MATHEMATICAL MODEL TO PREDICT THE SKIN DISPOSITION OF DEET AND OTHER VOLATILE COMPOUNDS

DRC Repository

OhioLINK

Digital Resource Commons

• DRC Home
• About
• Contact a Librarian

en US

- DRC Home
- OhioLINK Electronic Thesis and Dissertation Center

KASTING, DR. GERALD B

- University of Cincinnati ETDs
- · View Item

MATHEMATICAL MODEL TO PREDICT THE SKIN DISPOSITION OF DEET AND OTHER VOLATILE COMPOUNDS

Show simple item record de contributor advisor

dc.contributor.author	SANTHANAM, ARJUN	en_US
dc.date.accessioned	2008-07-08T16:49:26Z	
dc.date.available	2008-07-08T16:49:26Z	
dc.date.created	2004	en_US
dc.date.issued	2008-07-08T16:49:26Z	
dc.identifier.uri	http://rave.ohiolink.edu/etdc/view?acc_num=ucin1092343602	en_US
dc.identifier.uri	http://hdl.handle.net/2374.OX/12832	

Estimation of penetration rates and systemic absorption following the application of a chemical to skin is an important tool used in a variety of fields including personal care, drug delivery and dermal risk assessment for occupational exposures. The objective of this project was to develop a predictive diffusion model for the disposition of volatile compounds on skin. In the first part of this project, the penetration of DEET, a widely used insect repellant, through spilt thickness cadaver skin was measured in non occluded Franz cells. The percent of DEET penetrated after 72 hours increased gradually with dose, up to a dose of about 680 µg/cm², and declined at higher doses. This lead to the hypothesis that DEET was enhancing its own penetration. The hypothesis was supported by a literature review and by a supplementary study in which DEET pretreatment increased the permeability of skin to benzyl alcohol. Finally a simple diffusion model was developed to predict the absorption of volatile compounds through skin. The model had three parameters – a solubility value for the

dc.description

chemical in the upper stratum corneum M sat; a mass transfer coefficient for evaporation k evap; and a characteristic time en_US for diffusion h^2/D . The value of h^2/D decreased with DEET dose in the dose range 30-300 µg/cm². In the second part of the project, the model was tested on other volatile and non volatile compounds. Butyl nicotinate and benzyl alcohol displayed skin permeability enhancing properties similar to DEET, and required a diffusivity that varied with dose, while methyl nicotinate, niacinamide and vanillylnonanamide did not. For volatile compounds, the value of k evap was found to be proportional to the logarithm of the saturated vapor pressure, P vp. A qualitative relationship between M sat and lipid and water solubility could be seen, but more compounds must be studied to establish a quantitative relationship. The expected variation of h^2/D with molecular size was weak and not statistically significant. The current model is relatively simple with many approximations, but it has advantages over earlier compartmental models and has the potential to be extended to consider complications such as multi-component diffusion and ingredient interactions

	to be extended to consider complications such as multi-component diffusion and ingredient interactions.	
dc.description.provenance	e Made available in DSpace on 2008-07-08T16:49:26Z (GMT). No. of bitstreams: 0	en
dc.format	application/pdf	en_US
dc.format	80p.	en_US
dc.rights	unrestricted	en_US
dc.rights	Copyright and permissions information available at the source archive	en_US
dc.subject	DEET, evaporation,	en_US
dc.subject	percutaneous absorption,	en_US
dc.subject	mathematical model,	en_US
dc.subject	skin	en_US
dc.title	MATHEMATICAL MODEL TO PREDICT THE SKIN DISPOSITION OF DEET AND OTHER VOLATILE COMPOUNDS	en_US
dc.type	Electronic Thesis or Dissertation	en_US
dc.degree.name	MS	en_US
dc.degree.level	masters	en_US
dc.degree.discipline	Pharmace: Pharmaceutical Sciences	en_US
dc.degree.grantor	University of Cincinnati	en_US
dc.contributor.publisher	University of Cincinnati / OhioLINK	en_US

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

• University of Cincinnati ETDs

Show simple item record

Search DRC

Go Search DRC OThis Collection Advanced Search

Browse

- · All of DRC
 - Communities & Collections
 - By Issue Date
 - <u>Authors</u>
 - <u>Titles</u>
 - Subjects
 - By Series
- This Collection
 - By Issue Date
 - Authors
 - <u>Titles</u>
 - Subjects
 - · By Series

My Account

- <u>Login</u> <u>Register</u>