *A. terreus* exoantigen leucine aminopeptidase served as a positive control (Nayak *et al.*, 2011b). Cells were washed thoroughly in TBST and stained with AlexaFluor® 594 conjugated goat anti-mouse IgG antibody (Molecular Probes Inc., Eugene, OR) diluted 1:50 in TBSB for 1 h at RT. Cells were washed in TBST and cover slips were placed on clean slides with ProLong® Antifade Reagent with DAPI (Molecular Probes Inc.). Cells were observed with a Zeiss LSM-510 Meta Confocal Microscope System (Axioplan 2 Stand) (Carl Zeiss, Thornwood, NY) and the images were acquired with Zeiss software version 3.2 (Carl Zeiss). All settings on the confocal laser microscope remained constant throughout the analysis.

RESULTS

Isotyping and sensitivity screening of rTerrelysin mAbs

Thirty-two hybridomas recognized rTerrelysin during the initial screening. Sixteen clones survived multiple cloning steps and were further analyzed in screening, cross-reactivity, and immunolocalization experiments. Nine clones (2G4, 3B2, 6D2, 7D8, 13G10, 15B5, 16C7, 9F4, 19E3) produced IgG₁ isotype mAbs, 4 (3B7, 10G4, 15C5, 15E4) produced IgG_{2a} isotype mAbs, and 3 (6E4, 10G7, 2D3) produced IgG_{2b} isotype mAbs. These mAbs exhibited variable reactivity to immobilized rTerrelysin in ELISA (**Fig. 1**). mAbs 2G4, 9F4, 19E3, 6E4 and 15E4 showed the least reactivity (≤ 0.25 OD₄₀₅ value) to rTerrelysin (data not shown). mAbs 3B2, 6D2, 7D8 and 16C7 showed moderate reactivity, while mAbs 13G10, 15B5, 3B7, 10G4, 15C5, 10G7 and 2D3 showed highest reactivity to rTerrelysin.

Western blot screening of mAbs to rTerrelysin and native terrelysin

Western blot analysis revealed reactivity to denatured rTerrelysin (16.5 kDa) for 11 of the 16 mAbs (**Fig. 2a**). The higher molecular weight bands observed in the lanes with purified rTerrelysin are likely to be aggregates formed during the storage of the protein at -20 °C. For native terrelysin, 4 of the 11 mAbs (3B2, 6D2, 16C7 and 2D3) did not show any reactivity with *A. terreus* ME (**Fig. 2b**). Seven mAbs (7D8, 13G10, 15B5, 3B7, 10G4, 15C5, and 10G7) reacted to a putative native terrelysin in ME and were chosen for further study.

Cross-reactivity and strain variations

Five strains of *A. terreus* including the pathogenic strain FGSC 1156 and the commonly used environmental strain ATCC 1012 were analyzed with each mAb by Western blot. All

mAbs, except 7D8, exhibited reactivity to a protein of the same molecular weight in ME derived from all strains (**Table 1**). Interestingly, the mAb 7D8 reacted to ME from 3 strains but 2 strains (NIOSH 17-30-31 and NIOSH 35-08-06) did not react.

ME from 11 other *Aspergillus* species including the pathogens *A. fumigatus*, *A. flavus*, *A. nidulans* and *A. niger* were also tested. mAb 15C5 showed maximum cross-reactivity among the mAbs tested, exhibiting cross-reactivity to ME from 6 different fungi, including *A. nidulans* and *A. parasiticus*. mAb 10G7 did not cross-react with any tested *Aspergillus* species, but it did react to ME from *E. rostratum*, *P. variotii* and *T. harzianum*. mAb 3B7 cross-reacted to ME from *C. cladosporioides*. No cross-reactivity was observed with any mAbs against ME from 4 *Penicillium* species. 4 mAbs (7D8, 13G10, 15B5 and 10G4) did not cross-react with any of the tested fungal species (**Table 1**).

Epitopes for rTerrelysin-mAbs

Owing to the high specificity determined in cross-reactivity studies, 3 mAbs (15B5, 13G10 and 10G4) were tested to determine their epitopes using overlapping decapeptides that span the entire sequence of rTerrelysin. For mAb 15B5, 2 spots were recognized at positions 20-21 (**Fig. 3**). The sequence of spots 20 and 21 correspond to 'SFLYEGQFHS' and 'LYEGQFHSPE', respectively. These data suggest that the epitope recognized by mAb 15B5 is 'LYEGQFHS'.

After ensuring complete removal of bound mAb 15B5 and regeneration of the SPOTs membrane, the membrane was then scanned using mAb 13G10. Four consecutive spots (52-55) reacted with mAb 13G10 and the resultant epitope was 'PSNEFE' (**Fig. 3**). Subsequently, mAb 10G4 was found to recognize the same epitope as mAb 13G10 based on SPOTscan data (**Fig. 3**).

SPOTscan of the membrane using control mAb 9B4 and secondary antibodies did not result in reactivity to any spots (data not shown).

