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This article describes the development and evaluation of a small prototype instrument
employing an array of four polymer-coated surface acoustic wave (SAW) sensors for rapid
analysis of organic solvent vapors in exhaled breath and ambient air. A thermally desorbed
adsorbent preconcentrator within the instrument is used to increase sensitivity and compen-
sate for background water vapor. Calibrations were performed for breath and dry nitrogen
samples in Tedlar bags spiked with 16 individual solvents and selected binary mixtures.
Responses were linear over the 50- to 400-fold concentration ranges examined and mixture
responses were additive. The resulting library of vapor calibration response patterns was
used with extended disjoint principal components regression and a probabilistic artificial
neural network to develop vapor-recognition algorithms. In a subsequent analysis of an inde-
pendent data set all individual vapors and most binary mixture components were correctly
identified and were quantified to within 25% of their actual concentrations. Limits of detec-
tion for a (.25 1. sample collected over a 2.5-min period were <0.3xTLYV for 14 of the 16
vapors based on the criterion that all four sensors show a detectable response. Results demon-
strate the feasibility of this technology for workplace analysis of breath and ambient air. ©
2001 British Occupational Hygiene Society. Published by Elsevier Science Ltd. All rights

reserved
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INTRODUCTION

Exposure to volatile organic solvent vapors results in
absorption by the pulmonary blood supply and distri-
bution throughout the body. Following exposure, a
fraction of the absorbed dose is excreted in the breath.
Thus, the concentration of vapor in breath can provide
insight into the body burden and thereby assist in the
assessment of individual vapor uptake levels and the
risk of possible adverse health effects (Wilson, 1986;
Manolis, 1983; Droz and Guillemin, 1986; American
Conference of Governmental Industrial Hygienists,
1996).

The non-invasive nature of breath monitoring
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makes it more convenient than monitoring blood or
urine. However, the high concentration of background
water vapor, the presence of multiple endogenous and
exogenous vapors, and the short biological half-lives
of most absorbed vapors in the breath make it difficult
to perform breath analyses in the field. Current
approaches to breath analysis typically rely on the
collection of a discrete breath sample in an inert con-
tainer followed by laboratory analysis (Droz and
Guillemin, 1986; Ho and Dillon, 1987; Pleil et al.,
1998; Wallace et al., 1996). Direct analysis using
conventional instrumentation has been reported
(Benoit er al., 1985; Ewers et al., 2000; Franzblau et
al., 1992; Anon, 1994), but the cost and complexity
associated with these methods limit their application
in clinical and occupational settings.

Arrays of various partially selective microfabri-
cated sensors have been used for gas and vapor analy-
sis (Ballantine, 1997; Grate and Klusty, 1991; Rose-
Pehrsson er al., 1988; Carey and Kowalski, 1986;
Grate, 2000; Jurs et al., 2000; Hierlemann et al.,
1995; Gardner, 1991; Sundgren et al., 1990). Those
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based on surface-acoustic-wave (SAW) and related
acoustic-wave (AW) sensor technology have a num-
ber of potential advantages for analyzing organic
vapors. SAW sensors detect changes in the mass and
viscoelastic properties of interfacial surface-coating
films (Grate and Zellers, 2000; Martin et al., 1994).
Responses are rapid and reversible, isotherms are lin-
ear over fairly wide ranges of vapor concentration,
and responses to vapor mixtures are generally addi-
tive (Park et al., 2000; Zellers and Han, 1996; Zellers
et al., 1995). It has been shown that an array of only
3-6 SAW sensors coated with a diverse set of
amorphous polymers can produce characteristic
response patterns for identifying and quantifying a
large number of individual vapors and the compo-
nents of various vapor mixtures (Park er al., 1999,
2000; Cai et al., 2000; Zellers and Han, 1996; Zellers
et al., 1993, 1995; Grate et al., 1993; Patrash and
Zellers, 1993; Rose-Pehrsson et al., 1988; Wohltjen,
1984). Previous studies from our laboratory have
shown that instrumentation similar to that reported on
here can be used for several occupational hygiene
applications, including personal exposure monitoring
and the determination of solvents permeating through
chemical protective clothing (Park ef al., 2000; Park
and Zellers, 2000a,b).

