

Original Contribution

As(III) transcriptionally activates the *gadd45a* gene via the formation of H₂O₂

Jacquelyn J. Bower, Stephen S. Leonard, Fei Chen, Xianglin Shi *

Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA

Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA

Received 13 December 2005; revised 4 April 2006; accepted 6 April 2006

Available online 25 April 2006

Abstract

Arsenic is a ubiquitous environmental contaminant associated with increased risks of human cancers of the skin, lung, bladder, and prostate. Intriguingly, it is also used to treat certain types of leukemia. It has recently been suggested that these paradoxical effects may be mediated by arsenic's ability to simultaneously activate DNA damage and apoptotic and transformation pathways. Here, we investigate the effects of arsenic exposure on the induction of the growth arrest and DNA damage protein 45α (GADD45α), which is thought to play roles in apoptosis, DNA damage response, and cell cycle arrest. We found that arsenic transcriptionally activates the *gadd45a* promoter located in a 153-bp region between -234 and -81, relative to the transcriptional start site. In addition, this transcriptional induction was abrogated in the presence of H₂O₂ scavengers, suggesting a role for H₂O₂ in the transcriptional control of the *gadd45a* gene through a Fenton-like free radical mechanism.

© 2006 Elsevier Inc. All rights reserved.

Keywords: GADD45α; Arsenite; As(III); Arsenic; BEAS-2B; DNA damage; Cell cycle control

Introduction

Abbreviations: GADD45α, growth arrest and DNA damage-inducible protein 45 alpha; As(III), arsenite; tss, transcriptional start site; DNA, deoxyribonucleic acid; ROS, reactive oxygen species; NF-κB, nuclear factor κB; AP-1, activator protein 1; ERK, extracellular signal-regulated kinase; G1/S, gap 1/synthesis phase; G2/M, gap 2/mitosis phase; MMS, methylmethane sulfonate; UV, ultraviolet irradiation; IR, ionizing radiation; FHRE, forkhead response elements; PBS, phosphate-buffered saline; PVDF, Polyvinylidene fluoride; TBS-Tween, Tris-buffered saline; SE, standard error of the mean; ESR, electron spin resonance; G, Gauss; DPPH, diphenyl-2-picrylhydrazyl; GPx1, glutathione peroxidase 1; SOD1, superoxide dismutase 1; cDNA, complementary DNA; EGFP, enhanced green fluorescence protein; qRT-PCR, quantitative real-time polymerase chain reaction; RNA, ribonucleic acid; rRNA, ribosomal ribonucleic acid; C, threshold cycle; ·OH, hydroxyl radical; O₂·⁻, superoxide radical; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; mRNA, messenger ribonucleic acid; MBF-1, metal binding factor 1; Egr-1, early growth response gene 1; Egr-2, early growth response gene 2; Egr-3, early growth response gene 3; Yap1, yeast activator protein 1; gadd153, growth arrest and DNA damage-inducible protein 153.

* Corresponding author. Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.

E-mail address: xshi@cdc.gov (X. Shi).

Inorganic arsenic is a ubiquitous environmental contaminant associated with a multitude of adverse health effects, including hyperkeratosis, hyperpigmentation, diabetes mellitus, cardiovascular disease, reproductive defects, and cancers of several tissues including liver, bladder, skin, lung, kidney, and prostate [1–17]. The most common route of arsenic exposure is the ingestion of contaminated drinking water, which has been documented in many countries at concentrations as high as 3.4 mg/L, more than 3000 times the World Health Organization recommended limits of 10 µg/L [18–23]. In the United States, more than 56 million Americans are estimated to have been exposed to drinking water containing arsenic concentrations that elevate the fatal cancer risk [24].

Although arsenic is poorly mutagenic in rodent and bacterial models, it has been shown to cause DNA adduct formation, DNA–protein cross-linking, and formation of reactive oxygen species (ROS) in vitro [25–27]. In addition, arsenic has been shown to induce an assortment of signaling events including NF-κB activation, AP-1 activation, c-myc

overexpression, involucrin repression, and extracellular signal-regulated kinase (ERK) activation, which are involved in such diverse processes as DNA repair, cellular differentiation, cell cycle arrest, and malignant transformation [28–32]. Together, these findings suggest that arsenic may be exerting its carcinogenic effects through an epigenetic mechanism.

Cell cycle dysregulation and/or perturbation are major mechanisms of carcinogenesis. While the signaling pathways involved in the G₁/S phase checkpoint have been well examined, much less is known about the signaling events that occur at the G₂/M phase checkpoint. Previous data from our lab and others have suggested that arsenic treatment can induce G₂/M phase growth arrest in several different cell lines [33–36]. A major player in G₂/M arrest is the growth-arrest and DNA-damage-inducible protein 45 α (GADD45 α), which is induced by a variety of stress-induced signals including methyl methanesulfonate (MMS), ultraviolet (UV) irradiation, ionizing radiation (IR), sodium arsenite exposure, and serum starvation [37–42]. In addition, GADD45 α is proposed to play roles in chromatin remodeling and apoptosis [43,44].

Transcription of the *gadd45a* gene is thought to be controlled by both the promoter and the third intron regions and seems to be differentially activated depending on the stimulus [45]. For example, in response to IR, the p53 transcription factor binds to its consensus sequence site in the third intron of the *gadd45a* gene and subsequently interacts with the WT1 transcription factor to enhance gene expression [46]. However, several groups have also suggested that after MMS and UV exposure, the ubiquitous Oct-1 transcription factor binds the promoter region between –101 and –82 bp relative to the transcriptional start site (tss) of the *gadd45a* gene with the help of an unidentified cofactor to activate *gadd45a* transcription in a p53-independent manner [47–50]. Recently, the forkhead transcription factor family member FOXO3a has also been shown to bind to the forkhead response elements (FREs) located in the *gadd45a* gene promoter region at –505, –377, and –803 in response to UV, resulting in transcriptional activation [51]. Thus, *gadd45a* gene regulation is complex and may involve many different signaling pathways.

Since GADD45 α is a general stress response protein, we examined the effects of ROS produced in response to As(III) exposure on *gadd45a* gene regulation. We used a human bronchial epithelial airway cell line, BEAS-2B, to examine these effects because the lung is a target of arsenic-induced carcinogenesis, particularly in occupational settings [7]. Our results show that As(III) transcriptionally induces *gadd45a* gene expression from its promoter region via a free radical mechanism involving the formation of H₂O₂.

Materials and methods

Cell culture and media

The BEAS-2B human lung epithelial cell line was obtained from the American Type Culture Collection (Manasses, VA)

and maintained in Dulbecco's modified Eagle's medium (Sigma, St. Louis, MO) containing 5% fetal bovine serum (Invitrogen/Gibco BRL, Carlsbad, CA), 1 unit/mL penicillin, 1 μ g/mL streptomycin, and 300 μ g/mL L-glutamine (Sigma). BEAS-2B cells were passaged when confluence was reached, usually every 4–5 days.