Time-point kinetics of terrelysin expression

The expression of native terrelysin was examined using an inhibition ELISA to quantify the amount of terrelysin in CSN and ME at 24 h intervals (**Fig. 4a**). In ME, the highest relative concentrations of terrelysin were observed during the first few days of growth ranging between 10-12 µg/mg of total fungal protein. A 10-fold reduction was observed by day 4 - 5 (1 µg/mg of total protein) and after day 6 very little terrelysin was quantified in ME. Lower levels of terrelysin were detected in the CSN with a maximum at day 6 and then declining to nearly baseline by day 12.

The morphological features that were observed at the same time intervals are depicted in **Fig. 4b**. The early time points when expression of terrelysin was the highest, involved the initial stages of conidial germination and hyphal extension (12 h to 24 h). Hyphal aggregation was observed up to 96-120 h, when quantities of terrelysin were observed to decline. Beyond this time interval, the morphological changes could not be differentiated. Collectively, these results suggest that terrelysin expression occurs during initial stages of fungal growth between days 0-4. When hyphal aggregation is complete, a concurrent reduction in the production of terrelysin was observed. Terrelysin was detected in the CSN at each measured time interval with peak concentrations observed on day 6.

As *A. terreus* is thermotolerant, this experiment was repeated at 37 °C to further compare morphological stages with terrelysin production. Again, cultures were grown for 12 days and ME and CSN was collected at 24 h intervals. Overall the growth of *A. terreus* was accelerated and

the morphological stages of conidial germination and hyphal extension occurred earlier compared to RT treatments (**Fig. 5b**). Terrelysin expression was highest on day 1 (12 µg/mg of total protein) and decreased 3-fold by day 2 (4 µg/mg of total protein) (**Fig. 5a**). The concentration of terrelysin was further reduced 8-fold by day 3 (0.5 µg/mg of total protein). In CSN, comparatively higher proportion of terrelysin was detected during initial growth at 37 °C compared to RT; however, there was a decline in the concentration of terrelysin in the culture supernatant at 37 °C.

In summary, we observed that terrelysin expression is concurrent with conidial germination, hyphal extension and aggregation. Terrelysin concentration declined on formation of the mycelial pellets. Lower levels of terrelysin were detected in the CSN.

Immunolocalization of terrelysin

The cellular localization of terrelysin was examined by immunohistochemical staining methods using the terrelysin-specific mAb 15B5. Terrelysin was widely distributed within the hyphae (**Fig. 6**), with staining often of greater intensity near the hyphal tips. This pattern was distinctly different than the positive control (mAb 13E11) that stained a leucine aminopeptidase, a secreted protease, within the extracellular matrix of the hyphae (Nayak *et al.*, 2011b). No staining was observed in the extracellular matrix with mAb 15B5.

DISCUSSION

340

362

341	Aspergillus terreus is an emerging opportunistic pathogen reported to be an etiological
342	agent of fatal disseminated infections in immunocompromised populations (Baddley et al., 2003;
343	Hachem et al., 2004; Iwen et al., 1998). Due to the ability of this species to grow at internal body
344	temperatures and produce accessory conidia, this filamentous fungus is capable of initiating an
345	infection and disseminating within the body. Resistance to antibiotic treatment such as
346	amphotericin B allows for a longer infection time until effective treatment. A combination of
347	these factors facilitates rapid dissemination of the fungus and can result in mortality. To date,
348	very little is known about the overall pathogenesis and involvement of specific virulence factors
349	of A. terreus during infection
350	In A. fumigatus infections, Asp-hemolysin was reported in tissues of experimental
351	animals in an infection model (Ebina et al., 1982) and a role for hemolysin as potential virulence
352	factors had been previously suggested (Berne et al., 2009; Ebina et al., 1982; Kumagai et al.,
353	1999; Zuzek et al., 2006).
354	Previously, the gene for terrelysin was cloned and used to produce a recombinant protein
355	(Nayak et al., 2011a). In this study, rTerrelysin was used as the antigen for the development of
356	terrelysin-specific mAbs, which were then utilized to characterize terrelysin expression during A.
357	terreus growth. Four of the 11 mAbs generated to rTerrelysin (3B2, 6D2, 16C7 and 2D3) did
358	not react to native terrelysin in A. terreus ME. Two possibilities for this include; a) the mAbs
359	recognized the N-terminal tag associated with rTerrelysin or b) their epitopes may be modified
360	by post-translational processes under natural conditions as there is a putative N-glycosylation (N-
361	X-S/T) site in the terrelysin sequence. One antibody (mAb 2D3), reacted with other purified

recombinant proteins (rEnolase from Chaetomium globosum and rHev b 5 an allergen from

Hevea brasiliensis) expressed in the same pASK-IBA6 vector (data not shown). It was concluded that mAb 2D3 recognizes an epitope in the N-terminal tag expressed by this vector. Epitope mapping showed that mAb 2D3 recognizes the *Strep*-tag II sequence 'WSHPQFEK' (data not shown). The other 3 mAbs that did not react with native terrelysin did not show reactivity to other recombinant proteins, thus it is possible that their epitopes are conformational or blocked by post-translational modifications to the native protein.

