
Vapor Recognition with Small Arrays of
Polymer-Coated Microsensors. A Comprehensive
Analysis

Jeongim Park,† William A. Groves,‡ and Edward T. Zellers*,†,§

Department of Environmental Health Sciences, Department of Chemistry, University of Michigan,
Ann Arbor, Michigan 48109-2029, and Department of Preventive Medicine and Environmental Health, University of Iowa,
Iowa City, Iowa 52242-5000

A comprehensive analysis of vapor recognition as a
function of the number of sensors in a vapor-sensor array
is presented. Responses to 16 organic vapors collected
from six polymer-coated surface acoustic wave (SAW)
sensors were used in Monte Carlo simulations coupled
with pattern recognition analyses to derive statistical
estimates of vapor recognition rates as a function of the
number of sensors in the array (e6), the polymer sensor
coatings employed, and the number and concentration of
vapors being analyzed. Results indicate that as few as two
sensors can recognize individual vapors from a set of 16
possibilities with <6% average recognition error, as long
as the vapor concentrations are >5 × LOD for the array.
At lower concentrations, a minimum of three sensors is
required, but arrays of 3-6 sensors provide comparable
results. Analyses also revealed that individual-vapor
recognition hinges more on the similarity of the vapor
response patterns than on the total number of possible
vapors considered. Vapor mixtures were also analyzed for
specific 2-, 3-, 4-, 5-, and 6-vapor subsets where all
possible combinations of vapors within each subset were
considered simultaneously. Excellent recognition rates
were obtainable for mixtures of up to four vapors using
the same number of sensors as vapors in the subset.
Lower recognition rates were generally observed for
mixtures that included structurally homologous vapors.
Acceptable recognition rates could not be obtained for the
5- and 6-vapor subsets examined, due, apparently, to the
large number of vapor combinations considered (i.e., 31
and 63, respectively). Importantly, increasing the number
of sensors in the array did not improve performance
significantly for any of the mixture analyses, suggesting
that for SAW sensors and other sensors whose responses
rely on equilibrium vapor-polymer partitioning, large
arrays are not necessary for accurate vapor recognition
and quantification.

An increasing number of reports have appeared in recent years
on the analysis of gas-phase species with arrays of partially

selective sensors.1-13 For the analysis of volatile organic com-
pounds, surface acoustic wave (SAW) sensors coated with liquid
or rubbery solid polymers have a number of useful attributes.
Responses of these sensors vary in direct proportion to the extent
of vapor sorption, which is typically rapid, reversible, and a linear
function of vapor concentration.1-6,14-18 In addition, responses to
multiple vapors are often additive,1,3,18 which facilitates modeling
and pattern recognition analysis. Response patterns derived from
arrays of polymer-coated SAW sensors have been used to
recognize, discriminate among, and quantify multiple individual
vapors as well as the components of simple multivapor mixtures
at low and sub ppm concentrations.1-5 Other sensor-array tech-
nologies employing polymeric interfaces whose responses are
similarly affected by differential vapor sorption include optical fiber
arrays,8,9 chemiresistors,19,20 thickness-shear mode resonators,13

and flexural plate wave (FPW) sensors.21
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A critical question that arises in the development of polymer-
coated sensor arrays is how many sensors are necessary for
accurate vapor recognition and quantification. The answer depends
on the number and nature of vapors to be analyzed, the complexity
of possible mixtures, the nature and uniqueness of individual
vapor-sensor interactions, the shapes of the response isotherms,
absolute and relative concentrations of the vapors, signal-to-noise
ratios, environmental factors, etc.1,2 This dependence on sample-
and array-specific variables makes it difficult to develop universal
recommendations for minimum array sizes.

Experimental studies on sensor-array vapor analysis reported
to date have been limited, in general, by the size of the database
generated and/or by the statistical analyses performed. Few
reports have considered the analysis of mixtures of vapors in
which each component must be recognized and quantified and
fewer still have considered mixtures of more than two va-
pors.1,3,7,8,13,20,22 The recent increase in commercial sensor-array-
based instrumentation, including so-called “electronic nose”
technology,23 has led to speculation over the size of the sensor
array required for generalized vapor analysis. Some have argued,
on the basis of mammalian olfaction models, that a large number
of sensors must be used.19,20 Others have argued, on the basis of
vapor-polymer sorption models, that beyond a few well-chosen
sensors little additional information will likely be obtained about
vapor identities,24 at least where sensors whose responses rely
on reversible sorption processes are employed. Some evidence
to support the latter position can be found.2,3,19,20,22,25 However,
there has yet to be a study that addresses the performance limits
of sensor arrays and properly accounts for all relevant variables.

This type of problem lends itself well to Monte Carlo modeling.
In a series of recent articles, we have explored the use of Monte
Carlo simulation in conjunction with either extended disjoint
principal components regression (EDPCR) or neural network
analyses for optimizing the selection of polymer coatings and for
assessing the accuracy of recognition and quantification of
individual vapors and simple vapor mixtures with SAW and FPW
sensor arrays.1-4,21,26 By incorporating the random and systematic
variations expected in sensor responses in typical operation,
modeling response patterns for vapor mixtures, and providing
precise statistical estimates of vapor-specific recognition and
quantification error rates, this approach to sensor-array evaluation
can provide information on performance that is experimentally
inaccessible.

Our previous analyses were limited to testing polymer-coated
SAW sensor arrays of fixed size (i.e., three or four SAW sensors)
and mixtures of up to only three organic vapors. Refinements have
been made to the computer-modeling program to improve the
accuracy of the Monte Carlo simulation model, increase the
number of sensors considered (up to six), and increase the
complexity of the mixtures analyzed (up to six vapors simulta-

neously). This permits, for the first time, a comprehensive
assessment of vapor recognition. In this article, response data from
six SAW sensors are analyzed with the Monte Carlo/EDPCR
approach to illustrate, in a general way, how the number of sensors
and the types of polymer coatings employed in an array affect
the nature and number of recognition errors predicted to occur
as a function of the nature, number, and concentrations of vapors
being analyzed.

EXPERIMENTAL SECTION
Coating Selection. As with all chemometric methods, the

Monte Carlo/EDPCR analyses require a database of responses.
Establishing such a database, in turn, requires selecting an initial
set of sensors, polymer coatings, and vapors for testing, from
which various subsets and combinations can be examined. The
most rational approach to selecting polymeric coatings for a vapor
sensor array entails the use of linear solvation-energy relationships
(LSER), which draw upon the analogy between sensor responses
to vapors and their retention in the stationary phase of a gas
chromatographic (GC) column. Use of LSERs in the context of
chemical sensors was first formally described by Grate and
Abraham24 and has been studied extensively in the context of SAW
sensors by Grate et al.27-29 and by others.18,30 In this approach,
vapor-polymer interactions are divided into contributions at-
tributable to dispersion, dipolarity, polarizability, and hydrogen-
bond acceptance and donation. An array of sensors, each coated
with a polymer whose functionalities give rise to interactions
associated predominantly with one of these LSER components,
should provide an excellent platform for generalized organic vapor
analysis where responses rely on equilibrium sorption into the
sensor coating layers.