Various pattern recognition methods have been
used to interpret sensor array response data (Zellers
et al., 1993; Massart, 1988; White et al., 1996; Carey
et al., 1986; Sutter and Jurs, 1997; Stetter et al., 1986;
Gardner et al., 1990; Sundgren et al., 1990; Jurs et
al., 2000). Among these is the extended disjoint prin-
cipal components regression (EDPCR) method that
we have used to analyze SAW sensor array response
data in a number of recent studies (Zellers et al.,
1993, 1995; Park er al., 2000; Cai et al., 2000; Park
et al., 1999; Zellers and Han, 1996; Park and Zellers,
2000a,b). Artificial neural networks (ANN) have also
been successfully applied to the problem of classify-
ing sensor responses (Dickinson et al., 1996; Eklov
and Lundstrom, 1999; Jurs er al., 2000; Hierlemann
et al., 1995; Gardner et al., 1992; Shaffer and Rose-
Pehrsson, 1999). In a recent study of seven different
pattern recognition algorithms for processing of
chemical sensor array data, it was found that ANN
based approaches produced the most accurate classi-
fications (Shaffer et al., 1999), thus providing vali-
dation for the utility of this approach.

This article is the third in a series describing the
development and laboratory testing of a simple proto-
type instrument designed to analyze organic vapors in
exhaled breath and ambient air (Groves and Zellers,
1996b; Groves et al., 1998). The instrument utilizes
a thermally desorbed adsorbent preconcentrator to
capture samples and reduce the influence of back-
ground humidity, and an array of four polymer-coated
surface-acoustic-wave (SAW) sensors to detect the
vapors. The first article in this series provided pre-
liminary data on instrument performance and the
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second provided a detailed analysis of the preconcen-
trator adsorbent, with an emphasis on humidity com-
pensation. Due to the limited sensitivity of polymer-
coated SAW sensors, sample preconcentration is
needed to achieve the low- or sub-part-per-million
(ppm) detection limits generally required for breath
analysis (Park er al., 1999, 2000; American Confer-
ence of Governmental Industrial Hygienists, 1996;
Groves and Zellers, 1996a). This article presents a
more comprehensive evaluation of the instrument for
breath monitoring. A sampling and analytical proto-
col applicable to both breath and ambient air samples
is presented, the effects of sample humidity are
assessed, and the application of EDPCR and ANN
pattern recognition methods is demonstrated for vapor
identification and quantification.

EXPERIMENTAL METHODS

Instrument description and operation

The key functional components of the instrument
used in this study are shown schematically in Fig. 1.
Included are an array of four 250-MHz polymer-
coated surface-acoustic-wave (SAW) resonators with
matched reference resonators, two diaphragm pumps,
four Teflon® solenoid valves, and an adsorbent-
packed preconcentrator tube (PCT). The instrument,
which was constructed to our design specifications by
Microsensor Systems, Inc. (Bowling Green, KY),
measures approximately 16x12x4 cm, weighs less
than 5 kg, and can be powered by AC or battery.

Each pair of working and reference sensors is
mounted on a 3x5 cm circuit board that also supports
the circuitry needed to drive the sensors and mix the
output signals. The four boards are clamped onto a
brass block having machined receptacles for the sen-
sors. Four parallel channels within the block, emanat-
ing from a common inlet, distribute airflow to the four
working sensors. The reference sensors are not
exposed to the sample stream, but are in the same
thermal environment as the working sensors. A Pelt-
ier device affixed to the underside of the brass block
maintains all sensors at 20°C to minimize baseline
disturbances and improve the reproducibility of
responses. The instrument microprocessor controls
the pneumatic and thermal cycling, and collects the
difference frequencies from the four
working/reference sensor pairs at a rate of 0.5 Hz.
Output signals are routed via an RS-232 port to an
external computer for display and processing. The
microprocessor was programmed by the instrument
manufacturer to allow for modification of valve
switching and thermal desorption timing through the
use of a menu driven software program also provided
by the manufacturer.

The PCT was constructed from 3-mm i.d. glass
tubes approximately 4.4 cm long wrapped with
twelve turns of 32-gauge NiCr wire to give a heated
length of about two cm. A thermocouple for monitor-
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Fig. 1. Simplified schematic and flow diagram for (a) Warm-up, (b) Sample, (c) Purge, and (d) Analysis modes.

ing and controlling temperature is attached to the out-
side of the NiCr wire using a silicon-rubber heat-
transfer compound. Temperature control is provided
by a PID Universal Temperature/Process Controller
(Omega Engineering, Inc., Stamford, CT). The PCT
is packed with 40 mg of XUS 43565.01 adsorbent
(Dow Chemical, Midland, MI; currently available
from Supelco, Bellefonte, PA), which is a 20/50 mesh
spherical resin composed of a methylene-bridged
copolymer of styrene and divinylbenzene. Selection
of the type and quantity of adsorbent was the subject
of the second paper in this series (Groves ez al., 1998)
and was based upon breakthrough studies for a sub-
set of vapors. The adsorbent was used as received.
Sample flow-path materials consisted of Teflon®,
stainless steel, glass, and brass, all of which were
selected to minimized loss of analyte and sample
carry-over. Further details about the instrument and
preconcentrator design are given elsewhere (Groves
and Zellers, 1996b; Groves et al., 1998).