In order to be useful as a diagnostic tool for the serological detection of terrelysin, it is essential that the mAb be species-specific. We tested 5 *A. terreus* strains, including the strain used for genomic sequencing (NIH 2624/FGSC A1156). All mAbs tested detected terrelysin expressed in this strain. Interestingly, 7D8, showed reactivity towards 3/5 strains of *A. terreus* tested and while low affinity might explain this inconsistent detection, genetic diversity within the epitope for this mAb is also a possibility. Although additional strains from different clinical and environmental isolates were not tested, the data suggests consistent expression of terrelysin across strains. Recently, a new species *A. alabamensis*, which is phenotypically homologous but genetically different to *A. terreus*, was isolated from immunocompetent patient populations (Balajee *et al.*, 2009b). It will be important to test the reactivity of these mAbs to *A. alabamensis* as well as other fungal species within Section *Terrei* such as *A. carneus* and *A. niveus*, which can also cause infections under rare circumstances (Crissy *et al.*, 1995; Wadhwani and Srivastava, 1984).

The terrelysin mAbs did not cross-react to ME from other clinically relevant *Aspergillus* species including *A. fumigatus*, *A. flavus* and *A. niger*. Weak reactivity was observed for mAb 15C5 with *A. nidulans* and *A. parasiticus* in Western blots. This reactivity was restricted to several high molecular weight proteins of ~ 50 and ~ 60 kDa and probably represents non-

specific staining. Using cross-reactivity data, we identified 3 mAbs (13G10, 15B5 and 10G4) that did not cross-react with any of the tested species. These 3 highly specific mAbs are important candidates for immunodiagnostic detection of *A. terreus* in clinical samples. Based on epitope mapping studies, we identified 2 different epitopes recognized by these antibodies. mAb 15B5 (IgG₁) recognized the epitope 'LYEGQFHS' while both mAbs 13G10 (IgG₁) and 10G4 (IgG_{2a}) recognized the epitope 'PSNEFE'. These epitope sequences were not identified in homologous hemolysins derived from other fungal species with known aegerolysin sequences (Nayak *et al.*, 2011a).

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

Expression of hemolysin in relation to growth has been studied previously for *Pleurotus* ostreatus and Pseudomonas aeruginosa (Berne et al., 2002; Berne et al., 2007; Rao et al., 2008). For *P. ostreatus*, a basidiomycete, the greatest expression of ostreolysin was observed during the initial stages of fungal fruiting. For the bacteria P. aeruginosa, it was observed that expression of its hemolysin, PA0122 is highest in the stationary phase of growth (Rao et al., 2008). In contrast, limited information is available for the expression of aegerolysins in Ascomycetes. Recent studies have reported high Asp-hemolysin transcript levels in developing hyphae of A. fumigatus (Gravelat et al., 2008). In the present study, the expression of terrelysin was associated with morphological stages of A. terreus growth. The presence of terrelysin was highest during initial growth stages that encompassed conidial germination, hyphal extension and hyphal aggregation ("log phase"). During stationary growth phases, (lack of increase in mycelial pellet size) detection of terrelysin was significantly reduced. This was observed at earlier time intervals when cultures were grown at 37 °C and the presence of terrelysin consistently correlated with the morphological changes. These findings are consistent with studies by Rutqvist which showed that the hemolytic principle could be purified from A. fumigatus mycelia only during a limited

period of incubation at room temperature and that this period was earlier and shorter at 37 °C (Rutqvist, 1965).

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Using an inhibition ELISA, terrelysin was detected in CSN even though we did not identify a signal peptide on the terrelysin sequence using Signal P 3.0. This is in contrast to an earlier report where terrelysin was not identified in the secretome of A. terreus (Han et al., 2010). Whether detection of terrelysin in CSN is a result of active secretion, hyphal degradation, fragmentation, or due to the involvement of unique secretory processes currently remains unknown and is the focus of future research. Recently, Asp-hemolysin was identified as one of the most abundant protein in the A. fumigatus secretome even though the protein does not possess a signal peptide as noted earlier (Wartenberg et al., 2011). Other studies have highlighted secretion of proteins with no predicted signal sequence and have proposed nonconventional secretory mechanisms (Medina et al., 2005; Nickel, 2010; Rubartelli and Sitia, 1997). At day 6 in RT cultures and day 4 at 37 °C, small increases in levels of terrelysin were observed in CSN. Hyphal fragmentation was observed at these time points and this could, in part, explain the presence of terrelysin in CSN. Our immunolocalization studies demonstrate a uniform distribution of terrelysin within A. terreus hyphal cytoplasm with greater reactivity localized at hyphal tips. The hyphal tips are a region of extensive metabolic activity and consist of higher concentrations of proteins compared to regions that are adjacent to this zone of apical extension. Based on these morphological and immunohistochemical observations, it appears that terrelysin is expressed during early stages of growth, probably during the emergence of hyphae from conidia and active hyphal growth.

In summary, seven terrelysin mAbs were characterized and 3 were identified to be highly specific for *A. terreus*. These mAbs were used to show that terrelysin is expressed during

conidial germination and early growth of *A. terreus* hyphae. Since terrelysin was detected in CSN, it is possible that it could be detected in the serum of infected patients; however, this aspect has not been confirmed and remains the focus of future research. Serologic detection of terrelysin would make terrelysin useful as a biomarker, however the early expression of terrelysin in *A. terreus* growth may limit its usefulness for detecting infection. The kinetics of terrelysin production *in vivo* is unknown and more studies are required.