Western blotting

BEAS-2B cells were grown in six-well tissue culture plates to a density of approximately 1×10^6 cells per well and treated with concentrations of AsCl₃ (Sigma) ranging from 0 to 50 μ M over a time period of 0–24 h. Cells were lysed with the MPER mammalian lysis reagent (Pierce Biotechnology, Inc., Rockford, IL) and subsequently analyzed for total protein concentration using a BCA Protein Assay kit (Pierce Biotechnology, Inc.); 20 μ g of total protein for each sample were used to perform electrophoresis on 4–20% precast gradient gels (Invitrogen). Membranes were incubated with a 1:200 dilution of GADD45 α (H-165) primary antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in 5% milk buffer overnight at 4 °C on a rocking platform. For β -actin primary antibody (Sigma) and GAPDH primary antibody (Santa Cruz Biotechnology, Inc.), dilutions of 1:2000 and 1:200, respectively, were used. For anti-rabbit or anti-mouse IgG AP-linked secondary antibody (Cell Signaling Technology, Beverly, MA), a 1:1000 dilution was used. CDP-Star Reagent (New England BioLabs, Inc., Beverly, MA) was used for visualization of protein abundance.

Oxygen consumption

A Gilson 5/6 Oxygraph (Gilson Medical Electronics, Inc., Middleton, WI) was used to perform oxygen consumption studies. BEAS-2B cells were trypsinized and washed with 1× PBS (Invitrogen/Gibco BRL) and 4×10^6 cells were resuspended in a final volume of 1 mL of PBS; 1 mM AsCl₃ (Sigma) was added to each aliquot and allowed to incubate for 20 min at room temperature. Oxygen consumption rates were calculated using the equation

$$\text{nmol O}_2 \text{ consumed/min}/10^6 \text{ cells} = \frac{(BP - 47)\Delta B(1.835)}{(m)(t)(n)},$$

where BP is atmospheric pressure in mm Hg, ΔB is number of vertical blocks traversed on the oxygraph chart paper (rise of experimental slope), m is slope of O₂ standards (409 in this case), t is time in min used to determine ΔB (run of experimental slope), and n is $n \times 10^6$ cells used in the assay. Three replicates of three different samples were averaged together to determine mean O₂ consumption and error bars equal \pm standard error of the mean (SE).

Electron spin resonance (ESR)

BEAS-2B cells (1×10^6) were suspended in 500 μ L of 1× PBS (Invitrogen/Gibco BRL) and treated with 1 mM AsCl₃

(Sigma) and/or 2000 U/mL catalase isolated from bovine liver (Sigma). All ESR measurements were conducted using a Bruker EMX spectrometer (Bruker Instruments Inc., Billerica, MA) and a flat cell assembly. Hyperfine couplings were measured (to 0.1 G) directly from magnetic field separation using potassium tetraperroxochromate (K_3CrO_8) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) as reference standards. The relative radical concentration was estimated by multiplying half of the peak height by $(\Delta H_{pp})^2$, where ΔH_{pp} represents peak to peak width. The Acquisit program was used for data acquisitions and analyses. Reactants were mixed in test tubes in a final volume of 1.0 mL. The reaction mixture was then transferred to a flat cell for ESR measurement. The concentrations given in the figure legends are final concentrations. Experiments were performed at room temperature and under ambient air. Statistical analysis was performed using Student's *t* test and error bars equal \pm SE.

Construction of *GPx1-EGFP* and *SOD1-EGFP* fusion constructs

pcDNA3.1(+)/*GPx1* and pcDNA3/*SOD1* constructs were graciously provided to our laboratory by Dr. Larry Oberley's lab at the University of Iowa [52,53]. The *GPx1* cDNA was removed from the pcDNA3.1 construct using a *BamHI* (Promega Life Sciences, Madison, WI) and *HindIII* (Promega Life Sciences) double enzymatic digest. The *SOD1* cDNA was removed from the pcDNA3 construct using a *KpnI* (Promega Life Sciences) and *ApaI* (Promega Life Sciences) double enzymatic digest. Both *GPx1* and *SOD1* cDNA fragments were isolated from an agarose gel and ligated into a pEGFP-C3 (BD Biosciences–Clontech, Palo Alto, CA) vector in frame with the EGFP protein. Contents of both vectors were verified by DNA sequencing (Biotech Core, Inc., Mountain View, CA).

Transient transfections

Transient transfections were performed using SuperFect Transfection Reagent (Qiagen, Inc., Valencia, CA) according to the manufacturer's instructions. Briefly, cells were plated at 50% confluence, and DNA/SuperFect complexes were allowed to enter BEAS-2B cells for 3 h. DNA complexes were removed and fresh growth medium was added. Transfection efficiencies of the pEGFP-C3, pEGFP-C3/*GPx1*, and pEGFP-C3/*SOD1* were calculated by counting EGFP(+) cells with a confocal microscope and determined to be roughly 8–10% for all three plasmids.

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was isolated from approximately 1×10^6 BEAS-2B cells using an RNeasy Mini Kit (Qiagen, Inc.). Total RNA was quantified using a NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE). Quantitect SYBR green one-step qRT-PCR kits (Qiagen, Inc.) were used to set up qRT-PCRs using 10 ng of total RNA

as a template. qRT-PCR experiments were performed on an ABI 7700 qRT-PCR machine (Applied Biosystems, Foster City, CA). Validated GADD45 α primer sets were obtained from Qiagen, Inc. and 18S rRNA primer set controls were obtained from Ambion, Inc. (Austin, TX). Each sample was replicated three times per plate and an average ΔC_t value was calculated. Relative quantitation of GADD45 α mRNA was calculated using the $\Delta\Delta C_t$ method. Error bars represent \pm SE.

Dual-luciferase reporter assay

BEAS-2B cells were applied to 12-well tissue culture plates at approximately 50% confluence and transiently transfected with either a full-length or a deleted GADD45 α promoter–firefly luciferase construct (kind gifts from Dr. Dennis Bruemmer at the University of California–Los Angeles, CA) or a GADD45 α intron 3–firefly luciferase construct (a kind gift from Dr. Albert J. Fornace, Jr. at Harvard University, Cambridge, MA) [54,55]. In addition, each sample was cotransfected with a pRL-TK *Renilla* luciferase vector (Promega Life Sciences) underneath the constitutive control of the herpes simplex virus thymidine kinase promoter to provide a measure of transfection efficiency for normalization. Constructs were allowed to express for at least 60 h followed by a 12-h treatment with 25 μ M AsCl₃ (Sigma). Then 100 μ L of firefly luciferase substrate was injected into each well of a Lumitrac 200 96-well plate (USA Scientific, Inc., Ocala, FL) containing 20 μ L of cell lysate. Firefly luciferase units were measured by an EG&G Berthold Microplate Luminometer MicroLumat Plus with an automatic injector (EG&G Berthold, Germany). WinGlow software (EG&G Berthold) was used to obtain readings with a 2.0-s delay and a 10.0-s measurement of luciferase activity and expressed in luciferase units. Luciferase substrates were obtained from the Dual-Luciferase Reporter Assay kit (Promega Life Sciences). Three replicates were assayed per experiment and the ratio of inducible firefly luciferase activity to basal *Renilla* luciferase activity