The following four polymers are used as sensor
coatings: poly(epichlorohydrin) (PECH),
poly(isobutylene) (PIB), poly(bis-allylcyanosiloxane)
(OV-275), and poly(diphenoxyphosphazene) (PDPP).
One additional coating of an acrylonitrile-butadiene
copolymer (ABC) was examined during preliminary
tests but was not included in the final set of coatings
due to baseline instabilities observed at low humidity
(note: this effect was reproducible and could be
resolved by increasing the background relative
humidity to 20%). Polymers were obtained from
Scientific Polymer Products, Inc., Ontario, NY (PIB,
PECH, PDPP, and ABC), and Anspec, Ann Arbor,
MI (OV-275). PIB, PECH, PDPP, and ABC are
amorphous rubbery solids and OV-275 is a viscous
liquid at room temperature. These polymers were
selected as sensor coatings for the array on the basis

of previous studies indicating that response patterns
derived from them provide a relatively high degree of
selectively among solvent vapors within and between
structural classes (Zellers and Han, 1996; Zellers et
al., 1995) Coatings were applied to thicknesses in the
range of 20-30 nm, corresponding to a frequency
shift of ~225 kHz (Grate and Klusty, 1991; Park et
al., 2000), using an airbrush and a dilute solution of
each polymer in chloroform.

All calibration and test samples were prepared in
1-1. Tedlar® bags and connected to the inlet port by
a short section of 1/8 in o.d. Teflon® tubing. Once
activated, the instrument proceeds automatically
through a series of four pre-set operating modes. In
Warm-up Mode [Fig. 1(a)], clean dry air is passed
over the sensor array. In Sample Mode [Fig. 1(b)], a
0.25-1. sample is drawn through the PCT at 0.1 1./min.
Valve V4 is then switched and 0.25 1. of clean, dry
air is passed through the PCT at the same flow rate
[Purge Mode, Fig. 1(c)] in order to remove the
majority of co-adsorbed water vapor from the adsorb-
ent. Then, valves V1-V3 are switched, the flow rate
is reduced to 0.04 1./min, and the PCT is heated to
170°C at a rate of 15°C/s to desorb the trapped
organic vapors and draw them across the sensor array
[Analysis Mode, Fig. 1(d)]. After 2.5 min, the instru-
ment returns to Warm-Up Mode in preparation for
the next cycle.

The protocol for purging water vapor from the PCT
in this study differs from that used in our preliminary
study (Groves and Zellers, 1996b). In the current
approach, the water vapor bypasses the sensor array
during Purge Mode, which avoids unnecessarily
exposing the array to high water vapor concen-
trations. In addition to maintaining a flow of clean,
dry air across the sensor array at all times, the flow
rate over the array is held constant at 0.04 1./min. This
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yields lower LODs due to a decreased and more
reproducible baseline, and also allows a single set of
calibration data to be used for samples collected
under different conditions of humidity. The main dis-
advantage of using a dried purge stream is the need
to replace the drying agent (Drierite®) periodically.
By including indicator Drierite®, which turns from
blue to pink upon saturation, the change-out schedule
can be verified (Groves and Zellers, 1996b; Groves
et al., 1998).

Calibration

The instrument was calibrated with the 16 individ-
ual solvents vapors listed in Table 1. Test atmos-
pheres were prepared by first collecting a volume of
breath in a 1-1. Tedlar® bag, then injecting a known
volume of liquid solvent, and gently massaging the
bag to effect complete mixing of the evaporated sol-
vent. Samples were allowed to cool to room tempera-
ture (~20-24°C) prior to analysis. Solvents were all >
98% pure and were used as received (Aldrich Chemi-
cal, Milwaukee, WI). Calibrations were performed at
six concentrations, which bracketed the American
Conference of Governmental Industrial Hygienists’
Threshold Limit Value (ACGIH-TLV) for each
vapor. The actual concentration range used for a spe-
cific vapor was determined by the lowest concen-
tration needed to produce a detectable response in one
of the sensors and then approximately doubling this
concentration five times to yield a total of six cali-
bration concentrations. The concentrations of the test
atmospheres were determined using GC-FID by mak-
ing 1-ml injections using a gas-tight syringe and com-
paring the resulting peak areas to those of daily liquid
calibration standards for the solvent of interest.