439	ACKNOWLEDGEMENTS
440	The findings and the conclusions in this report are those of the authors and do not
441	necessarily represent the views of the National Institute for Occupational Safety and Health. This
442	work was supported in part by an InterAgency agreement with the National Institute of
443	Environmental Health Sciences (Y1-ES0001-06).
444	

REFERENCES

- 447 Andrew, S. M., Titus, J. A. (1997). Purification and fragmentation of antibodies. Current
- 448 Protocols in Immunology. John Wiley & Sons, Inc., Somerset, NJ, pp. 2.7.1-2.7.12.
- Baddley, J. W., Pappas, P. G., Smith, A. C. & Moser, S. A. (2003). Epidemiology of
- 450 Aspergillus terreus at a university hospital. J Clin Microbiol 41, 5525-5529.
- 451 Balajee, S. A. (2009a). Aspergillus terreus complex. Med Myco. 47 Suppl 1, S42-46.
- Balajee, S. A., Baddley, J. W., Peterson, S. W., Nickle, D., Varga, J., Boey, A., Lass-Florl,
- 453 C., Frisvad, J. C. & Samson, R. A. (2009b). Aspergillus alabamensis, a new clinically relevant
- species in the section Terrei. *Eukaryot Cell* **8**, 713-722.
- Berne, S., Krizaj, I., Pohleven, F., Turk, T., Macek, P. & Sepcic, K. (2002). Pleurotus and
- 456 Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochim Biophys
- 457 Acta **1570**, 153-159.
- 458 Berne, S., Lah, L. & Sepcic, K. (2009). Aegerolysins: structure, function, and putative
- 459 biological role. *Protein Sci* **18**, 694-706.
- Berne, S., Pohleven, J., Vidic, I., Rebolj, K., Pohleven, F., Turk, T., Macek, P., Sonnenberg,
- 461 A. & Sepcic, K. (2007). Ostreolysin enhances fruiting initiation in the oyster mushroom
- 462 (*Pleurotus ostreatus*). *Mycol Res* **111**, 1431-1436.
- Bhakdi, S., Bayley, H., Valeva, A., Waley, I., Walker, B., Kehoe, M. & Palmer, M. (1996).
- Staphylococcal alpha-toxin, streptolysin-O, and *Escherichia coli* hemolysin: prototypes of pore-
- 465 forming bacterial cytolysins. *Arch Microbiol* **165**, 73-79.
- Blum, G., Perkhofer, S., Haas, H., Schrettl, M., Wurzner, R., Dierich, M. P. & Lass-Florl,
- 467 C. (2008). Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob
- 468 Agents Chemothe **52**, 1553-1555.
- 469 Chen, C. Y. & Seguin-Swartz, G. (2002). A rapid method for assessing the viability of fungal
- 470 spores. Can J Plant Pathol **24**, 230-232.
- Chowdhury, H. H., Rebolj, K., Kreft, M., Zorec, R., Macek, P. & Sepcic, K. (2008).
- 472 Lysophospholipids prevent binding of a cytolytic protein ostreolysin to cholesterol-enriched
- 473 membrane domains. *Toxicon* **51**, 1345-1356.
- 474 Chu, L., Bramanti, T. E., Ebersole, J. L. & Holt, S. C. (1991). Hemolytic activity in the
- 475 periodontopathogen *Porphyromonas gingivalis*: kinetics of enzyme release and localization.
- 476 *Infect Immun* **59**, 1932-1940.
- 477 Crissy, J. T., Lang, H. & Parish, L. C. (1995). Manual of Medical Mycology. Blackwell
- 478 Sciences, Cambridge, MA.
- 479 Ebina, K., Yokota, K. & Sakaguchi, O. (1982). Studies on toxin of Aspergillus fumigatus XIV:
- 480 Relationship between Asp-hemolysin and experimental infection in mice. *Jpn J Med Mycol* 23,
- 481 246-252.
- 482 Garg, P., Mahesh, S., Bansal, A. K., Gopinathan, U. & Rao, G. N. (2003). Fungal infection of
- sutureless self-sealing incision for cataract surgery. *Ophthalmology* **110**, 2173-2177.