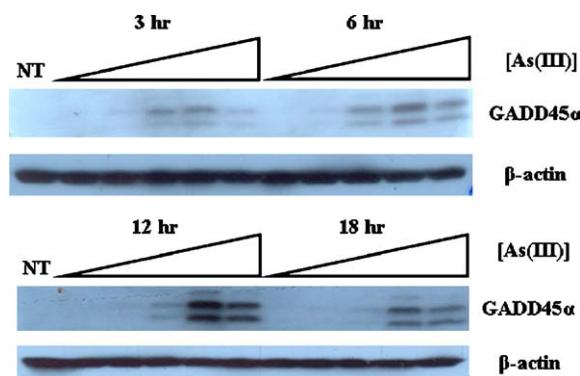


Fig. 1. As(III) (25 μ M) induces maximal GADD45 α expression at 12 h. A dose/time course Western blot of As(III)-exposed BEAS-2B cells show maximal GADD45 α induction after 12 h of treatment. BEAS-2B cells were exposed to As(III) concentrations of 0, 3.25, 6.25, 12.5, 25, and 50 μ M; 20 μ g of total protein was loaded into each lane and GADD45 α expression was detected with a polyclonal antibody. Data shown are representative of three independent experiments.



Fig. 2. (A) As(III) exposure increases O₂ consumption in BEAS-2B cells. Aliquots of 4×10^6 BEAS-2B cells were injected into a Gilson 5/6 Oxygraph and the rate of oxygen consumption was measured with or without a 20-min exposure to 1 mM As(III). O₂ consumption in the presence of As (III) was increased approximately threefold. Asterisk indicates a statistically significant increase compared to control. Data shown are averages of three independent experiments. (B) As(III) induces the formation of ·OH in BEAS-2B cells. Formation of ·OH was measured by ESR spectroscopy in aliquots of 1×10^6 BEAS-2B cells with or without exposure to 1 mM As (III). Shown are examples of spectra of control BEAS-2B cells (left) and As (III)-exposed BEAS-2B cells (right) exhibiting the characteristic ·OH ESR fingerprint. (C) Graphical representation of ESR peak height. ESR peak heights were measured and quantified as described under Materials and methods. As(III)-exposed BEAS-2B cells showed a 2.5-fold increase in the amount of ·OH formation which was abrogated by the addition of 2000 units/mL of catalase, confirming the identity of ·OH. Single asterisk indicate a statistically significant increase in ·OH formation compared to control cells. Double asterisks indicate a statistically significant decrease in ·OH formation compared to As(III)-treated cells. Data shown are averages of three independent experiments.

was averaged for each group. Fold induction was calculated by dividing the average ratios of As(III)-treated samples by the average ratios of samples left untreated. Error bars represent \pm SE and statistical significance was calculated

using Student's *t* test. Data shown are representative of three independent experiments.

Results

As(III) exposure induces expression of the GADD45 α protein in a time- and dose-dependent manner

Because GADD45 α expression has been observed in response to many stress conditions including UV irradiation, serum starvation, and alkylating agents, we investigated the effects of As(III) exposure on its induction [32,37,38]. To simulate airway exposure to arsenic, an immortalized nontumorigenic BEAS-2B human lung airway epithelial cell line was used for these experiments. Western blot analysis of GADD45 α in response to increasing concentrations of AsCl₃ revealed a time- and dose-dependent increase in protein abundance (Fig. 1), whereas equal concentrations of NaCl had no effect (data not shown). β -Actin abundance remained unaffected throughout the dose and time course of As(III) exposure. Densitometry readings, normalized to β -Actin expression, confirmed that GADD45 α protein abundance increased more than 100-fold over untreated BEAS-2B cells 12 h after 25 μ M As(III) treatment (data not shown). This result demonstrates that GADD45 α protein is induced in BEAS-2B cells in response to As(III) exposure in a dose-dependent manner.

As(III) exposure increases oxygen consumption and ·OH production in BEAS-2B cells

Since As(III) has been shown to exert mutagenic effects via ROS production in several cellular systems, it is possible that the signaling events induced by As(III), specifically GADD45 α induction, are also mediated by a ROS mechanism [56]. To address this possibility, BEAS-2B cells were exposed to 1 mM As(III) for 20 min and the rate of oxygen consumption was measured by a Gilson 5/6 Oxygraph. As(III)-exposed BEAS-2B cells showed approximately a threefold increase in the amount of oxygen consumed in vitro (Fig. 2A), suggesting that a free

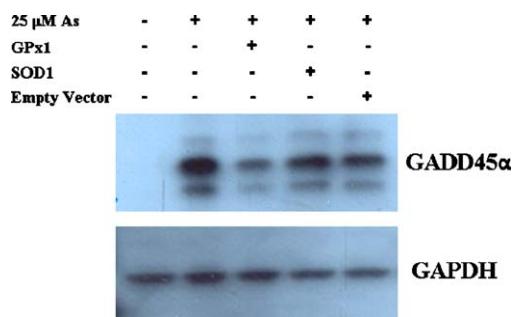


Fig. 3. Overexpression of the H₂O₂ scavenging enzyme GPx1 reduces GADD45 α protein expression. BEAS-2B cells were transiently transfected with a GPx1, SOD1, or C3 empty vector and assayed for changes in GADD45 α expression via Western blot. Removal of H₂O₂ by GPx1 overexpression decreased GADD45 α expression by approximately 50%. Data shown are representative of three independent experiments.

radical mechanism may be occurring in BEAS-2B cells upon As(III) stimulation.

To determine the identity of the radicals produced, we employed electron spin resonance spectroscopy. Representative ESR spectra are displayed in Fig. 2B. A basal level of $\cdot\text{OH}$, signified by its 1-2-2-1 relative peak height fingerprint, is produced by normal BEAS-2B cells and was expected as a consequence of normal respiration; however, after a 20-min exposure to 1 mM As(III), the $\cdot\text{OH}$ signal significantly increased (Fig. 2B). Spectral results were quantified by peak height measurements in Fig. 2C, where a 2.5-fold increase in $\cdot\text{OH}$ production was observed after As(III) exposure compared to normal respiring cells. The $\cdot\text{OH}$ signal was attenuated by the addition of 2000 units/mL of catalase, showing that H_2O_2 is a precursor of $\cdot\text{OH}$. These data indicate that $\cdot\text{OH}$ is a major free radical formed in the BEAS-2B cell line in response to As(III) exposure.