Test atmospheres containing only breath or dry N,
gas were used as baseline samples (i.e. blanks). From
three to five blank analyses were performed for each
calibration series and the average was subtracted from
responses for calibration standards to yield a net
response profile for each sensor. Comparison of base-
lines for ‘blank’ breath samples and nitrogen samples
spiked with water to the point of saturation showed
no significant difference thus confirming that the
prototype instrument’s baseline is essentially defined
by the response of the sensors to residual water on
the PCT tube and that endogenous vapors in breath
are not detectable. Calibration curves were prepared
by plotting the response maximum from each coated
sensor (Hz) versus concentration (mg/m?). The sensi-
tivity of each sensor was determined from the slope of
the calibration curves for each polymer-solvent vapor
combination by linear regression with a forced zero
intercept. Additional calibrations were performed for
selected solvent test atmospheres prepared in dry N,
for comparison to the results for the breath samples.
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Pattern recognition

The EDPCR algorithm is based on the comparison
of the mean-centered response vector for an unknown
sample to the modeled vectors derived from the cali-
brated responses to a set of known vapors (Zellers et
al., 1993, 1995). With EDPCR, modeled vectors are
established by principal component regression of the
vector sum of the responses of the sensors in the array
to each calibration vapor. The distance between the
response vector of any subsequent ‘unknown’ test
vapor and each modeled vector is calculated and the’
identity of the test vapor is assigned on the basis of
the shortest distance, or ‘error’, between model and
response vectors. Once the vapor is recognized, its
concentration is determined by projecting the
response vector onto the model vector, in the case of
individual vapors, or onto the model plane, in the case
of a binary vapor mixture. The components of any
mixtures are quantified by projecting the response
vector onto the model vectors defining the plane for
the mixture. The approach is easily extended to ter-
nary or more complex mixtures (Park er al., 1999,
2000; Park and Zellers, 2000a,b; Cai et al., 2000).

A probabilistic ANN was also used to interpret
response patterns, but analyses were restricted to the
recognition of individual vapors. A commercial
software package (Neuroshell 2, Ward Systems
Group, Frederick, MD) was used to develop and train
the ANN. The default settings for activation func-
tions, number of hidden neurons, and internal archi-
tecture were used. Absolute sensor responses (Hz),
relative responses, and elution times were all used as
inputs for the classification networks, yielding a total
of 12 input variables (4 sensors X 3 parameters/
sensor). A training set was developed from the cali-
bration data for each vapor to yield a set of ‘correct’
outputs for the network in a spreadsheet format. The
training set consisted of 89 patterns derived from the
5-6 calibration concentrations analyzed for each indi-
vidual vapor. The number of outputs is equal to the
number of possible classifications, e.g., if it is stipu-
lated for a given application scenario that only one
of 16 possible vapors can be present at a time, there
would be 16 outputs or classifications — one for each
vapor. Once trained, the ANN is applied by entering
values for the 12 input variables for a sample and the
vapor identity is assigned on the basis of the output
with the highest probability. An ANN for the classi-
fication of vapors that might be present in mixtures
could be constructed in the same fashion with one
output for every possible classification, but this was
not explored in this study. An example of the proba-
bilistic neural network architecture used for vapor
identification is shown in Fig. 2 for the case where
an unknown response is to be classified as one of the
16 possible individual solvent vapors.
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Fig. 2. Simplified schematic for probabilistic neural net classification architecture — example shown is for individual vapor
classification (16 outputs) using peak height (Hz), relative response (RR), and retention time (RT) as the 12 inputs.

RESULTS AND DISCUSSION

Response profiles

Representative response profiles for a spiked breath
sample containing 25 ppm of perchloroethylene are
presented in Fig. 3. The sequence of operating modes
is indicated below the timeline. The sample and purge
modes span the interval from O to 300 s and are fol-

lowed by the analysis and recovery (warm-up) modes
from 300 to 450 s. The response profiles resemble
peaks seen with many separation-based analytical
techniques such as GC or HPLC. There is a corre-
lation between the solvent boiling points and the
vapor elution times, ET, (Table 1) that reflects a crude
chromatographic separation of the vapors in the PCT
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Fig. 3. Representative sample timeline for calibrations: 25 ppm perchloroethylene; 100% RH; 250 ml preconcentrated sample
volume; sample/purge flow rate=100 mi/min; array flow rate=40 ml/min; desorption temp.=170°C; temperature ramp ~12°C/s
starting at ¢ = 300 s.
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based on volatility. However the peaks are relatively
broad as indicated by the peak width at half height,
PW (Table 1), such that there is generally only partial
resolution among the different vapor response pro-
files. Complete resolution of the solvent vapors is not
necessary since recognition relies on the response pat-
terns from the array, although the elution time does
comprise additional information that was incorpor-
ated into the ANN pattern recognition algorithm
(Shaffer et al., 1998).