- 484 Gravelat, F. N., Doedt, T., Chiang, L. Y., Liu, H., Filler, S. G., Patterson, T. F. & Sheppard,
- 485 **D. C.** (2008). In vivo analysis of Aspergillus fumigatus developmental gene expression
- determined by real-time reverse transcription-PCR. *Infect Immun* **76**, 3632-3639.
- 487 Hachem, R. Y., Kontoyiannis, D. P., Boktour, M. R., Afif, C., Cooksley, C., Bodey, G. P.,
- 488 Chatzinikolaou. I., Perego, C., Kantarjian, H. M. & Raad, I. I. (2004). Aspergillus terreus:
- an emerging amphotericin B-resistant opportunistic mold in patients with hematologic
- 490 malignancies. *Cancer* **101**, 1594-1600.
- 491 Han, M. J., Kim, N. J., Lee, S. Y. & Chang, H. N. (2010). Extracellular proteome of
- 492 Aspergillus terreus grown on different carbon sources. Curr Genet **56**, 369-382.
- 493 Hill, T. W. & Kafer, E. (2001). Improved protocols for Aspergillus minimal medium: Trace
- 494 element and minimal medium stock solutions. Fungal Genet Newsletter 48, 20-21.
- 495 Hilmioglu-Polat, S., Metin, D. Y., Inci, R., Dereli, T., Kilinc, I. & Tumbay, E. (2005). Non-
- 496 dermatophytic molds as agents of onychomycosis in Izmir, Turkey a prospective study.
- 497 *Mycopathologia* **160**, 125-128.
- 498 Iwen, P. C., Rupp, M. E., Langnas, A. N., Reed, E. C. & Hinrichs, S. H. (1998). Invasive
- 499 pulmonary aspergillosis due to Aspergillus terreus: 12-year experience and review of the
- 500 literature. *Clin Infect Dis* **26**, 1092-1097.
- Köhler, G. & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of
- predefined specificity. *Nature (Lond.)* **256**, 495-497.
- Kudo, Y., Fukuchi, Y., Kumagai, T., Ebina, K & Yokota, K. (2001). Oxidized low-density
- 504 lipoprotein-binding specificity of Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys
- 505 *Acta* **1568**, 183-188.
- Kudo, Y., Ootani, T., Kumagai, T., Fukuchi, Y., Ebina, K. & Yokota, K. (2002). A novel
- 507 oxidized low-density lipoprotein-binding protein, Asp-hemolysin, recognizes
- lysophosphatidylcholine. *Biol Pharm Bull* **25**, 787-790.
- Kumagai, T., Nagata, T., Kudo, Y., Fukuchi, Y., Ebina, K. & Yokota, K. (1999). Cytotoxic
- activity and cytokine gene induction of Asp-hemolysin to murine macrophages. *Nippon Ishinkin*
- 511 Gakkai Zasshi **40**, 217-222.
- Malicev, E., Chowdhury, H. H., Macek, P. & Sepcic, K. (2007). Effect of ostreolysin, an Asp-
- 513 hemolysin isoform, on human chondrocytes and osteoblasts, and possible role of Asp-hemolysin
- 514 in pathogenesis. *Med Mycol* **45**, 123-130.
- Medina, M. L., Haynes, P. A., Breci, L. & Francisco, W. L. (2005). Analysis of secreted
- proteins from *Aspergillus flavus*. *Proteomics* **5**, 3153-3161.
- Natesan, S., Abraham, G., Mathew, M., Lalitha, M. K. & Srinivasan, C. N. (2007).
- 518 Secondary sternal Aspergillus osteomyelitis in a diabetic hemodialysis patient with previous
- allograft rejection. *Hemodial Int* **11**, 403-405.
- Navak, A. P., Blachere, F. M., Hettick, J. M., Lukomski, S., Schmechel, D. & Beezhold, D.
- 521 **H.** (2011a). Characterization of recombinant terrelysin, a hemolysin of Aspergillus terreus.
- 522 *Mycopathologia* **171**, 23-34.

- Nayak, A. P., Green, B. J., Janotka, E., Hettick, J. M., Friend, S., Vesper, S. J., Schmechel,
- 524 **D. & Beezhold, D. H. (2011b).** Monoclonal antibodies to hyphal exoantigens derived from the
- 525 opportunistic pathogen, Aspergillus terreus. Clin Vaccine Immunol 18, 1568-1576.
- Nickel, W. (2010). Pathways of unconventional protein secretion. Curr Opin Biotechnol 21,
- 527 621-626.
- 528 Osmani, S. A., Engle, D. B., Doonan, J. H. & Morris, N. R. (1988). Spindle formation and
- 529 chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle
- 530 control gene. *Cell* **52**, 241-251.
- Perfect, J. R., Cox, G. M., Lee, J. Y., Kauffman, C. A., de Repentigny, L., Chapman, S. W.,
- Morrison, V. A., Pappas, P., Hiemenz, J. W. & Stevens, D. A. (2001). The impact of culture
- isolation of Aspergillus species: a hospital-based survey of aspergillosis. Clin Infect Dis 33,
- 534 1824-1833.
- Pore, R. S. & Larsh, H. W. (1967). Aleuriospore formation in four related *Aspergillus* species.
- 536 *Mycologia* **59**, 318-325.
- Rao, J., DiGiandomenico, A., Unger, J., Bao, Y., Polanowska-Grabowska, R. K. &
- 538 Goldberg, J. B. (2008). A novel oxidized low-density lipoprotein-binding protein from
- *Pseudomonas aeruginosa. Microbiology* **154**, 654-665.
- Rebolj, K., Batista, U., Sepcic, K., Cestnik, V., Macek, P. & Frangez, R. (2007). Ostreolysin
- affects rat aorta ring tension and endothelial cell viability in vitro. Toxicon 49, 1211-1213.
- Rebolj, K., Ulrih, L. P., Macek, P. & Sepcic, K. (2006). Steroid structural requirements for
- interaction of ostreolysin, a lipid-raft binding cytolysin, with lipid monolayers and bilayers.
- 544 *Biochim Biophys Acta* **1758**, 1662-1670.
- Rubartelli, A. & Sitia, R. (1997). Secretion of mammalian proteins that lack a signal sequence.
- In: K. Kuchler, et al., Eds.), Unusual secretory pathways: From bacteria to man. RG Landes,
- 547 Austin, TX, pp. 87-104.
- Rutqvist, L. (1965). Studies on Aspergillus fumigatus; toxin production by different strains and
- serological comparison of the strains. *Acta Vet Scand* **6**, 224-233.
- 550 Schmechel, D., Simpson, J. P., Beezhold, D. H. & Lewis, D. M. (2006). The development of
- species-specific immunodiagnostics for Stachybotrys chartarum: the role of cross-reactivity. J
- 552 *Immunol Methods* **309**, 150-159.
- 553 Seeger, W., Obernitz, R., Thomas, M., Walmrath, D., Suttorn, N., Holland, I. B.,
- Grimminger, F., Eberspacher, B., Hugo, F. & Bhakdi, S. (1991). Lung vascular injury after
- administration of viable hemolysin-forming Escherichia coli in isolated rabbit lungs. Am Rev
- 556 Respir Dis **143**, 797-805.
- 557 Segal, B. H., DeCarlo, E. S., Kwon-Chung, K. J., Malech, H. L., Gallin, J. I. & Holland, S.
- 558 M. (1998). Aspergillus nidulans infection in chronic granulomatous disease. Medicine
- 559 (Baltimore) **77**, 345-354.
- 560 Sukroongreung, S. & Thakerngpol, K. (1985). Abnormal form of Aspergillus terreus isolated
- from mycotic abscesses. *Mycopathologia* **91**, 47-52.