Limitations on the use of LSER based models for guiding the
selection of polymers in an array of SAW sensors must be
acknowledged. Many vapors interact by only one or two of the
five interactions represented in the LSER models and thus may
require more subtle differences in coating structure of a particular
type to affect discrimination. In addition, regression models used
to predict partitioning with LSERs often have large regression
constants indicating residual unexplained components of the
overall vapor-polymer interaction. Partition coefficients derived
from GC, which form the basis of the LSER coefficient determina-
tions, may not accurately reflect the gravimetric component of
SAW sensor response.31,32 Furthermore, SAW sensor responses
are also governed by viscoelastic changes in the polymer,16,33
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which have eluded modeling thus far. Despite these limitations,
accurate estimates of SAW sensor responses are possible using
LSER models,18,29 and they comprise the best approach currently
available for selecting polymer coatings in arrays intended for
generalized vapor analysis.

Coatings of polyisobutylene (PIB), poly(diphenoxyphosphaz-
ine) (PDPP), polyepichlorohydrin (PECH), fluoropolyol (FPOL),
triphenylmethyl polysiloxane (OV-25), and bis-cyanoallyl polysi-
loxane (OV-275) were selected for this study on the basis of LSER
considerations, coating stability, and cluster analyses of a previ-
ously published data set (Figure 1).18 PIB is a nonpolar, rubbery,
amorphous solid that interacts with vapors almost exclusively
through dispersive forces, and as a result, shows progressively
greater sensitivity to higher boiling and less polar vapors. PDPP
is also a rubbery, amorphous solid. Although the nitrogen-
phosphorus backbone is expected to impart strong hydrogen-bond
basic character, the phenoxy side chains apparently buffer this
property, and it is found that PDPP is relatively more sensitive to
moderately polar oxygen-containing vapors such as ethers,
ketones, and esters. OV-25 is a slightly polar, highly polarizable,
viscous-liquid polymer containing a high percentage of phenyl
substituents that interact preferentially with vapors containing
aromatic functional groups. OV-275 is a polar, viscous-liquid
polymer whose pendant allyl-cyano groups are strongly dipolar
and also have significant hydrogen-bond basic character. This
coating interacts preferentially with vapors having significant
permanent dipoles and/or hydrogen-bond acidic functional groups
(e.g., alcohols). PECH is an amorphous rubbery solid whose ether
backbone and chloromethyl pendant groups render it moderately
dipolar and weakly hydrogen-bond basic. As a result it shows
preference for chlorinated hydrocarbons and moderately dipolar
oxygenated vapors. FPOL is an oligomeric viscous liquid contain-
ing trifluoromethyl and hydroxyl side chains on an aromatic-ether
backbone. The combination of these functional groups leads to
significant hydrogen-bond acidic character and consequently
unusually high sensitivity for alcohols, esters, and organophos-
phonates.1,14,16,34

As noted by Grate et al.,29 sorption of organic vapors by
polymeric coating materials such as these will be governed to a
large extent by dispersive interactions, and secondarily by more
specific (e.g., dipolar and hydrogen-bonding) interactions. Thus,
there is inevitably a nonspecific interaction component shared

among any set of such sensor coatings, which correlates inversely
with the volatilities of the vapors being measured.18 This feature
is common to most, if not all, vapor sensor arrays employing
polymer interfaces. That notwithstanding, the descriptions pro-
vided above, coupled with previous results reported by us and
others, suggest that the range of structural features and interac-
tions spanned by this set of polymer coatings is reasonably
comprehensive and should provide a diverse set of response
patterns to the target vapors.

Data Set Description. Response data were collected with two
small prototype instruments developed for measuring personal
exposures to organic vapors in occupational environments. Details
of their design and operation have been published elsewhere.1

Each instrument contains an array of three polymer-coated SAW
resonators operating at 250 MHz, an uncoated reference SAW
sensor, a miniature adsorbent preconcentrator, and microproces-
sor-controlled pneumatic and heating systems for sample capture,
sample transport, and thermal desorption.

Each polymer was applied by airbrush in a volatile solvent to
give a net frequency shift in the range of 370-470 kHz, corre-
sponding to coating thicknesses of approximately 28-65 nm.35

Each analysis entailed collection of a 0.24-L sample of air at 25 °C
and 50% relative humidity containing a known concentration of
an organic vapor or vapor mixture. Vapors are retained on the
preconcentrator adsorbent,36 and then a portion of the coadsorbed
water vapor is stripped from the adsorbent with a 30-s backflush
of clean, dry air drawn through a cartridge of charcoal and CaSO4

(Drierite). The preconcentrator is then heated to 180 °C to desorb
the organic vapor(s) in a dry-air matrix for analysis by the array.
The heating rate is about 4 °C/s, and the vapors pass over the
sensor array within 15-30 s of the start of heating. An entire
sampling and analytical cycle requires 5.5-6.5 min, depending
on the length of the heating cycle used.

Net responses are determined from the shift in frequency (Hz)
between the pre-desorption reference point and the point at which
the response maximum is observed for each vapor. Responses
were measured over a 20- to 80-fold range of concentrations for
each of 16 vapors using test atmospheres, generated in air at 50%
relative humidity (RH) in a series of Tedlar bags, whose concen-
trations were verified by GC. Binary mixture responses were
collected for a subset of vapors over a wide range of relative
concentrations. Quality-control samples of toluene at 100 ppm
collected periodically over the course of the six-month study
indicated that sensor responses were extremely stable. Net
response maxima were determined after subtraction of blanks
containing only background humidity, and sensitivities were
determined by linear regression with forced zero.

EDPCR/Monte Carlo Model. The modeling approach used
here is similar to the approaches we have reported elsewhere,1-4,21

except that the Monte Carlo error model has been refined to
describe the specific sources of response variation associated with
the instruments used in this study, and the program has been
revised to permit consideration of up to six sensors and of vapor
mixtures of up to six components. A limited validation study of
the revised error model showed good agreement between
experimental and modeled vapor-recognition rates.1

(34) Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Wise, B. N. Anal. Chem. 1999,
posted on the web.

(35) Wohltjen, H. Sens. Actuators 1984, 5, 307-325.
(36) Groves, W. A.; Zellers, E. T.; Frye, G. C. Anal. Chim. Acta 1998, 371, 131-

143.