Calibrations

Calibration curves were linear in all cases (°=
0.99) indicating that PCT capacity was adequate for
the conditions examined. Although a systematic
evaluation of linear dynamic range was not conducted
in this study, responses were linear for all vapors over
a range of approximately two orders of magnitude
and linearity is expected to extend much further for
less volatile vapors such as ethylbenzene, m-xylene,
and perchloroethylene, due to the higher adsorption
capacity of the PCT for these vapors. Sample carry-
over was found to be less than 1% based on an exam-
ination of blank samples run immediately following
a spiked breath sample.

The LOD was defined as the concentration produc-
ing a response equal to three times the standard devi-
ation of the baseline response. Based on the lowest
LOD value of the four sensors, LODs ranged from
0.6 to 37 mg/m? and were less than 0.25XTLYV for all
solvents examined except benzene (2.6xXTLV). The
LOD for methoxyflurane was 0.4 times the NIOSH
Recommended Exposure Limit (Anon, 1997) (there
is no TLV for this compound). If it is assumed that
a response is needed from all four sensors in order to
recognize and quantify a given vapor, the minimum
concentration required should be that corresponding
to the LOD for the least sensitive sensor (i.e., the
sensor with the highest individual LOD value)
(Zellers et al., 1998). Using this more conservative
approach, LODs ranged from 5.5 to 62 mg/m®, and
14 of the 16 solvents were detectable at concen-
trations less than 0.3XTLYV. For the two vapors which
currently have ACGIH BEIs for breath, perchloroe-
thylene (34 mg/m?®) and 1,1,1-trichloroethane (218
mg/m?), the LODs were 29 and 38 mg/m®, respect-
ively, thus further supporting the applicability of this
instrument to workplace breath monitoring (American
Conference of Governmental Industrial Hygienists,
1996; Groves and Zellers, 1996a). Sample volumes
could most likely be doubled to improve LODs for
many less volatile vapors without a significant rede-
sign of the PCT. However, for benzene and methoxy-
flurane which have a relatively low occupational
exposure limits and for which SAW device sensitivity
is also low, breath monitoring would not be feasible
with the current instrument design.

Relative response patterns for the 16 solvents are
shown in Fig. 4. The relative response of a coating

is equal to the sensitivity of the coating divided by
the sum of the sensitivities for all four coatings. The
sum of these scaled sensitivities is unity for each
vapor, which facilitates comparisons. Figure 4 pro-
vides a visual (i.e., qualitative) indication of the dis-
criminating capability of the sensor array for the vari-
ous solvents. Some similarities can be seen among
the patterns of vapors from the same chemical class.
For example, response patterns for the aromatic sol-
vents (i.e., benzene, toluene, ethylbenzene, and m-
xylene) are similarly dominated by the response from
the PIB and PECH sensors. A casual inspection of
the response patterns also quickly leads to an appreci-
ation for the problems of recognizing and discriminat-
ing among more than a few vapors.

Humidity effects

Although breath samples invariably contain back-
ground water vapor concentrations near saturation,
the possibility of using this instrument for both breath
and ambient air monitoring prompted an examination
of the effect of humidity on instrument performance.
Calibrations were performed for the following subset
of solvents in test atmospheres prepared in dry nitro-
gen: benzene, dichloromethane, halothane, 1,1,1-
trichloroethane, trichloroethylene, tetrahydrofuran,
and acetone. The sensitivities and relative responses
to these vapors are compared to those for the same
vapors in spiked breath samples in Table 2. Differ-
ences in  sensitivities ranged from 2.5%
(trichloroethylene) to —19% (halothane) and were
consistently either positive or negative across all sen-
sors for a given vapor, indicating a systematic error
in test-atmosphere generation or, possibly, that water
vapor is affecting the response profiles by altering the
vapor desorption dynamics. Neither the sign nor mag-
nitude of the errors showed trends that could be
related to the physical properties of the solvents (i.e.,
boiling point, polarity, functionality). The mean
absolute difference between sensitivities for all
vapors/sensors was 10%. The differences between
relative responses at 0% and 100% RH are small in
all cases, with the average differences ranging from
—2.1% to 1.5% (mean absolute difference =1.1%).
A paired #-test showed that these differences are not
significant (P = 1.000).