- Tiwari, S., Singh, S. M. & Jain, S. (1995). Chronic bilateral suppurative otitis media caused by
- 563 Aspergillus terreus. Mycoses 38, 297-300.
- Van Emon, J. M., Reed, A. W., Yike, I. & Vesper, S. J. (2003). ELISA measurement of
- stachylysin in serum to quantify human exposures to the indoor mold Stachybotrys chartarum. J
- 566 Occup Environ Med **45**, 582-591.
- Verghese, S., Palani, R., Thirunavakarasu, N., Chellama, T. & Pathipata, P. (2007).
- Peritonitis due to Aspergillus terreus in a patient undergoing continuous ambulatory peritoneal
- 569 dialysis. *Mycoses* **51**, 174-176.
- 570 Vesper, S. J. & Vesper, M. J. (2004). Possible role of fungal hemolysins in sick building
- 571 syndrome. *Adv Appl Microbiol* **55**, 191-213.
- 572 Wadhwani, K. & Srivastava, A. K. (1984). Fungi from otitis media of agricultural field
- workers. Mycopathologia 88, 155-159.
- Wartenberg, D., Lapp, K., Jacobsen, I. D., Dahse, J. M., Kniemeyer, O., Heinekamp, T. &
- 575 **Brakhage, A. A. (2011).** Secretome analysis of *Aspergillus fumigatus* reveals Asp-hemolysin as
- a major secreted protein. *Int J Med Microbiol* **301**, 602-611.
- 577 Xiang, X., Roghi, C. & Morris, N. R. (1995). Characterization and localization of the
- 578 cytoplasmic dynein heavy chain in Aspergillus nidulans. Proc Natl Acad Sci USA. 92, 9890-
- 579 9894.

- Zuzek, M. C., Macek, P., Sepcic, K., Cestnik, V. & Frangez, R. (2006). Toxic and lethal
- effects of ostreolysin, a cytolytic protein from edible oyster mushroom (*Pleurotus ostreatus*), in
- 582 rodents. *Toxicon* **48**, 264-71.

TABLE AND FIGURE LEGENDS 586 587 Table 1. Cross-reactivity profiles of terrelysin-mAbs analyzed by Western blot. As: 588 Aspergillus, Ac: Acremonium, Al: Alternaria, Ch: Chaetomium, Cl: Cladosporium, Ex: 589 Exserohilum, Fu: Fusarium, Ne: Nesosartorya, Pa: Paecilomyces, Pe: Penicillium, Sc: 590 Scopulariopsis, Tr: Trichoderma. +: Positive reactivity. 591 592 Fig. 1. Reactivity of mAbs to rTerrelysin. Moderate reactivity is defined as ≤ 1.0 (OD₄₀₅ value) 593 when assayed with 1 µg/ml of mAb concentration. High reactivity is defined as ≥ 1.0 (OD₄₀₅ 594 value) when assayed with 1 μg/ml of mAb concentration. 595 596 Fig. 2. Western blot analysis of a) rTerrelysin and b) A. terreus mycelial extract with 597 terrelysin mAbs. Lane 1: Molecular weight marker, 2: mAb 2G4, 3: mAb 3B2, 4: 6D2, 5: mAb 598 7D8, 6: mAb 13G10, 7: mAb 15B5, 8: mAb 16C7, 9: mAb 9F4, 10: mAb 19E3, 11: mAb 3B7, 599 12: mAb 10G4, 13: mAb 15C5, 14: mAb 15E4, 15: mAb 6E4, 16: mAb 10G7, 17: mAb 2D3. 600 Positive reactivity is identified by presence of an immunoreactive band at ~ 17 kDa. 601 602 Fig. 3. Epitope mapping of anti-rTerrelysin mAbs. SPOTs membrane scans for mAbs 15B5, 603 13G10 and 10G4. Each spot represents a decapeptide of rTerrelysin sequence. Decapeptides 604 were sequential with an overlap of 2 amino acids and spanned the entire sequence of rTerrelysin 605 including the N-terminal purification Strep-tag II and the Factor Xa cleavage site.