GADD45 α protein abundance decreases in response to As(III) in the presence of the H_2O_2 scavenger GPx1

Because As(III) produced $\cdot\text{OH}$ in the BEAS-2B cell line and GADD45 α is induced in response to many stressors, we hypothesized that its induction may occur through an oxidative stress mechanism. To assess the role of ROS in GADD45 α induction, we constructed glutathione peroxidase 1 (GPx1)-EGFP and superoxide dismutase 1 (SOD1)-EGFP overexpression/fusion vectors and examined their effects on GADD45 α protein abundance. The GPx1 enzyme is a H_2O_2 scavenger, whereas the SOD1 enzyme is a $\text{O}_2^{\cdot-}$ scavenger. GPx1-EGFP, SOD1-EGFP, and empty vector pEGFP-C3 constructs were transiently transfected into BEAS-2B cells. At 48 h after transfection, cells were treated with 25 μM As(III) for 12 h and subjected to Western blot analysis. Overexpression of the GPx1-EGFP fusion construct reduced GADD45 α protein abundance by at least 50% (Fig. 3) as measured by densitometry

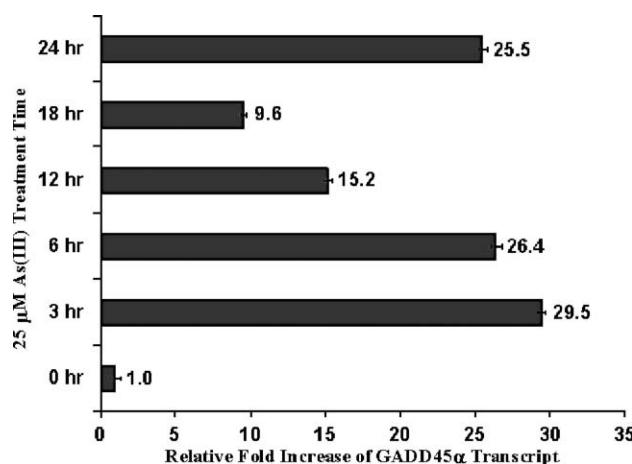


Fig. 4. As(III) exposure increases GADD45 α transcript abundance. Relative qRT-PCR was employed to measure the abundance of the GADD45 α transcript using the 0-h time point as a calibrator. Transcript abundance increased approximately 30-fold after a 3-h As(III) treatment. Data shown are representative of three independent experiments.

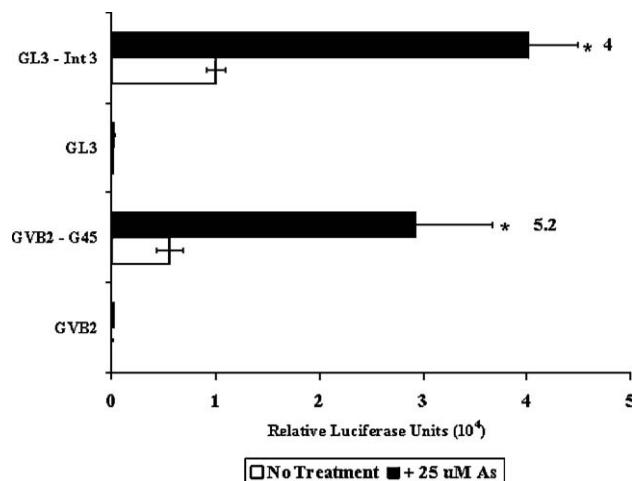


Fig. 5. As(III) activates both the GADD45 α promoter region and the intron 3 region. A dual-luciferase reporter system was used to determine the activation of the GADD45 α promoter-luciferase (G45) and the intron 3-luciferase (Int3) constructs. Constructs were transiently transfected into BEAS-2B cells and luciferase activity was normalized to an internal transfection control; 5.2- and 4-fold increases in the G45 and Int3 luciferase activity, respectively, were observed in As(III)-exposed samples compared to the untreated control samples. Data shown are representative of three independent experiments.

and normalized to GAPDH expression (data not shown). Empty vector and SOD1 construct overexpression did not affect GADD45 α expression (Fig. 3), implying that the formation of H_2O_2 is partially responsible for the induction of the GADD45 α protein in response to As(III).

As(III) exposure increases GADD45 α mRNA abundance

To determine how As(III) exposure induces the GADD45 α protein, we examined GADD45 α transcript abundance at several time points using qRT-PCR. A concentration of 25 μM As(III) was chosen to obtain a maximal effect. Relative quantification of GADD45 α mRNA was performed using the

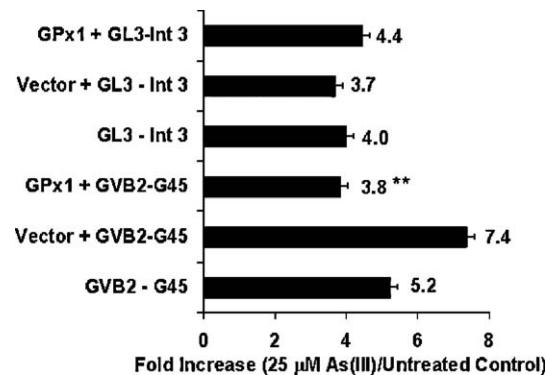
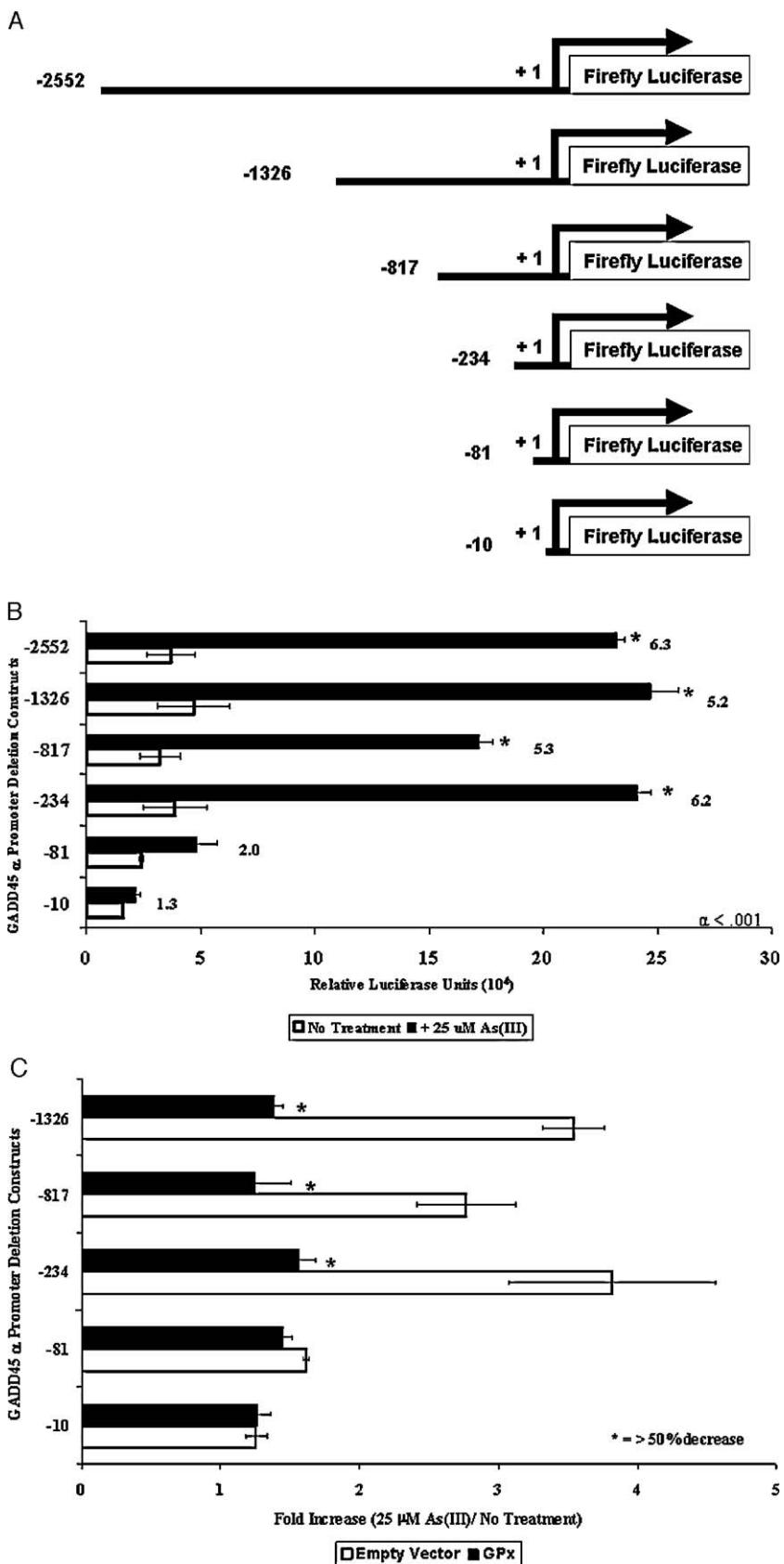