Figure 1. Repeat units of the polymer coatings.
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Using Monte Carlo methods, random and systematic variations
are applied to the calibrated responses to all of the vapors
assuming a Gaussian error distribution. The population of error-
enhanced synthetic responses is sampled iteratively, and each
sample is treated as an unknown that is then assigned an identity
and concentration by comparison with the EDPCR models
established for arrays of 2-6 sensors from the calibration data in
Table 1.37 The number and nature of recognition errors observed
from a large sample set (i.e., hundreds of simulations) are logged
and evaluated with respect to the average rate of recognition,
vapor-specific rates of recognition, and the identities of any
incorrect assignments.

The simulated response data were generated according to the
following equation:

Here, r ′ij is the net synthetic response to vapor i from coated
sensor j; rij is the starting-point response value generated by
randomly selecting a point along the regression line derived from
calibration; k1 is the relative standard deviation (RSD) that
accounts for variability in sample delivery to the sensor array from
the preconcentrator; k2 is the RSD of the sensitivity estimate
obtained from repeated calibrations; k3j is the root-mean-square
(RMS) error in the baseline (in Hz) for each sensor due to random
noise; k4j is the RMS error attributable to the combination of
inherent baseline drift and fluctuations in the response to residual
water vapor; and R, â, γ, and δ are independent normally
distributed variables with zero mean and unit standard deviation.

Detailed explanations of the terms in eq 1, the ki values, and
the implementation of the EDPCR/Monte Carlo model are given
in the Supporting Information accompanying this article. The
following ki values were used: k1 ) 0.05; k2 ) 0.03; k3 ) 2.9 Hz
(PIB), 4.5 Hz (PECH), 2.7 Hz (FPOL), 3.9 Hz (PDPP), 4.5 Hz
(OV-25), 3.4 Hz (OV-275); and k4 ) 5.7 Hz (PIB), 14 Hz (PECH),
12 Hz (FPOL), 1.9 Hz (PDPP), 15 Hz (OV-25), 17 Hz (OV-275).

In our previous study examining the effect of concentration
on recognition rates with an array of polymer-coated SAW sensors,

it was found that above ∼5 LOD recognition rates were very high
and showed little or no dependence on concentration.2 As the
concentration decreased below 5 LOD, a steady decrease in
recognition was observed in most cases. In fact, the concentration
at which errors in recognition became unacceptably large, which
we refer to as the “limit of recognition” (LOR), was often above
the concentration corresponding to the LOD. In light of these
results, simulations performed here were divided into two different
concentration ranges, 1-5 LOD and 5-25 LOD, where the LOD
for the vapor under consideration is defined as that of the highest
individual LOD among the six sensors. This ensures that there
are measurable signals from all sensors for every simulation. Rates
of (correct) recognition were then calculated and compiled
separately for simulations within each of the two concentration
intervals.

EDPCR modeling and Monte Carlo simulations were per-
formed on a desktop computer using routines written in Visual
Basic (version 7.0, Microsoft Corp.) and linked to spreadsheets
in Excel (version 7.0, Microsoft Corp.). Additional statistical
analyses were performed using SPSS (version 7.0, SPSS Inc.,
Chicago, IL).

RESULTS AND DISCUSSION
Response Data. Table 1 shows the sensitivities and limits of

detection (LOD) for each vapor-sensor combination. Values were
adjusted to reconcile the slight sampling flow-rate differences
between the two instruments. Response curves were linear over
the calibrated concentration ranges, and the linear regression
correlation coefficients (r 2) were g0.98 for 93 of the 96 vapor/
sensor combinations (for the three exceptions r 2 g 0.96). The
LOD was defined as the vapor concentration corresponding to
3σ/(sensitivity), where σ is the standard deviation of the baseline
response (Hz) at the time corresponding to the maximum sensor
response, as determined by averaging the baseline responses from
at least three blank (i.e., 50% RH air only) analyses.

With the binary mixtures, partial resolution of response
maxima was observed in some cases as a result of the slow heating
rate of the preconcentrator during thermal desorption. However,
all peaks overlapped to some extent, and responses were equiva-
lent to the sum of the component-vapor responses at each point
along the response profiles, as observed previously.1,3,18,21,26 The

(37) Zellers, E. T.; Pan, T. S.; Patrash, S.; Han, M.; Batterman. S. A. Sens.
Actuators, B 1993, 12, 123-133.

Table 1. Calibration Data for the 16 Test Vapors and Six Polymer-Coated SAW Sensors

sensitivity, Hz/ppm (LOD, ppm)
vapor (abbr)

calibration
range (ppm) PIB PECH FPOL PDPP OV-25 OV-275

dichloromethane (DCL) 20-400 2.68 (6.54) 4.73 (8.97) 0.89 (46.8) 2.85 (3.97) 4.70 (6.18) 3.81 (9.99)
trichloroethylene (TCE) 10-250 31.2 (0.52) 18.1 (2.21) 4.88 (5.98) 13.0 (0.84) 22.0 (2.71) 9.11 (5.42)
perchloroethylene (PCE) 2.5-125 95.2 (0.24) 32.4 (1.41) 9.37 (3.89) 27.2 (0.46) 43.3 (1.22) 14.7 (4.12)
acetone (ACE) 50-2500 1.19 (11.7) 4.64 (8.27) 9.80 (3.52) 1.52 (7.44) 3.01 (14.3) 3.06 (11.3)
2-butanone (MEK) 20-1000 4.70 (2.95) 14.1 (2.76) 25.6 (1.03) 5.07 (1.97) 9.18 (4.89) 7.34 (5.89)
2-methoxyethanol (2ME) 2-50 14.3 (1.18) 60.1 (0.70) 206 (0.15) 20.1 (0.61) 29.5 (1.46) 57.1 (0.91)
isopropanol (IPA) 40-2000 2.75 (5.04) 7.09 (5.42) 25.7 (1.35) 2.93 (3.86) 3.73 (11.5) 7.67 (4.53)
1,4-dioxane (DOX) 2.5-125 15.0 (1.32) 41.4 (1.04) 66.2 (0.52) 15.0 (0.89) 23.0 (1.88) 19.7 (2.88)
tetrahydrofuran (THF) 20-1000 6.86 (2.12) 10.1 (3.97) 26.3 (1.01) 4.79 (2.18) 8.93 (5.90) 4.41 (10.7)
n-hexane (HEX) 5-400 10.3 (1.21) 1.63 (22.7) 0.87 (30.7) 1.63 (6.23) 2.69 (18.6) 1.31 (30.2)
isooctane (IOC) 30-1500 23.5 (0.79) 2.72 (15.9) 1.48 (21.4) 2.97 (4.16) 6.35 (7.53) 2.80 (19.5)
isoamyl acetate (IAA) 10-500 104 (0.27) 114 (0.47) 241 (0.17) 48.8 (0.45) 97.4 (0.50) 33.2 (2.03)
n-butyl acetate (BAC) 15-750 58.5 (0.48) 78.6 (0.68) 155 (0.26) 34.3 (0.63) 69.3 (0.71) 24.1 (2.79)
benzene (BEN) 4-120 13.5 (1.26) 12.8 (3.27) 3.95 (7.72) 6.79 (1.80) 15.0 (2.87) 5.57 (9.29)
toluene (TOL) 10-250 40.0 (0.52) 31.4 (1.37) 9.25 (3.77) 17.7 (0.75) 34.7 (1.90) 12.4 (4.69)
m-xylene (XYL) 10-200 89.2 (0.32) 54.4 (0.99) 16.2 (2.49) 31.0 (0.70) 59.9 (0.82) 20.9 (3.21)

rij′ ) rij(1 + k1R + k2âj) + k3jγj + k4jδ (1)
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assumption of additivity was therefore applied to all mixture
responses in the Monte Carlo simulations presented below.