Fig. 4a. Kinetics of terrelysin expression at RT. ELISA inhibition analysis performed using mAb 10G4. Data points represent samples collected on different days after inoculation and error bars represent standard error of the mean calculated from 3 separate experiments. Fig. 4b. Morphological changes and progression of A. terreus culture growth at RT. Black arrows point to germinating conidia and hyphal extension in early cultures. Bars represent 10 µm for 0-24 h and 100 μm for 48-120 h. Fig. 5a. Kinetics of terrelysin expression at 37 °C. ELISA inhibition analysis performed using mAb 10G4. Data points represent samples collected on different days after inoculation and error bars represent standard error of the mean calculated from 3 separate experiments. Fig. 5b. Morphological changes and progression of A. terreus culture growth at 37 °C. Black arrows indicate germinating conidia and hyphal extension in early cultures. Bars represent 10 μm for 12-24 h and 100 μm for 36-72 h. Fig. 6. Immunolocalization of terrelysin in A. terreus hyphae. Immunolocalization of the antigens was determined AlexaFluor® 594-labeled goat anti-mouse IgG secondary antibodies (Red) and nuclear staining was identified through DAPI staining (blue). mAb 13E11 served as a positive control and reacts with A. terreus leucine aminopeptidase, while Stachybotrys specific mAb 9B4 served as a negative control. White arrows indicate staining by anti-terrelysin 15B5 mAb at fungal hyphal tips.