Fig. 6. Overexpression of GPx1 reduces GADD45 α promoter activation but not intron 3 activation. G45 and Int3 luciferase constructs were transiently cotransfected with either an empty vector or the vector overexpressing the GPx1 protein and exposed to 25 μM As(III) or left untreated. GPx1 overexpression decreased the G45 promoter-luciferase activity by 50% but seemed to have no effect on Int3 activity. Data shown are representative of three independent experiments.

0 h time point as a calibration value. As shown in Fig. 4, GADD45 α mRNA increases almost 30-fold after 3 h of treatment. Although GADD45 α mRNA slightly decreased during the following three time points, it began to increase again at the 24-h time point, mimicking the GADD45 α protein expression pattern (see Fig. 1). Therefore, we reasoned that the *gadd45 α* gene could be transcriptionally induced by As(III) exposure.

As(III) activates transcription of *gadd45 α* through both the promoter region and the third intron region

To establish whether the increase in mRNA abundance resulted from transcriptional activation or as a consequence of increased mRNA stability, we examined the effects of As(III) on induction of the GADD45 α promoter and intron 3 regions. GADD45 α promoter–luciferase and intron 3–luciferase transcriptional fusion constructs were transiently transfected into BEAS-2B cells, subjected to As(III) treatment for 12 h, and assayed for luciferase activity. The GADD45 α promoter construct showed a fivefold increase in luciferase activity in response to 25 μ M As(III) (Fig. 5). Similarly, the GADD45 α intron 3 construct exhibited a fourfold increase in activity (Fig. 5). Neither of the control constructs containing the luciferase gene alone (GVB2 or GL3) showed any discernible difference between the untreated samples and the As(III)-exposed samples, illustrating that both the promoter and the intron 3 regions of the *gadd45 α* gene are activated by As(III) exposure.

Since H₂O₂ was involved in As(III)-induced GADD45 α protein levels, we examined the effects of H₂O₂ on the transcriptional activation of *gadd45 α* . GPx1 or a control vector was cotransfected with the aforementioned GADD45 α promoter and intron 3 constructs. GPx1 overexpression decreased promoter–luciferase activity by 50% compared to transfection with the empty vector (Fig. 6). Surprisingly, the control vector itself slightly increased luciferase activity in the *gadd45 α* promoter construct. The reason for this phenomenon is unclear. In contrast, the activity of the intron 3 construct after As(III) exposure remained largely unaffected (Fig. 6). These results suggest a role for H₂O₂ in the transcriptional activation of the *gadd45 α* promoter region.

As(III) activation of the GADD45 α promoter region occurs between –81 and –234 relative to the tss

Given that the GADD45 α promoter–luciferase transcriptional fusion construct was activated by the presence of H₂O₂, we wanted to identify which portion of the promoter region was responsible for the activation. Six GADD45 α promoter–luciferase deletion constructs, named for the length of the promoter region with regard to the transcriptional start site (+1),

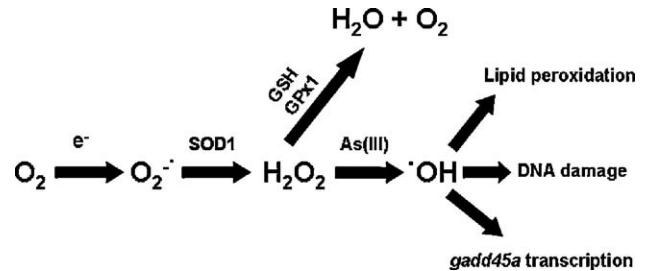


Fig. 8. Proposed ROS pathway involving arsenic. The proposed ROS pathway responsible for the activation of the *gadd45 α* promoter region is a Fenton-like reaction in which molecular oxygen accepts an electron, forming O₂[•], and is then converted to H₂O₂ by superoxide dismutase. H₂O₂ is then further broken down into water and molecular oxygen, unless the presence of a transition metal, such as As(III), is present. Excess As(III) can then react with H₂O₂ and produce ·OH, which leads to DNA damage, lipid peroxidation, and activation of cellular signaling pathways, including the induction of *gadd45 α* transcription.

were transfected into BEAS-2B cells and exposed to 25 μ M As(III) for 12 h (Fig. 7A). A five- to sixfold increase in luciferase activity was observed in all constructs containing at least 234 bp upstream of the +1 site (Fig. 7B). A further deletion of approximately 150 bp (to –81) eliminated most of the luciferase activity. Putative transcription factor binding sites located in this region include consensus sequences for AP-1, MBF-1, Egr-1, Egr-2, Egr-3, and WT1 (-KTS) [57].

We subsequently examined the effects of As(III)-induced H₂O₂ formation on the induction of the promoter deletion constructs. Again, GPx1 overexpression and the removal of H₂O₂ decreased luciferase induction by approximately 50% in all constructs showing more than fivefold induction (Fig. 7C). No change was seen in the smaller constructs. These results suggest that the 153-bp region located between –234 and –81 contains an As(III)-responsive region that is sensitive to the production of H₂O₂.