These results indicate that the instrument response
is effectively independent of sample humidity, which
is not only important for breath analysis, but also for
ambient air monitoring applications where prevailing
humidity levels can vary over a wide range. Differ-
ences in absolute responses will increase quantifi-
cation error, but the magnitude of this error is on the
order of the expected day to day variability in sensi-
tivities (~10%). Thus, calibrations performed at one
humidity level can be applied to conditions of more
extreme RH without significant errors in vapor recog-
nition or quantification, which is consistent with find-
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ings reported recently from a separate study (Park and
Zellers, 2000a,b).

Vapor mixture responses

It has been shown that the responses of polymer-
coated SAW sensors to binary and ternary mixtures
of vapors are additive, but that account must be taken
of possible differences in elution times from any
upstream PCT used (Zellers et al., 1995; Cai et al.,
2000; Park er al., 1999, 2000; Park and Zellers,
2000a,b). To the extent that the component vapor
response maxima are temporally resolved, the mix-
ture maximum will be reduced even for cases where
the component peaks are not evident. In such cases
one would expect that, after the pattern recognition
analysis reveals the presence of two vapors, a point-
by-point analysis must be performed to locate the
maxima of each component for accurate quantifi-
cation. Regardless, where responses are additive, cali-
brations are only needed for the individual compo-
nents, since responses for all possible mixtures can be
synthesized from the individual component responses.

To explore this issue, calibrations were performed
for the following four binary mixtures: 1,1,1-
trichloroethane+acetone, perchloroethylene+benzene,
dichloromethane+perchloroethylene, and 2-
propanol+1-butanol in spiked breath samples. These
vapors span a range of differences in volatility,
polarity, hydrogen-bonding strength, individual elu-
tion times, and peak width at half-height (see Table 1)
all of which are expected to affect mixture response

profiles. For each mixture, responses were measured
for from four to seven test atmospheres covering a
response ratio range of up to 9:1.

Figure 5 shows representative response profiles
from two sensors for a mixture of perchloroethylene
(68.3 mg/m® and dichloromethane (696 mg/m?).
Response profiles for the individual vapors are super-
imposed on those for the mixture. The profile that
would result if the responses were additive is desig-
nated as the ‘sum’ in each panel in Fig. 5, and the
lincar combination of the individual maxima (i.e.,
ignoring elution time differences) is denoted by the
symbol X placed at the time corresponding to the
mixture maximum. The response of the PECH-coated
sensor is dominated by dichloromethane because the
dichloromethane concentration is higher and the sen-

-sitivities of this sensor to perchloroethylene and

dichloromethane are similar. In contrast, the response
for the PIB-coated sensor comprises nearly equal con-
tributions from each vapor because this sensor is
much more sensitive to perchloroethylene (see
Table 1).

It was expected that actual mixture responses
would be less than or equal to the responses predicted
assuming linear additivity, with the negative bias
increasing for vapor pairs with larger differences in
elution time (AET). However, referring to Table 3 it
can be seen that although the actual responses are
lower than the predicted results for the
dichloromethane+perchloroethylene mixture which
has one of the largest AETs, this is not the case for
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Fig. 5. Experimental mixture response profile compared with sum of individual vapor component responses and linear maxima
(denoted by x)-dichloromethane (6965 mg/m®) and perchloroethylene (68.3+5 mg/m?).

all the mixtures. The 1,1,1-trichloroethane+acetone
mixture experimental results were higher than pre-
dicted with the linearly additive model in all cases.
A pair-wise comparison of actual mixture responses
versus responses predicted assuming linear additivity
of individual vapors did not detect a significant differ-
ence between the two (P = 0.459, Wilcoxon Signed
Rank Test). This suggests that other factors such as
changes in vapor desorption dynamics for mixtures,
or normal variability due to environmental factors
may offset expected departures from linear additivity.
Peak width may also minimize departures from linear
additivity that occur as a result of differences in elu-
tion time — the later eluting vapors have broader
peaks which tends to reduce the negative bias caused
by partial resolution. This has important implications
for classification algorithms since it suggests that
complicated models accounting for the departures
from linear additivity may not be necessary if normal
variability in responses is on the same order.

A mixture of dichloromethane and m-xylene would
represent the worst case scenario based on its having
the largest AET for this set of vapors. This mixture
was not examined due to difficulties in establishing
GC conditions that permitted rapid analysis of both
components simultaneously (overlap of dichlorome-
thane with the CS, solvent used in calibrations
occurred at higher temperatures). Instead, the problem
was explored by simulation using normalized peak
profiles for the individual solvents over a range of
concentrations. As expected, dichloromethane and m-
xylene were correctly recognized and discriminated.
However, using the composite response peak for
quantification can introduce significant error. Thus,
for AET values >10 s, quantification requires analyz-
ing mixture component responses at their respective
elution times once they are identified (Park ef al.,
2000).