607

608

609

610

611

612

613

614

615

616

617

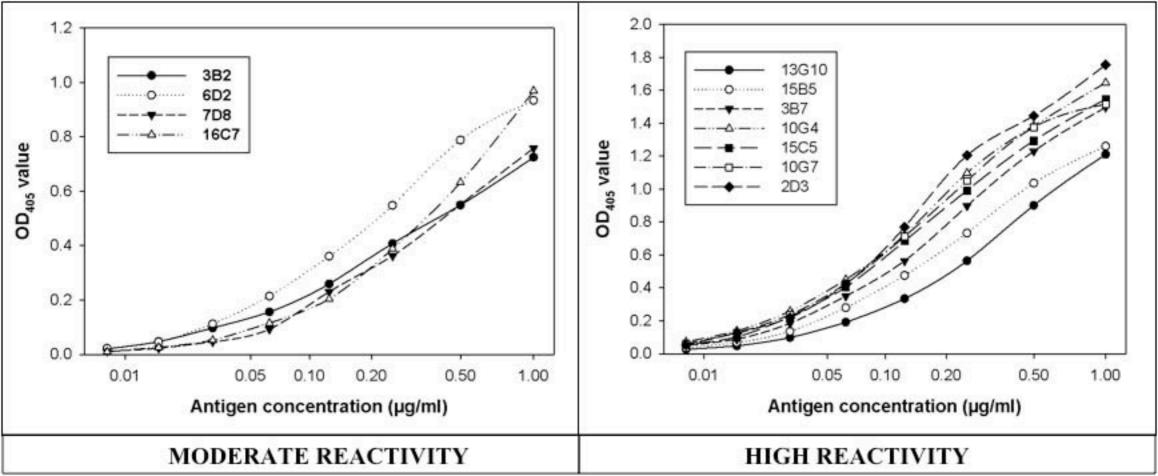
618

619

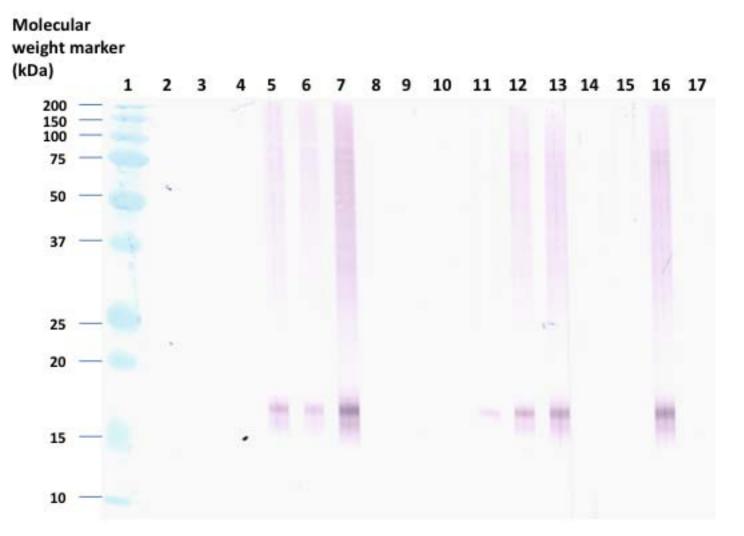
620

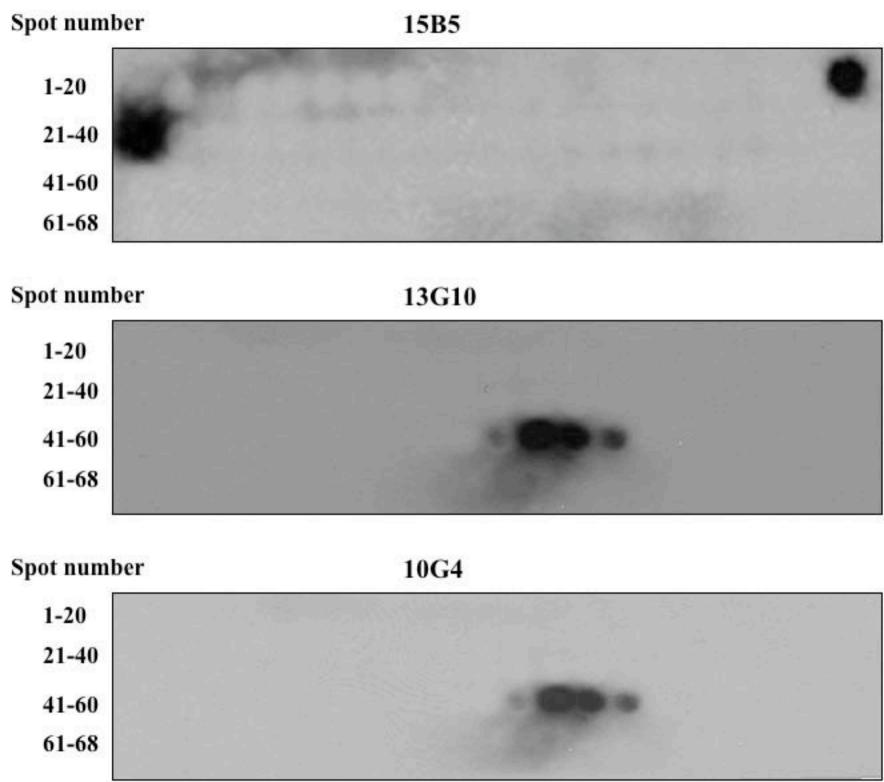
621

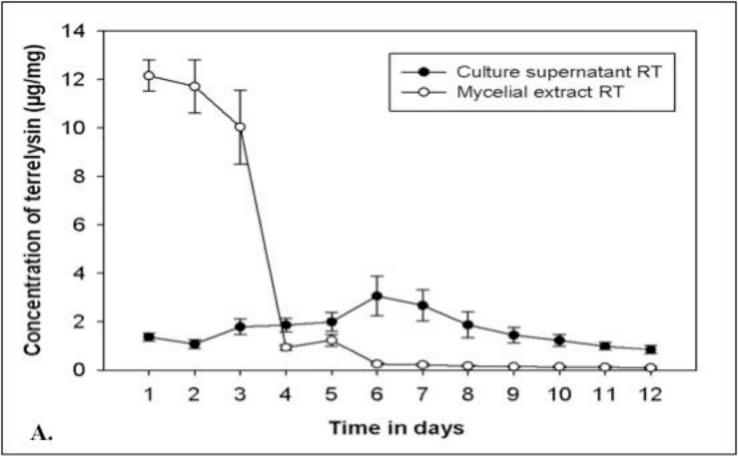
622

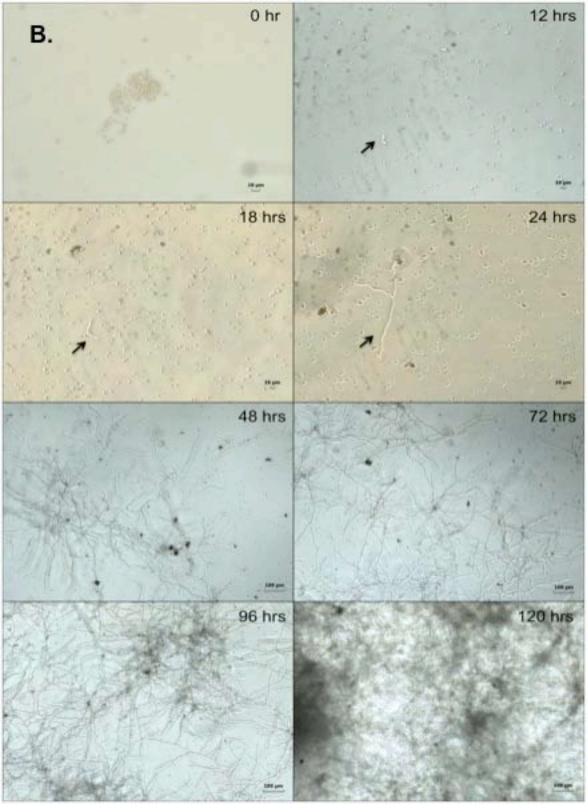

623

624


625


626


627



Molecula weight m (kDa)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
200 150 100	Ξ																	
75 50																		
37																		
25	_																	
20	_					_	-				9~							
15				_		-	-	-	****			-	-				-	8000
10	-																	