Discussion

The findings presented here suggest that As(III) exposure induces the transcriptional activation of the *gadd45 α* gene through a Fenton-like free radical mechanism (Fig. 8). The Fenton reaction, which is usually associated with an excess of Fe(II), occurs when a transition metal is oxidized during its interaction with H₂O₂, producing an oxidized metal and two molecules of ·OH. Our data show that As(III) treatment increases the amount of molecular oxygen consumed by BEAS-2B cells, indicating that more oxygen is available for conversion to O₂[•] and subsequent formation of H₂O₂. In addition, ESR data show that the relative amount of ·OH increases in response to As(III) exposure, which is alleviated by treatment with the H₂O₂ scavenger catalase. The removal of H₂O₂ from the intracellular environment by GPx1 overexpression decreases *gadd45 α*

Fig. 7. GADD45 α promoter activation occurs between the –234 and the –81 regions. (A) Schematic diagram of GADD45 α promoter–luciferase deletion constructs. (B) Effects of As(III) on the activation of GADD45 α promoter–luciferase deletion constructs were examined after a 12 h treatment period with 25 μ M As(III). The full-length (–2552), –1326, –817, and –234 constructs all retained an induction of approximately five to six fold when exposed to arsenic, whereas the –81 construct showed a loss of activation by As(III). (C) Activation of the full-length, –1326, –817, and –234 constructs was reduced by 50% in GPx1-overexpressing cell lysates. Data shown are representative of three independent experiments.

promoter–luciferase activity and GADD45 α protein expression, further supporting a role for H₂O₂ in GADD45 α induction. Surprisingly, treatment with H₂O₂ alone only weakly induced GADD45 α protein expression compared to equal concentrations of As(III) treatment, whereas cotreatment with H₂O₂ and As(III) enhanced GADD45 α protein induction (data not shown). Collectively, these results suggest that the formation of •OH through a Fenton-like reaction is at least partially responsible for the induction of *gadd45a* transcription and protein expression in response to As(III) exposure.

The induction of *gadd45a* transcription by the production of H₂O₂ and/or •OH and each molecule's subsequent intracellular activities may partially account for the wide variety of chemical and physical inducers of GADD45 α protein expression. IR and UV irradiation, both potent inducers of GADD45 α expression, also induce •OH formation [37,58]. Additionally, generation of H₂O₂ and •OH via the Fenton reaction can induce the formation of apurinic sites, the same type of DNA lesion induced by another potent GADD45 α inducer, MMS [37,59]. These data suggest that H₂O₂ and/or •OH production may be a key regulator of GADD45 α transcriptional induction.

Because BEAS-2B cells contain a p53 protein that has been inactivated by expression of the E6 viral protein, *gadd45a* transcriptional activation by As(III) occurs through a p53-independent mechanism in these cells [60]. Based on the experimental data generated in this study, we have identified several other candidate transcription factors that may be involved in *gadd45a* transcription. One major candidate is the AP-1 transcription factor, since it has previously been identified as an As(III)-activated protein [61,62]. In addition, the yeast homolog of the human AP-1 protein, Yap1, contains a redox-regulated domain consisting of disulfide bonds that can mask or expose its nuclear localization sequence, depending on the redox status of the cell [63]. These findings make AP-1 an ideal candidate for ROS-mediated transcriptional activation. Moreover, the 153-bp region of the *gadd45a* promoter–luciferase deletion constructs affected by antioxidant overexpression boasts four possible AP-1 consensus binding sequences [57]. Finally, AP-1 has also been identified as the transcription factor responsible for increasing expression of the DNA-damage-response gene *gadd153* after As(III) exposure, suggesting that H₂O₂ production and redox status may be a general mechanism for the transcriptional activation of DNA damage-response genes [64].

Alternatively, the early growth response 1 (Egr-1) transcription factor may also be involved in H₂O₂-mediated transcriptional activation of *gadd45a*. Egr-1 has recently been shown to induce *gadd45a* transcription in response to UV irradiation [65]. Furthermore, Egr-1 induction occurs 3 h after 25 μ M As(III) treatment, coincidental with the increase in *gadd45a* mRNA abundance shown in Fig. 4 (D. Bhatia and F. Chen, unpublished data). Testing to determine the effects of Egr-1 on *gadd45a* transcriptional activation in response to As(III) exposure is underway in our laboratory.

In conclusion, we have shown that the *gadd45a* gene is transcriptionally induced by As(III) exposure through the

formation of H₂O₂. This induction occurs in the promoter region of the *gadd45a* gene and the redox-responsive element is located in the –234 to –81 bp region. Future work will focus on the identification of the transcription factor(s) responsible for the oxidative-stress-dependent transcriptional induction of *gadd45a*.