Correlation and Principal Components Analysis. It is
useful to start by assessing the pairwise correlations among the
relative response patterns obtained for each vapor from the entire
array of six sensors. Those vapor pairs with the largest positive
correlation coefficients, r, are expected to be the most difficult to
discriminate. The correlation matrix is presented in the Supporting
Information accompanying this article. The largest r values are
associated with the following vapor pairs: xylene + TCE, acetone
+ MEK, 1,4-dioxane + MEK, IPA + 2-ME, isooctane + n-hexane,
and n-butyl acetate + isoamyl acetate. These exceptions notwith-
standing, the r values are otherwise generally small or negative,
indicating a fairly high degree of pairwise selectivity with this array
of SAW sensors. Table 2 is a correlation matrix for the sensors
also derived from an analysis of the relative response patterns.
Only one pair of sensors has an r value >0.9 (i.e., 0.918 for the
PDPP and OV-25 pair), indicating little redundancy in the
contributions of each sensor to the response patterns.

The results of principal components analysis (PCA) for this
data set, presented in Table 3, indicate that 98% of the variance in
the responses to the vapors can be accounted for with only three
principal components. According to Carey et al.,38 although the
first principal component explains most of the variance in the data,
the most efficient approach to array construction entails selecting
the one sensor providing the greatest contribution to each
successive (orthogonal) principal component. This implies that
the greatest information about vapor identities will be obtained
from three well-chosen sensors and that adding a fourth sensor
will yield only marginal improvement.38 For the first principal
component, sensors coated with FPOL, PDPP, and OV-25 con-
tribute similarly, with a slight edge for the FPOL. The second
and third principal components are influenced most by the sensors
coated with PECH and OV-275, respectively. This suggests that
the three-sensor array providing the greatest degree of discrimina-
tion would consist of sensors coated with FPOL, PECH, and OV-
275. If a fourth coating were to be added, this analysis indicates
that the PDPP-coated sensor would be the best selection.

The dendrogram in Figure 2 presents the results of a group-
wise hierarchical cluster analysis of the data wherein the vectors
in six-dimensional space for all of the vapors (derived from the
relative sensitivities) are considered collectively, and the Euclidean
distances between the vectors are compared. As shown, the vapors
are divided according to polarity, with the top subset comprising
the relatively polar vapors and the bottom subset comprising the
relatively nonpolar vapors. Within each subset the pairs of vapors
linked most closely to the origin (i.e., leftmost point) have the

most closely situated vectors. The linkage distances correlate well
with the r values from correlation analysis.

Recognizing Individual Vapors (m ) 16). The first case
considered in the EDPCR/Monte Carlo modeling was that in
which only a single vapor is analyzed at a time, and the synthetic
(i.e., error-enhanced) response patterns for that vapor are com-
pared with the library of single-vapor response patterns created
from the calibration curves for the entire vapor set (m ) 16) or a
subset (m ) 8, see below). In a practical sense, this would apply
to a situation in which the array might be used for several possible
applications but only a single vapor was encountered at a time.
Table 4 shows the rates of recognition for arrays comprising from
2 to 6 sensors for m ) 16. Each array is ranked by the average
recognition rate for the 16 vapors. The range of vapor-specific
recognition rates is also included. Note that out of a total of six
sensors, there are six possible 5-sensor arrays, 15 4-sensor arrays,
20 3-sensor arrays, and 15 2-sensor arrays. For brevity, Table 4
presents only the three highest ranking arrays for n < 6.

Evaluating these and subsequent results requires establishing
tolerance limits on the rates of recognition error. Consistent with
our previous analyses using Monte Carlo simulations,2 we have
arbitrarily applied a threshold of g95% average recognition (i.e.,
e5% recognition error) to define “good” performance. In addition,
a threshold of g90% average recognition (i.e., e10% recognition
error) has been adopted here to define “adequate” performance.
Lower average recognition rates are considered to indicate
unacceptable overall performance, despite the possibility for high
recognition rates for specific vapors within the set.

For the higher concentration range (i.e., 5-25 LOD), Table 4
shows that as few as two sensors can provide a fairly high rate of
recognition (i.e., >94%), but only one 2-sensor array, the array
employing coatings of PIB and PECH, meets this performance
standard. The next best 2-sensor array provides an average of only
88% recognition. In contrast, any of the top 3-, 4-, or 5-sensor
arrays, as well as the 6-sensor array, provide excellent recognition
rates (i.e., vapor-specific rates are g97% in all cases).

The recognition rates for all of the arrays decline at lower vapor
concentrations, as expected, and the difference in performance
among the possible arrays of a given size is greater. This is most
striking in the performance of the 2- and 3-sensor arrays.
Apparently, the LOR for many of the vapors suffering significant
confusion with the 2- and 3-sensor arrays is within the concentra-
tion range of 1-5 LOD. As observed at higher concentrations,
the best 4- and 5-sensor arrays perform similar to the 6-sensor
array and still provide very high average and vapor-specific
recognition rates at lower concentrations.

Recognition matrices for the 6-sensor array and for the highest-
ranked 2-sensor array (presented in the Supporting Information)
illustrate the nature of the errors in recognition as a function of
array size in the more difficult 1-5 LOD concentration range. For
the 6-sensor array, confusion of both acetone and 1,4-dioxane with
MEK (and vice versa) is prevalent, as well as confusion of
isooctane with n-hexane. The lowest vapor-specific recognition rate
is 93% (for MEK). Most other vapors are recognized with less
than ∼3% error, though a consistent low-level error is seen in(38) Carey, W. P.; Kowalski, B. R. Anal. Chem. 1986, 58, 149-153.

Table 2. Six-Sensor Pairwise Correlation Matrix

FPOL OV-25 OV-275 PDPP PECH PIB

FPOL 1
OV-25 -0.821 1
OV-275 0.242 -0.181 1
PDPP -0.817 0.918 0.005 1
PECH 0.084 0.404 0.345 0.401 1
PIB -0.798 0.381 -0.528 0.349 -0.633 1
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attempting to discriminate between homologous vapor pairs. For
the top-ranked 2-sensor array in this low concentration range,
errors are distributed among a larger number of vapors. Problems
recognizing acetone, MEK, and 1,4-dioxane are most apparent,
and significant confusion of TCE with m-xylene also emerges. The
lowest vapor-specific recognition rate is 57% (for acetone);
however, seven of the vapors are recognized at rates >90%. Note
that most of these recognition errors become “acceptably small”
at higher concentrations (see Table 4).