Test set data — classification and quantification

To examine individual-vapor recognition, an inde-
pendent test set of 31 samples was compiled by rec-
ording response data for one additional sample each

time a calibration was performed. These data were
not used to calculate the sensitivities reported in
Table 1. The test set consisted of single or duplicate
responses for each of the 16 vapors in breath and an
additional series of eight responses collected in a
matrix of dry N, for a subset of vapors.

Table 4 shows the results of attempts to recognize
the test-set vapors by EDPCR and the trained ANN
for a subset of five samples. The best three matches
by EDPCR are listed along with the residual error, &,
associated with each assigned identity. A small &
value indicates a better correlation with a given
response pattern in the calibration library. The best
three matches by the ANN are also listed along with
the probability associated with each assigned identity.
The probabilities range from 0 to 1 with a value of
1 indicating the highest possible correlation with a
library response pattern. The last column in Table 4
shows the results of quantification using principal
components regression (PCR) for a correctly classi-
fied response. Percent error is calculated relative to
the concentration determined by GC-FID (‘true’ con-
centration in Table 4).

The EDPCR ¢ values and ANN probabilities pro-
vide a relative measure of confidence in the assigned
vapor identities. For example, for the sample of
perchloroethylene, which was correctly identified by
both methods, the EDPCR residual error for perchlor-
oethylene (¢ = 12) is nearly 50 times smaller than that
for m-xylene (€ =594) which had the next closest
pattern match. Similarly, the ANN probability value
for perchloroethylene (0.50) is more than 60 times
greater than for toluene (0.008), which was the next
closest pattern match as determined by this method.
In contrast, the EDPCR residual error and ANN prob-
ability for m-xylene are only slightly better than those
for ethylbenzene, indicating a lower level of confi-
dence in the assignments. This is not surprising given
the similarity in the response patterns for these struc-
turally homologous aromatic vapors (see Fig. 4). It is
important to note that large values for £ and very low
ANN probabilities may also indicate that an unknown
sample, i.e., a sample that was not included in the
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Table 4. Selected results for recognition and quantification of individual vapor test-set data

Sample Recognition Quantification
Conc. (mg/m?)
# Chemical (ID) RH (%) EDPCR ANN
Class. & Class. Prob. True Pred.’ % Err
1 Dichloromethane 100 DCM 20 DCM 041 160 148 —-74
(DCM) MXY 38 MXY 0.14
BUT 90 TOL 0.08
2 Perchloroethylene 0 PRC 12 PRC 0.50 234 226 -3.4
(PRC) XYL 594 TOL 0.008
EBE 683 EBE 0.005
3 Ethylbenzene 100 EBE 42 EBE 058 132 116 —12.2
(EBE) TCE 121 XYL 0.16
XYL 192 PRC 0.001
4 m-Xylene 100 XYL 43 XYL 043 65.9 59.5 -9.7
XYL) EBE 54 EBE 0.16
TCE 103 PRC 0.001
5 2-Propanol 100 BUT 52 IPA 044 354 381 7.6
(IPA) IPA 118 ACE 0.30
ACE 221 BUT 0.27

% — residual error from EDPCR assignment.
*Quantified using principal components regression (PCR).

calibration library, has been detected which emphas-
izes the need for careful selection and evaluation of
the calibration set for a given application.

Overall, recognition rates are very high by EDPCR
(30/31, 97%) and by ANN (31/31, 100%). Quantifi-
cation errors averaged —2.7% with a standard devi-
ation of 11% (N = 31), which is considered accept-
able by most standards. These results are consistent
with those reported previously using arrays of SAW
or related AW sensors in similar configurations (Park
et al., 1999, 2000; Cai et al., 2000), and verify the
independence from humidity effects attributable to
the dry-air purge step over the entire range of possible
humidity encountered in breath and ambient air moni-
toring. As noted above, there were no apparent inter-
ferences from endogenous vapors in breath, most
likely due to their presence at very low concen-
trations. The similarity in performance between the
EDPCR and ANN methods suggests that the
additional inputs to the ANN (e.g., elution time) do
not appear to be necessary in most cases in order to
recognize and discriminate among a set of individ-
ual vapors.

An independent set of 20 binary vapor mixture
responses was also analyzed by EDPCR. ANN analy-
ses were not performed because of the relatively large
number of training patterns needed to establish the
network for all possible mixtures. This highlights an
advantage of more conventional statistical pattern rec-
ognition methods, such as EDPCR, over ANNs — in
the former, mixture patterns can be established on the
basis of individual-vapor calibrations provided that
mixture responses are linear combinations of the
component vapors responses.