References

- Balasoiu, C. F.; Zagury, G. J.; Deschenes, L. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition. *Sci. Total Environ.* **280**:239–255; 2001.
- Stephanopoulos, D. E.; Willman, D. A.; Shevlin, D.; Pinter, L.; Gummin, D. D. Treatment and toxicokinetics of acute pediatric arsenic ingestion: danger of arsenic insecticides in children. *Pediatr. Crit. Care Med.* **3**: 74–80; 2002.
- Bailey, E. J.; Kennaway, E. L.; Urquhart, M. E. Arsenic content of cigarettes. *Br. J. Cancer* **11**:49–53; 1957.
- Das, H. K.; Mitra, A. K.; Sengupta, P. K.; Hossain, A.; Islam, F.; Rabbani, G. H. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. *Environ. Int.* **30**:383–387; 2004.
- Haque, R.; Mazumder, D. N.; Samanata, S.; Ghosh, N.; Kalman, D.; Smith, M. M.; Mitra, S.; Santra, A.; Lahiri, S.; Das, S.; De, B. K.; Smith, A. H. Arsenic in drinking water and skin lesions: dose-response data from West Bengal, India. *Epidemiology* **14**:174–182; 2003.
- Roychowdhury, T.; Uchino, T.; Tokunaga, H.; Ando, M. Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India. *Chemosphere* **49**:605–618; 2002.
- Axelson, O.; Dahlgren, E.; Jansson, C. D.; Rehnlund, S. O. Arsenic exposure and mortality: a case-referent study from a Swedish copper smelter. *Br. J. Ind. Med.* **35**:8–15; 1978.
- Smith, A. H.; Lingas, E. O.; Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. *Bull. World Health Organ.* **78**:1093–1103; 2000.
- Centeno, J. A.; Mullick, F. G.; Martinez, L.; Page, N. P.; Gibb, H.; Longfellow, D.; Thompson, C.; Ladich, E. R. Pathology related to chronic arsenic exposure. *Environ. Health Perspect.* **110** (Supp 5):883–886; 2002.
- Chen, C. J.; Chuang, Y. C.; Lin, T. M.; Wu, H. Y. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. *Cancer Res.* **45**:5895–5899; 1985.
- Chen, C. J.; Hsueh, Y. M.; Lai, M. S.; Shyu, M. P.; Chen, S. Y.; Wu, M. M.; Kuo, T. L.; Tai, T. Y. Increased prevalence of hypertension and long-term arsenic exposure. *Hypertension* **25**:53–60; 1995.
- International Agency for Research on Cancer (IARC). Carcinogenesis of arsenic compounds. *IARC Monograph on Evaluation of Carcinogenic Risks* **23**:37–141; 1980.
- Leonard, A.; Lauwers, R. R. Carcinogenicity, teratogenicity, and mutagenicity of arsenic. *Mutat. Res.* **75**:49–62; 1980.
- Mabuchi, K.; Lilienfeld, A. M.; Snell, L. M. Lung cancer among pesticide workers exposed to inorganic arsenicals. *Arch. Environ. Health* **34**: 312–320; 1979.
- Pinto, S. S.; Nelson, K. W. Arsenic toxicology and industrial exposure. *Annu. Rev. Pharmacol. Toxicol.* **16**:95–100; 1976.
- Pinto, S. S.; Enterline, P. E.; Henderson, V.; Varner, M. O. Mortality experience in relation to a measured arsenic trioxide exposure. *Environ. Health Perspect.* **19**:127–130; 1977.
- Steinmaus, C.; Moore, L.; Hoppenhayn-Rich, C.; Biggs, M. L.; Smith, A. H. Arsenic in drinking water and bladder cancer. *Cancer Invest.* **18**:174–182; 2000.
- World Health Organization (WHO). *Arsenic in Drinking Water: Fact Sheet No. 210*. Geneva: WHO Press; 2001.
- National Research Council (NRC). *Arsenic in Drinking Water*. Washington, DC.: National Academy Press; 1999.
- Klaassen, C. D.; Amdur, M. O.; Doull, J. *Cassarett and Doull's Toxicology: The Basic Sciences of Poisons*. New York: McGraw-ill; 1996.
- Bagla, P.; Kaiser, J. India's spreading health crisis draws global arsenic experts. *Science* **274**:174–175; 1996.

[22] Lewis, D. R.; Southwick, J. W.; Ouellet-Hellstrom, R.; Rensch, J.; Calderon, R. L. Drinking water arsenic in Utah: A cohort mortality study. *Environ. Health Perspect.* **107**:359–365; 1999.

[23] Nordstrom, D. K. Public health. Worldwide occurrences of arsenic in ground water. *Science* **296**:2143–2145; 2002.

[24] Natural Resources Defense Council (NRDC). Arsenic and old laws: a scientific and public health analysis of arsenic occurrence in drinking water, its health effects, and EPA's outdated arsenic tap water standard. <http://www.nrdc.org/water/drinking/arsenic/chap1.asp>.

[25] Rossman, T. G.; Stone, D.; Molina, M.; Troll, W. Absence of arsenite mutagenicity in *E. coli* and Chinese hamster cells. *Environ. Mutagen.* **2**:371–379; 1980.

[26] Germolec, D. R.; Spalding, J.; Boorman, G. A.; Wilmer, J. L.; Yoshida, T.; Simeonova, P. P.; Brucolieri, A.; Kayama, F.; Gaido, K.; Tennant, R.; Burleson, F.; Dong, W.; Lang, R. W.; Luster, M. I. Arsenic can mediate skin neoplasia by chronic stimulation of keratinocyte-derived growth factors. *Mutat. Res.* **386**:209–218; 1997.

[27] Germolec, D. R.; Spalding, J.; Yu, H. S.; Chen, G. S.; Simeonova, P. P.; Humble, M. C.; Brucolieri, A.; Boorman, G. A.; Foley, J. F.; Yoshida, T.; Luster, M. I. Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors. *Am. J. Pathol.* **153**:1775–1785; 1998.

[28] Kachinskas, D. J.; Philips, M. A.; Qin, Q.; Stokes, J. D.; Rice, R. H. Arsenate perturbation of human keratinocyte differentiation. *Cell Growth Differ.* **5**:1235–1241; 1994.

[29] Huang, C.; Ma, W. Y.; Li, J.; Goranson, A.; Dong, Z. Requirement of Erk, but not JNK, for arsenite-induced cell transformation. *J. Biol. Chem.* **274**:14595–14601; 1999.

[30] Chen, F.; Zhang, Z.; Leonard, S. S.; Shi, X. Contrasting roles of NF- κ B and JNK in arsenite-induced p53-independent expression of GADD45alpha. *Oncogene* **20**:3585–3589; 2001.

[31] Wijeweera, J. B.; Gandolfi, A. J.; Parrish, A.; Lantz, R. C. Sodium arsenite enhances AP-1 and NF- κ B DNA binding and induces stress protein expression in precision-cut rat lung slices. *Toxicol. Sci.* **61**:283–294; 2001.

[32] Chen, F.; Lu, Y.; Zhang, Z.; Vallyathan, V.; Ding, M.; Castranova, V.; Shi, X. Opposite effect of NF- κ B and c-Jun N-terminal kinase on p53-independent GADD45 induction by arsenite. *J. Biol. Chem.* **276**:11414–11419; 2001.

[33] Yih, L. H.; Hsueh, S. W.; Luu, W. S.; Chiu, T. H.; Lee, T. C. Arsenite induces prominent mitotic arrest via inhibition of G2 checkpoint activation in CGL-2 cells. *Carcinogenesis* **26**:53–63; 2005.

[34] Chen, F.; Zhang, Z.; Bower, J.; Lu, Y.; Leonard, S. S.; Ding, M.; Castranova, V.; Piwinica-Worms, H.; Shi, X. Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteosome pathway. *Proc. Natl. Acad. Sci. USA* **99**:1990–1995; 2002.

[35] Park, W. H.; Seol, J. G.; Kim, E. S.; Hyun, J. M.; Jung, C. W.; Lee, C. C.; Kim, B. K.; Lee, Y. Y. Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. *Cancer Res.* **60**:3065–3071; 2000.

[36] Seol, J. G.; Park, W. H.; Kim, E. S.; Jung, C. W.; Hyun, J. M.; Kim, B. K.; Lee, Y. Y. Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. *Biochem. Biophys. Res. Commun.* **265**: 400–404.

[37] Fornace, A. J. Jr.; Nebert, D. W.; Hollander, M. C.; Luethy, J. D.; Papathanasiou, M.; Farnolli, J.; Holbrook, N. J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. *Mol. Cell. Biol.* **9**:4196–4203; 1989.

[38] Yih, L. H.; Peck, K.; Lee, T. C. Changes in gene expression profiles of human fibroblasts in response to sodium arsenite treatment. *Carcinogenesis* **23**:867–876; 2002.