The recognition problems encountered are consistent with the
r values derived from correlation analysis and with the results
shown in Figure 2, but the level of recognition error observed, at
least for the 6-sensor array, is less than might have been expected
on the basis of the high r values, particularly for the isoamyl
acetate/butyl acetate pair. Other vapor pairs giving somewhat high
r values in the pairwise analysis (0.90 e r e 0.99) do not present
significant recognition/discrimination problems.

According to Table 4, a 3-sensor array is capable of recognizing
these 16 vapors with relatively low error. This is consistent with
the PCA results in Table 3, but the highest ranking sensor arrays
listed in Table 4 differ from what would have been selected from
the contributions shown in Table 3. In particular, PIB is included
in all of the top-ranked 3-sensor arrays from the Monte Carlo/
EDPCR analyses, whereas the PCA results suggest that other
sensors should be more important. We believe this is due to the
low noise level and relatively high sensitivity exhibited by PIB
for many of the vapors (Table 1)sa factor that is accounted for
in the Monte Carlo simulations but not accounted for in PCA.
We note, however, that while PIB does not contribute predomi-

nantly to any single principal component, the sum of its fractional
contributions to the variance accounted for by the first two
principal components exceeds that of the other sensors. The
sensors providing the largest cumulative fractional contributions
to the first three principal components are PIB, FPOL, and OV-
275, followed closely by PECH. The order of these contributions
is consistent with the 2- and 3-sensor array rankings presented in
Table 4.

Recognizing Individual Vapors (m ) 8). Reducing the
number of possible vapors considered does not necessarily
improve performance. Two 8-vapor subsets were created by
dividing the vapors at the midpoint of the dendrogram in Figure
2. The first subset, abbreviated n8, comprises relatively nonpolar
vapors and the second, abbreviated p8, comprises relatively polar
vapors. Simulations were then run for each group separately. As
shown in Table 5, the performance is similar between the two
vapor groups. For arrays of g3 sensors, average recognition rates
are above 98.5% within the high concentration range, similar to
the results obtained with all 16 vapors. Within the lower concen-
tration range, results are also similar to those obtained with the
16-vapor set, but there is a slightly greater dependence of
performance on the number of sensors in the array. For the
2-sensor arrays, however, the performance of the best arrays
improves markedly compared with that obtained with the 16-vapor
set, particularly in the low concentration range where the highest
average recognition rates improve to >91% (from 83%).

It is important to note the difference in rankings and recogni-
tion rates between the two 8-vapor sets with the smaller arrays.
All of the top-ranked 2-sensor arrays contain PIB, but PECH is a
more important coating for recognition of the nonpolar vapors,
while FPOL and OV-275 are more important for the polar vapors.
This makes sense in light of the structures of these coatings
(Figure 1), but the differences in recognition rates imply that two
different 2-sensor arrays (or one 3-sensor array) would be needed
to analyze these 8-vapor subsets. Differences in the members of
the top-ranked coating sets for the 3-sensor arrays are also
apparent, though less significant than for the 2-sensor arrays.

The performance of the two highest ranked 2-sensor arrays
at low concentrations for these two 8-vapor subsets is considered
adequate by our criteria, and in both cases at least six of the eight
vapor-specific recognition rates are >92%. But confusion of xylene
with TCE occurs at a rate of 32% in the n8 subset, and confusion
of acetone with MEK or 2-propanol occurs at a rate of 21% in the
p8 subset. For the 3-sensor arrays (and larger arrays) all of the
vapor-specific recognition rates exceed 91% at low concentrations
and 99% at higher concentrations.

To further characterize the performance limits of the arrays,

Table 3. Percentage of the Total Variance Attributable to Each Principal Component (PC) and the Contribution of
Each Sensor to Each PC

variance (%) contribution to each PC (%)principal
component each cumulative PIB PECH FPOL PDPP OV-25 OV-275

1 52.9 52.9 17.1 0.0 29.9 23.7 25.3 4.0
2 33.6 86.5 20.7 43.8 0.2 10.0 7.2 18.0
3 11.5 98.0 4.3 13.4 5.6 0.8 2.7 73.3
4 1.1 99.2 6.9 15.0 10.1 60.5 5.7 1.9
5 0.8 100.0 10.6 24.8 4.7 4.1 55.1 0.8

Figure 2. Dendrogram depicting average Euclidean linkage dis-
tances derived from hierarchical cluster analysis for the 6-sensor
array.
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two additional 8-vapor subsets were created. For the first additional
subset, the preceding results were used to assemble the eight
vapors expected to give the highest rate of recognition error. Since
this subset was expected to represent the most difficult recogni-
tion/discrimination problem, it has been abbreviated d8. The
second additional subset was created to provide the easiest
recognition/discrimination problem (i.e., least expected recogni-
tion error), on a similar basis, and is abbreviated e8.

Results are summarized in Table 5. Performance for the arrays
with g3 sensors is similar to that observed with the previous vapor
sets, though the 3-sensor arrays performed significantly better
for the e8 vapor subset than for the n8 or p8 subsets in the low
concentration range. For the 2-sensor arrays, there is a dramatic
difference in performance between e8 and d8. For e8, two of the
2-sensor arrays provide >90% average recognition even at the low
concentration range. For d8, overall performance for the 2-sensor
arrays is similar to that for the 16-vapor set, with the maximum
average recognition rate being ∼84%. Differences in the rankings
of the 2-sensor arrays are also apparent between these two 8-vapor
subsets. Vapor-specific recognition for the e8 vapor subset was
>90% for the highest ranked arrays of g3 sensors. With the
notable exception of TCE (83%), vapor-specific recognition even
for the d8 subset was >91%.

Recognizing Vapor-Mixture Components. The remaining
series of simulations considered the more difficult problems of
recognizing/discriminating among vapors when it is possible for
mixtures to be present. Analyses were performed for specific
subsets of 2-6 vapors. For each subset, the analysis determined
whether each array could recognize and discriminate among the
individual vapor components under all possible levels of mixture
complexity. For example, for the analysis of three specific vapors,
simulations were run on each individual vapor to determine if that
vapor could be differentiated from the other two individual vapors,
from all three possible binary mixtures that could be created from
the three vapors, and from the ternary mixture. Then simulations
were run for each possible binary mixture to determine if that
mixture could be recognized and differentiated from the three
individual vapors, the two other binary mixtures, and the ternary

mixture. Finally, the ternary mixture was tested against the three
individual vapors and three binary mixtures. For each of the 3500
iterations (i.e., 500 × 7) involved in a given 3-vapor simulation
trial, the concentrations of the vapors were selected randomly from
within the specified range for each vapor. This set of analyses
was repeated for each subset of three vapors selected. Similar
analyses were performed for selected subsets of two, four, five,
and six vapors. Table 6 shows the number of mixture components
tested for each case considered and illustrates how complex the
problem becomes with more than a few vapors.