Results from the mixture analyses are summarized

in Table 5. As in Table 4, the top three pattern
matches are listed along with the residual error. There
are 21 possible binary combinations of the seven mix-
ture test-set vapors which when added to the seven
individual vapors makes a total of 28 possible out-
comes for each pattern recognition analysis. EDPCR
correctly recognized both components in 15 of the 20
samples (75%) and recognized both components as
one of the top two possibilities in 18 of the 20
samples (90%). In all 20 samples, the correct mixture
was among the top three possibilities. Also, in all 20
samples at least one of the mixture components was
correctly recognized. Note that both within-class and
between-class discrimination is achieved.

Although it is likely that more complex mixtures
would be encountered in actual occupational air and
breath monitoring scenarios, the results of this pre-
liminary study establish the capability of the proto-
type instrument to perform mixture analyses. Sub-
sequent work has shown that mixtures of up to four
vapors can be analyzed with polymer-coated sensor
arrays (Park et al., 1999). Beyond this, the selectivity
provided even by a diverse set of sensors is not suf-
ficient to resolve the mixture components (note: for
a subset of five vapors and allowing mixtures with
up to four components there are 30 possible combi-
nations of the component vapors). Thus, complex
mixtures cannot be analyzed effectively without
employing some sort of chromatographic separation
prior to analysis (Grall et al., 2000; Lu and Zellers,
2000).

One of the challenges in performing mixture analy-
ses is the recognition of component(s) present at rela-
tively low concentrations. In many cases the compo-
nent with the dominant response will be correctly
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recognized but the other component(s) may not be
recognized at all or may be confused with some other
vapor, despite being present at concentrations greater
than the LOD. An example of this can be seen for
dichloromethane+perchloroethylene in Table 5. In all
cases perchloroethylene is correctly identified as one
of the components of the mixture, while dichlorome-
thane is not recognized in two of the four samples.
This effect has led to the development of an
additional performance metric called the limit of rec-
ognition (LOR) which can be used to evaluate the
performance of multisensor arrays (Zellers et al.,
1998). LORs for this set of vapors ranged from 0.5
to 2.5 x the LOD.

The last column of Table 5 presents the quantifi-
cation errors for the mixture components, assuming
they were both recognized. The concentrations were
evaluated at the point in time corresponding to the
maximum of the composite response profile regard-
less of the difference in elution times observed in the
individual component calibrations. The average error
is 0.86% with a standard deviation of 22%. No
relationship between AET and quantification error is
apparent which again suggests that for this set of
vapors, factors other than partial component resol-
ution contribute to the error. Collinearity of the
response vectors for the mixture components will be
contributory to quantitative error (Carey et al., 1987)
and will occur in all practical sensor arrays because
of the inherent partial selectivity. It is minimized by
choosing a diverse set of sensor coatings as was done
here (Grate and Abraham, 1991; Zellers et al., 1995).

CONCLUSIONS

This study has demonstrated that accurate recog-
nition and quantification of vapors in breath, alone or
in simple mixtures, is possible at concentrations <
0.3xTLV using this instrumentation. The LODs achi-
eved here assume a sample volume of 0.25 1., which
is a reasonable volume expected from a single end-
tidal expiration of breath. Improvements can be
expected merely by increasing the sample volume: for
breath analysis, this would require either collection of
a second end-tidal exhalation or the use of a sampling
protocol that allowed for collection of the larger
expiratory reserve volume, while for air sampling this
would require either increasing the duration of the
sampling or increasing the flow rate of the pump
within the instrument.

Immunity from humidity effects was demonstrated
here and is consistent with previous studies of this
issue with SAW sensor arrays conducted over more
limited ranges of RH (Park and Zellers, 2000a,b; Zel-
lers and Han, 1996). This was accomplished by using
a drying agent (Drierite®) to condition purge and
sensor array air streams, and a specially selected
adsorbent that permits purging of water vapor with

W. A. Groves and E. T. Zellers

retention of organic vapors in the preconcentration
unit prior to thermal desorption.

The two pattern recognition methods employed in
this study, EDPCR and a probabilistic ANN, perfor-
med similarly well, and served to illustrate the advan-
tages of the SAW sensor array technology: individual
vapors can be recognized from among a large set of
possibilities using an array of only four sensors with
little or no error. Binary mixture analyses, performed
with EDPCR, were prone to greater errors in recog-
nition, but the performance is still considered suf-
ficiently accurate for many occupational health appli-
cations. The use of sensor arrays with pattern
recognition analysis is very powerful tool that pro-
vides analytical capabilities not currently present in
low-cost field-deployable occupational hygiene moni-
toring instrumentation.
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