[39] Andrew, A. S.; Warren, A. J.; Barchowsky, A.; Temple, K. A.; Klei, L.; Soucy, N. V.; O'Hara, K. A.; Hamilton, J. W. Genomic and proteomic profiling of responses to toxic metals in human lung cells. *Environ. Health Perspect.* **111**:825–835; 2003.

[40] Zhan, Q.; Antinore, M. J.; Wang, X. W.; Carrier, F.; Smith, M. L.; Harris, C. C.; Fornace, A. J. Jr. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. *Oncogene* **18**:2892–2900; 1999.

[41] Wang, X. W.; Zhan, Q.; Coursen, J. D.; Khan, M. A.; Kontny, H. U.; Yu, L.; Hollander, M. C.; O'Conner, P. M.; Fornace, A. J. Jr.; Harris, C. C. GADD45 induction of a G2/M cell cycle checkpoint. *Proc. Natl. Acad. Sci. USA* **96**:3706–3711; 1999.

[42] Mak, S. K.; Kultz, D. Gadd45 proteins induce G2/M arrest and modulate apoptosis in kidney cells exposed to hyperosmotic stress. *J. Biol. Chem.* **279**:39075–39084; 2004.

[43] Carrier, F.; Georgel, P. T.; Pourquier, P.; Blake, M.; Kontny, H. U.; Antinore, M. J.; Garibaldi, M.; Myers, T. G.; Weinstein, J. N.; Pommier, Y.; Fornace, A. J. Jr. Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. *Mol. Cell. Biol.* **19**:1673–1685; 1999.

[44] Kastan, M. B.; Zhan, Q.; el-Deiry, W. S.; Carrier, F.; Jacks, T.; Walsh, W. V.; Plunkett, B. S.; Vogelstein, B.; Fornace, A. J. Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. *Cell* **71**:587–597; 1992.

[45] Graunke, D. M.; Fornace, A. J. Jr.; Pieper, R. O. Presetting of chromatin structure and transcription factor binding poised the human GADD45 gene for rapid transcriptional up-regulation. *Nucleic Acids Res.* **27**:3881–3890; 1999.

[46] Zhan, Q.; Chen, I. T.; Antinore, M. J.; Fornace, A. J. Jr. Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. *Mol. Cell. Biol.* **18**:2768–2778; 1998.

[47] Takahashi, S.; Satio, S.; Ohtani, N.; Sakai, T. Involvement of the Oct-1 regulatory element of the gadd45 promoter in the p53-independent response to ultraviolet irradiation. *Cancer Res.* **61**:1187–1195; 2001.

[48] Jin, S.; Fan, F.; Fan, W.; Zhao, H.; Tong, T.; Blanck, P.; Alomo, I.; Rajasekaran, B.; Zhan, Q. Transcription factors Oct-1 and NF-YA regulate the p53-independent induction of the GADD45 following DNA damage. *Oncogene* **20**:2683–2690; 2001.

[49] Zhao, H.; Jin, S.; Fan, F.; Fan, W.; Tong, T.; Zhan, Q. Activation of the transcription factor Oct-1 in response to DNA damage. *Cancer Res.* **60**:6276–6280; 2000.

[50] Daino, K.; Ichimura, S.; Nenoi, M. Comprehensive search for x-ray-responsive elements and binding factors in the regulatory region of the GADD45a gene. *J. Radiat. Res. (Tokyo)* **44**:311–318; 2003.

[51] Tran, H.; Brunet, A.; Grenier, J. M.; Datta, S. R.; Fornace, A. J. Jr.; DiStefano, P. S.; Chiang, L. W.; Greenberg, M. E. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the GADD45 protein. *Science* **296**:530–534; 2002.

[52] Li, S.; Yan, T.; Yang, J. Q.; Oberley, T. D.; Oberley, L. W. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. *Cancer Res.* **60**:3927–3939; 2000.

[53] Zhang, Y.; Zhao, W.; Zhang, H. J.; Domann, F. E.; Oberley, L. W. Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. *Cancer Res.* **62**:1205–1212; 2002.

[54] Bruemmer, D.; Yin, F.; Liu, J.; Berger, J. P.; Sakai, T.; Blaschke, F.; Fleck, E.; Van, A.; Herle, J.; Forman, B. M.; Law, R. E. Regulation of the growth arrest and DNA damage-inducible gene 45 (GADD45) by peroxisome proliferators-activated receptor gamma in vascular smooth muscle cells. *Circ. Res.* **93**:e38–e47; 2003.

[55] Zhan, Q.; Chen, I. T.; Antinore, M. J.; Fornace, A. J. Jr. Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. *Mol. Cell. Biol.* **18**:2768–2778; 1998.

[56] Hei, T. K.; Liu, S. X.; Waldren, C. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. *Proc. Natl. Acad. Sci. USA* **95**:8103–8107; 1998.

[57] Schug, J.; Overton, G. C. TESS: Transcription Element Search Software on the WWW. Technical Report CBIL-TR-1997-1001-v0.0. Computational Biology and Informatics Laboratory, School of Medicine, University of Pennsylvania; 1997. <http://www.cbil.upenn.edu/tess>.

[58] Halliwell, B.; Gutteridge, J. M. C. *Free Radicals in Biology and Medicine*. New York: Oxford University Press; 1999.

[59] Nakamura, J.; La, D. K.; Swenberg, J. A. 5'-nicked apurinic/apyrimidinic sites are resistant to β -elimination by β -polymerase and are persistent in human cultured cells after oxidative stress. *J. Biol. Chem.* **275**:5323–5328; 2000.

[60] Reddel, R. R.; Ke, Y.; Gerwin, B. I.; McMenamin, M. G.; Lechner, J. F.; Su, R. T.; Brash, D. E.; Park, J. B.; Rhim, J. S.; Harris, C. C. Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. *Cancer Res.* **48**:1904–1909; 1988.

[61] Cavigelli, M.; Li, W. W.; Lin, A.; Su, B.; Yoshioka, K.; Karin, M. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. *EMBO J.* **15**:6269–6279; 1996.

[62] Simeonova, P. P.; Wang, S.; Toriuma, W.; Kommineni, V.; Matheson, J.; Unimye, N.; Kayama, F.; Harki, D.; Ding, M.; Vallyathan, V.; Luster, M. I. Arsenic mediates cell proliferation and gene expression in the bladder epithelium: association with activating protein-1 transactivation. *Cancer Res.* **60**:3445–3453; 2000.

[63] Wood, M. J.; Storz, G.; Tjandrawi, N. Structural basis for redox regulation of Yap1 transcription factor localization. *Nature* **430**:917–921; 2004.

[64] Guyton, K. Z.; Xu, Q.; Holbrook, N. J. Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. *Biochem. J.* **314**:547–554; 1996.

[65] Thyss, R.; Virolle, V.; Imbert, V.; Peyron, J. F.; Aberdam, D.; Virolle, T. NF- κ B/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. *EMBO J.* **24**:128–137; 2005.