This type of modeling represents the case in which one has
knowledge of all vapors that might possibly be present, but not
which vapors are actually present or in what combination. This
would be applicable to, say, an industrial chemical facility where
a materials inventory would have been performed to determine
all processing chemicals as part of a routine qualitative hazard
assessment, but air monitoring was needed to determine which,
if any, chemicals were being released into the working environ-
ment and at what concentrations.

The problem of analyzing binary mixtures was considered first.
A total of nine binary subsets was consideredsthree from each
of three categories of difficulty (easy, moderate, and difficult) as
determined from the preceding analyses. Results are summarized
in Table 7. For convenience, only results for the highest ranked
array of each size are presented. Excellent results were obtained
for sensor arrays of all sizes for the 2-vapor subsets considered
to present easy and moderate recognition/discrimination prob-
lems. For the more difficult subsets, the performance is marginally
adequate by our criterion.

Contrary to intuition, increasing the number of sensors in the
array does not improve performance significantly. That is, regardless
of whether the performance with a 2-sensor array is good or poor,
adding more sensors provides little or no increase in the
recognition rate. This point is illustrated graphically in Figure 3
for two binary mixtures where the average recognition rate (5-
25 LOD range) is plotted versus the number of sensors in the
array. Each point in the figure represents the performance for a
specific array of a given size. The dichloromethane/trichloro-

Table 4. Top-Ranked Sensor Arrays and Corresponding Average and Vapor-Specific Recognition Rates for
Individual-Vapor Analysis of 16 Vapors

1-5 LOD 5-25 LOD

recognition (%) recognition (%)no. of
sensors sensor array av rangea sensor array av rangea

6 all 97.8 93.0-99.6 all 99.6 98.4-100.0

5 PIB, PECH, FPOL, PDPP, OV-25 97.8 90.8-100.0 PIB, PECH, PDPP, OV-25, OV-275 99.7 99.0-100.0
PIB, PECH, FPOL, PDPP, OV-275 97.5 91.6-100.0 PIB, PECH, FPOL, PDPP, OV-25 99.6 99.0-100.0
PIB, PECH, PDPP, OV-25, OV-275 97.2 87.6-99.8 PIB, FPOL, PDPP, OV-25, OV-275 99.6 99.0-100.0

4 PIB, PECH, FPOL, PDPP 96.8 87.4-99.8 PIB, PECH, OV-25, OV-275 99.7 98.8-100.0
PIB, PECH, FPOL, OV-25 96.1 87.8-100.0 PIB, PDPP, FPOL, OV-25 99.6 98.4-100.0
PIB, PECH, FPOL, OV-275 95.7 89.2-99.8 PIB, FPOL, OV-25, OV-275 99.4 97.8-100.0

3 PIB, FPOL, PDPP 95.8 87.8-100.0 PIB, FPOL, PDPP 99.2 97.0-100.0
PIB, FPOL, OV-25 94.5 82.8-100.0 PIB, PECH, OV-275 99.2 93.8-100.0
PIB, PECH, OV-275 93.9 74.4-100.0 PIB, FPOL, OV-25 98.2 88.2-100.0

2 PIB, PECH 82.0 56.6-99.6 PIB, PECH 94.6 87.6-99.6
PIB, FPOL 80.2 54.4-97.2 PIB, FPOL 88.1 72.4-100.0
PIB, OV-25 72.3 48.4-99.8 PIB, OV-25 80.2 68.4-99.4

a Range of vapor-specific recognition rates for 16 vapors.
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ethylene vapor subset represents a relatively easy discrimination
problem, while the benzene/toluene subset represents a more
difficult problem. In both cases, however, the performance of the
top-ranked 2-sensor array is about as good as that of the 6-sensor
array.

The recognition matrices (not shown) for the more difficult
vapor pairs in Table 7 indicate similar confusion among the vapors
with all of the arrays. Importantly, the degree of confusion among
these difficult 2-vapor subsets when their mixtures are considered
is generally higher than that observed when they are tested

individually among all 14 other vapors (see confusion matrices in
the Supporting Information). This is a critical point that is rarely
addressed in assessing sensor-array performance.

Analyses were then performed of several subsets of three
vapors spanning the range of expected difficulty. As for the 2-vapor
subsets, the components of the easy and moderate 3-vapor subsets
are recognized at a high rate with three or more sensors (Table
7) (note: it is not possible to analyze a 3-vapor subset with less
than three sensors because the problem is statistically underde-
termined when there is only one output parameter being measured
from the sensors). For the difficult 3-vapor subsets, the perfor-
mance with an array of three sensors is quite poor, but increasing
the number of sensors does not increase the average recognition
rate or alter the nature of the recognition errors. Once again, the
degree of confusion among the components of these 3-vapor
mixtures is generally higher than that observed when considering
them only as individual vapors among a set of 13 other individual
vapors.

Not shown in Table 7 are the sensors comprising the top-
ranked arrays. As it turns out, the top-ranked 2- and 3-sensor
arrays differ among the different cases tested. The PIB/FPOL
array ranks highly in four of the nine 2-vapor subsets shown in
Table 7, but for the remaining 2-vapor subsets either PIB or FPOL
is paired with another polymer. PDPP is included in the fewest
2-sensor arrays. PIB and FPOL are also included among the top-
ranked 3-sensor arrays in eight of the nine 2-vapor subsets in Table
7. Notably, for the TCE + xylene subset, PIB is not among the
top-ranked sensors. The third sensor varies among all of the
remaining four possible sensors. For the 3-vapor subsets, all of
the top-ranked 3-sensor arrays include PIB, but the remaining two
sensors vary with the specific 3-vapor subset being considered.
Thus, as noted above for the individual-vapor analyses of the
8-vapor subsets (Table 5), different arrays (or one slightly larger
array) might be needed to optimize performance for different
applications.

Analyses of several 4-vapor subsets provided results similar
to those for the preceding mixtures, except that significant errors
are observed even for the so-called moderate vapor sets (Table
7). Results are quite good for the easy subsets, however, and once
again, increasing the number of sensors provides no performance
improvement regardless of the recognition rate. In all cases PIB,
FPOL, and OV-275 are included among the two or three highest
ranking 4-sensor arrays, with the fourth sensor varying among
the remaining three possibilities.

Subsets of five and six vapors were also examined. In these
cases, even the relatively easy subsets could not be analyzed

Table 5. Average Recognition Rates for Four Different
8-Vapor Subsets as a Function of Array Size and
Polymer Coatings

1-5 LOD 5-25 LOD

no. of
sensors

sensor
array

recog
(%)a

sensor
array

recog
(%)a

n8 Vapor Subset (includes BEN, TOL, XYL, DCL, TCE, PCE, HEX, IOC)
g4 see Table 4b g96.5 see Table 4 g99.6

3 PIB, PECH, PDPP 96.8 PIB, PECH, OV-275 99.8
PIB, PECH, OV-275 96.4 PIB, PECH, PDPP 99.6
PIB, PECH, OV-25 95.8 PIB, FPOL, PDPP 99.3
PIB, PDPP, OV-25 94.9 PIB, FPOL, OV-275 98.8
PIB, FPOL, OV-25 93.4 PIB, PDPP, OV-25 98.6

2 PIB, PECH 91.1 PIB, PECH 93.6
PIB, OV-25 84.9 PIB, FPOL 92.8
PIB, PDPP 79.9 PIB, PDPP 91.8
PIB, OV-275 73.3 PIB, OV-275 87.4
PIB, FPOL 65.9 PIB, OV-25 87.3

p8 Vapor Subset (includes ACE, MEK, IPA, THF, IAA, BAC, 2ME, DOX)
g4 see Table 4 g95.6 see Table 4 g99.0

3 PIB, OV-25, OV-275 96.9 PIB, OV-25, OV-275 99.8
PIB, PECH, OV-275 96.2 PIB, FPOL, PDPP 99.1
PIB, FPOL, OV-25 95.8 PIB, FPOL, OV-25 99.0
PIB, PECH, FPOL 95.3 PIB, PDPP, OV-275 99.0
PIB, PDPP, OV-275 92.6 PIB, PECH, FPOL 98.8

2 PIB, FPOL 91.4 PIB, OV-275 96.4
PIB, OV-275 89.2 PIB, FPOL 95.7
PECH, FPOL 79.1 PIB, OV-25 86.5
PIB, PECH 77.4 PIB, PECH 85.9
PIB, OV-25 74.7 PDPP, OV-275 84.2

e8 Vapor Subset (includes TCE, TOL, HEX, DCL, IOC, IPA, MEK, IAA)
g4 see Table 4 g97.2 see Table 4 g99.8

3 PIB, PECH, FPOL 98.1 PIB, PECH, OV-275 99.8
PIB, PECH, OV-275 97.8 PIB, PECH, OV-25 99.8
PECH, OV-25, OV-275 97.8 PIB, PECH, FPOL 99.8
PIB, PECH, OV-25 97.7 PECH, FPOL, OV-275 99.8
PIB, FPOL, OV-25 97.5 PECH, PDPP, OV-275 99.7

2 PIB, PECH 94.9 PIB, FPOL 99.7
PIB, FPOL 90.2 PIB, PECH 98.5
PECH, OV-25 86.9 PECH, OV-25 93.6
PIB, OV-25 84.1 FPOL, OV-25 90.0
FPOL, OV-25 82.5 PIB, OV-25 88.4

d8 Vapor Subset (includes BEN, TOL, XYL, TCE, IPA, 2ME, MEK, DOX)
g4 see Table 4 g93.0 see Table 4 g99.2

3 PIB, FPOL, OV-25 93.8 PIB, FPOL, OV-275 99.4
PIB, OV-25, OV-275 93.4 PIB, FPOL, PDPP 99.2
PIB, PECH, OV-275 92.9 PIB, PECH, OV-275 98.9
PIB, PECH, FPOL 90.2 PIB, OV-25, OV-275 98.5
PIB, OV-275, FPOL 89.9 PIB, PDPP, OV-25 98.0

2 PIB, FPOL 83.7 PIB, FPOL 97.3
PIB, OV-275 82.7 PIB, OV-275 92.4
PIB, PECH 80.5 PIB, OV-25 86.5
PIB, OV-25 78.3 PIB, PECH 86.4
FPOL, PDPP 66.9 FPOL, PDPP 81.4

a Average of the vapor-specific recognition rates. b Similar to the 16-
vapor case.

Table 6. Combinations of Components in the Vapor
Mixtures Tested

number of components testeda
size of

vapor subset 1° 2° 3° 4° 5° 6° total
total

simulations

two 2 1 3 1500
three 3 3 1 7 3500
four 4 6 4 1 15 7500
five 5 10 10 5 1 31 15500
six 6 15 20 15 6 1 63 31500

a 1°, individual; 2°, binary; 3°, ternary; etc.
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effectively. This is undoubtedly due, in large part, to the number
of components included in these subsets: 31 for the 5-vapor
subsets and 63 for the 6-vapor subsets.

Quantification Error. Up to this point, only errors in recogni-
tion have been considered. It was of interest to explore errors in
quantification as well. To this end, several of the simulations
discussed above were assessed in terms of quantification accuracy.

Results in Table 8 are representative of the levels of error in
quantification observed for the 2-, 3-, and 4-vapor subsets exam-
ined. As shown, the range of errors for correctly recognized vapors
and vapor mixtures is quite reasonable, and the averages of the
absolute values of the errors of 5-8% are extremely good. Thus,
quantification does not appear to be a limiting factor in array
performance.

CONCLUSIONS
The most significant conclusion that can be drawn from this

study is that large arrays of polymer-coated SAW sensors are not
necessary for accurate multivapor analysis. As shown, an array
of just two or three sensors can recognize and discriminate among
16 individual vapors with very low error over a wide range of
concentrations. Furthermore, for the analysis of mixtures of up
to four vapors the number of sensors in the array required for
recognition of the components, alone or in any combination, is
equal to the total number of vapors being considered. Although
high rates of confusion were observed among mixture components
in some cases, increasing the number of sensors in the array did
not improve performance significantly, if at all. In light of these

Table 7. Recognition Rates for Specific Subsets of 2-6 Vapors as a Function of Concentration, Sensor Array Size,
and Anticipated Difficulty in Discrimination

av recog rate
(%) for highest
ranked array

av recog rate
(%) for highest
ranked array

no. of
vapors class vapor subset

no. of
sensors

1-5
LOD

5-25
LOD

no. of
vapors class vapor subset

no. of
sensors

1-5
LOD

5-25
LOD

2 easy PCE + DOX g2 g99.3 g99.4 4 easy IPA + BAC + IOC + DCL g4 g97.9 g97.9
ACE + HEX g2 g99.1 g99.6 2ME + IAA + HEX + TOL g4 g96.4 g96.7
TOL + MEK g2 g98.9 g99.5

moderate HEX + BEN + DCL + PCE 6 84.8 87.2
moderate 2ME + THF g2 g98.9 g99.5 5 84.2 87.5

IPA + MEK g2 g98.9 g99.5 4 82.3 86.8
DCL + TCE g2 g98.9 g99.5 IPA + DOX + IAA + THF 6 78.3 79.0

5 77.3 78.6
difficult TCE + XYL 6 88.3 91.0 4 73.1 75.5

5 91.5 92.2
4 87.3 91.3 difficult BEN + TOL + XYL + TCE 6 52.9 54.5
3 89.9 92.9 5 51.1 55.4
2 85.3 92.9 4 48.0 55.6

BAC + IAA 6 87.3 88.7 MEK + DOX + ACE + BAC 6 52.2 54.4
5 90.0 90.6 5 53.2 57.0
4 89.4 89.5 4 52.9 55.2
3 89.0 88.8
2 84.3 86.5 5 easy 2ME + IAA + HEX + TOL + DCL 6 86.5 86.7

TOL + BEN 6 85.4 89.3 5 85.2 86.2
5 88.0 90.2 IPA + ACE + IOC + BEN + PCE 6 75.8 78.1
4 89.6 89.3 5 74.8 77.2
3 87.6 90.0
2 87.1 87.8 moderate IPA + DOX + IAA + TOL + XYL 6 72.9 73.9

5 73.5 73.9
3 easy IOC + DCL + ACE g3 g99.5 g99.6 DCL + TCE + PCE + ACE + MEK 6 58.6 60.5

HEX + TCE + 2ME g3 g98.9 g98.9 5 59.0 59.9

moderate TOL + DCL + HEX g3 g96.8 g97.6 difficult ACE + MEK + DOX + IAA + BAC 6 37.3 39.0
IPA + DOX + IAA g3 g92.2 g92.1 5 37.1 39.9

BEN + TOL + XYL + TCE + PCE 6 37.0 39.6
difficult MEK + DOX + ACE 6 65.0 69.1 5 35.9 39.2

5 63.6 73.1
4 68.0 74.7 6 easy IPA + DOX + IAA + IOC + TOL + PCE 6 66.6 69.1
3 65.4 73.3 2ME + MEK + BAC + HEX + BEN + DCL 6 66.5 67.9

BEN + TOL + XYL 6 63.8 66.9
5 65.5 66.2 moderate MEK + DOX + IPA + HEX + IOC + TOL 6 47.6 49.4
4 64.9 67.8 BAC + IAA + THF + TCE + XYL + BEN 6 39.5 41.2
3 63.6 65.5

difficult DCL + TCE + PCE + BEN + TOL + XYL 6 30.6 31.6
MEK + DOX + ACE + BAC + IAA + THF 6 29.0 31.3

Figure 3. Recognition rates for two different 2-vapor subsets
showing no significant change in vapor recognition with increasing
number of sensors in the array. The upper set of points is for the
dichloromethane/trichloroethylene subset, and the lower set is for the
benzene/toluene subset.
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results, the need for large arrays of sorption-based sensors, such
as those being incorporated into “electronic nose” instrumentation,
is called into question.

We believe these findings to be general. That is, similar results
are likely to be obtained not only with other SAW sensor arrays
but also with arrays of other types of vapor sensors employing
isotropic-polymer interface layers, such as optical-fiber sensors,
chemiresistors, and other acoustic-wave sensors. Several features
of this study support this conclusion. First, coating selection was
based on a rational process guided by LSER concepts to ensure
that the polymer coatings employed contained functional groups
that collectively represented most of the recognized interaction
forces known to affect the strength of vapor sorption. In addition,
the test vapors were selected from several functional-group
classes, but also included members within a given class. Expo-
sures were performed in humid air under well-controlled envi-
ronmental conditions, and quality control procedures were used
to ensure the reproducibility of responses and the stability of the
sensor coatings over the course of the six-month data collection
period. The error model used to generate the synthetic responses
for the Monte Carlo simulations accounted quantitatively for all
known sources of response variation in the sensors, and the
performance testing addressed the problems of recognizing
individual vapors from a large set of possibilities as well as
recognizing mixture components in mixtures of up to six vapors.
Vapor concentration was also taken into account in these perfor-
mance tests and was shown to be an important cofactor affecting
recognition rates as well as optimal sensor selection. The scope
of these analyses exceeds that of any previous study.

The general applicability of these findings is further supported
by the results, though not the authors’ conclusions, of a recent
study of arrays of carbon-loaded polymer-coated chemiresistors,
tin-oxide sensors, and conducting-polymer sensors.19 That study
examined the pairwise resolution of 19 different vapors as a
function of array size and showed no statistically significant
increase in discrimination with any of the sensor technologies for
arrays of more than 3-4 sensors. PCA of their chemiresistor data
also support this finding.

Mixtures containing homologous vapor pairs or vapors with
very similar functional-group interaction strengths pose the
greatest challenge when using isotropic polymers as sensor
coatings, and differentiating the components of mixtures of such
vapors is more difficult than differentiating the individual vapors.

Although arrays of 2-4 polymer-coated SAW sensors can
perform multivapor analyses effectively, given that different

sensors are required to optimize recognition/discrimination for
different mixtures, an array of 4-6 sensors may be necessary for
multiple applications, even though not all of these sensors will be
required for a given analysis. According to our results, analyses
of more than four vapors become intractable if all possible
subsets/combinations of the vapors are considered. Furthermore,
even for less complex mixtures, cases were found where members
of the mixtures or their combinations could not be sufficiently
discriminated for accurate analysis regardless of the size of the
array. While the use of polymers with more subtle differences in
structure may improve discrimination, such improvements are
bound to be small. This is supported by the results of PCA and
correlation analysis presented here indicating a high degree of
chemical diversity among the polymer coatings employed and by
the successful recognition/discrimination of all 16 vapors in the
individual-vapor analyses. The nonselective dispersion forces
governing most vapor-polymer interactions will tend to mitigate
any improvements in selectivity accruing from the addition or
substitution of other functionalized polymers in the array.
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SUPPORTING INFORMATION AVAILABLE
A detailed rationale for the form of eq 1 and the ki values

employed are provided along with a more complete description
of the EDPCR methodology. Also provided are the correlation
matrix for the 16-vapor set and recognition matrices for the
6-sensor array and the top-ranked 2-sensor array in the low (i.e.,
1-5 LOD) concentration range, which illustrate the nature of the
recognition errors observed. This material is available free of
charge via the Internet at http://pubs.acs.org.
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Table 8. Quantification Errors (1-5 LOD range) for Representative Analyses of 2-4 Vapors

quantification error (%)b

vapor subseta sensor array recognition (%) avc 95% conf interval

PCE + DOX FPOL, PDPP 99.6 5.4 -13.6 - 13.6
IOC + DCL + ACE PIB, PECH, FPOL 99.5 5.7 -14.2 - 14.4
TOL + HEX + IAA + 2ME PIB, FPOL, OV-25, OV-275 96.8 7.9 -21.1 - 21.6

a All possible combinations. b Calculated for correctly recognized cases only. c Absolute error.
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