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Abstract

Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is

based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed

physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where

absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants,

coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is

log kp = c + mMF + aAa2
H + bAb2

H + sp2
H + rR2 + vVx where Aa2

H is the hydrogen-bond donor acidity, Ab2
H is the hydrogen-bond acceptor

basicity, p2
H is the dipolarity/polarizability, R2 represents the excess molar refractivity, and Vx is the McGowan volume of the penetrants of

interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (kp) of 12 penetrants (atrazine,

chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, U-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and

triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium

lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were

included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations.

Across all exposures with no MF, R2 for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the

MF include refractive index, polarizability and log (1/Henry’s Law Constant) of the mixture components. These factors should not be

considered final as the focus of these studies was solely to determine if knowledge of the physical properties of a mixture would improve

predicting skin permeability. Inclusion of multiple mixture factors should further improve predictability. The importance of these findings is

that there is an approach whereby the effects of a mixture on dermal absorption of a penetrant of interest can be quantitated in a standard

QSPeR model if physicochemical properties of the mixture are also incorporated.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

A primary exposure route for environmental and occupa-

tional chemicals is the skin. Significant progress has been

made on defining quantitative structure permeation relation-

ships (QSPeRs) to describe chemical absorption across the

skin. The roots of this field extend to the early work of

Hansch and Dunn (1972). Existing experimental approaches

to quantitate chemical dermal absorption utilize simple in

vitro diffusion cell systems possessing an intact stratum
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corneum barrier. For most chemicals, the outermost layer of

the epidermis, the stratum corneum, is considered the rate

limiting diffusion barrier to compound penetration into skin.

Studies have shown that this barrier is composed primarily

of the intercellular lipids that surround dead keratin-filled

corneocytes that comprise this layer, with chemical pene-

tration occurring through these intercellular lipids (Elias,

1983). Partition coefficients (ratio of concentration in skin to

vehicle) and permeability constants (log kp) are estimated in

such experiments. They generally correlate to the octanol/

water partition coefficient (Ko/w) and are predictive of the

absorption of a single chemical across this rate limiting

barrier (Bronaugh et al., 1982; Buchwald and Bodor, 2001;

Moss et al., 2002; Sartorelli et al., 1998).
acology 208 (2005) 99–110
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The first such relationship applied to pharmaceutics and

toxicology which received widespread attention was that of

Potts and Guy (1992) which incorporated octanol-water

partition coefficient (log Ko/w) and molecular weight

(MW) to predict in vitro skin permeation [log kp = 0.71 log

Ko/w � 0.0061 MW � 6.3]. This approach has been

incorporated into Environmental Protection Agency (EPA)

guidelines (EPA, 1999). Numerous approaches have since

been formulated. In a number of contributions, Abraham et al.

(1995, 1999) and Abraham and Martins (2004) attempted to

generalize these solute-solvent interactions for permeability

through biological membranes, including skin, in the context

of linear-free energy relationships (LFERs) expressed as

basic solvation equations. Most QSPeRs applied to dermal

absorption are LFERs that link the specific molecular des-

criptors (molecular size, hydrogen bonding) with the process

being modeled (e.g., partitioning, membrane permeation). A

number of widely quoted published dermal QSPeRs have

recently been critically reviewed by Geinoz et al. (2004).

There is general agreement that such an approach which

links skin permeability to a set of basic molecular descriptors

is the preferred method to characterize skin absorption across

chemicals as mechanistic insight is obtained both when

compounds can be predicted and when lack of predictability

occurs. The common thread running through existing

QSPeR approaches is that individual chemical penetrants

are characterized by various physical properties that include

solvatochromatic molecular descriptors or experimentally

measured partition coefficients for the penetrants of issue.

However, most topical chemical exposures are not to

individual chemicals but rather are to penetrants exposed in

complex chemical mixtures consisting of different vehicles or

chemical additives. Drugs are applied in formulations where

additives are present for specific functions related to drug

delivery or stability. In contrast, occupational and environ-

mental exposures are often to chemicals more loosely

associated with the penetrant of interest (e.g., contaminants,

additives, solvents). Risk assessment models are based either

on experimental estimates of skin permeability or on the

physicochemical properties of the individual penetrant as

defined by LFERs established in the system of interest (e.g.,

skin permeability, log kp). It is important to realize that these

models are only parameterized using molecular properties of

the penetrants and not the vehicle or other mixture

components in which the penetrants being modeled are

dosed. Most such models are defined in aqueous systems.

Hostynek and Magee (1997) used indicator variables

embedded in LFER equations to allow analysis across

exposures consisting of different vehicles or occlusive

conditions. These indicator variables did not contain any

information concerning the vehicles, but were a statistical

regression tool to allow the base LFERmodel to be applied to

penetrants dosed under different experimental conditions.

In this manuscript, we present a modeling strategy

whereby a term that accounts for mixture effects (additives,

vehicles) on the absorption process is added to the LFER
equation parameterized only using individual penetrant

properties. This results in a hybrid LFER that explicitly in-

corporates both penetrant and mixture properties. This model

was formulated using data obtained from a complete factorial

experimental study of 12 diverse compounds (MW: 94–350

g/mol; log Ko/w: �0.1 to 5.8) administered in 24 vehicle/

mixture additive combinations (water, ethanol, propylene

glycol, sodium lauryl sulfate, methyl nicotinate) resulting in

a dataset of 288 treatment combinations with 4–5 replicates

per treatment. This model was then further assessed using an

additional 4 compounds plus new triazine mixtures admin-

istered in a total of 56 treatment combinations. All studies

were conducted under identical experimental conditions

using in vitro porcine skin flow-through diffusion cells

(PSFT). This model system was selected because porcine

skin is widely accepted as being an animal model for human

dermal absorption; and in vitro systems are considered

predictive of in vivo absorption when the stratum corneum is

the rate limiting step in absorption (Bronaugh and Stewart,

1985; Bronaugh et al., 1982; Monteiro-Riviere, 1991).

We present these data as a novel approach to dermal

QSPeR analysis as it incorporates physical chemical proper-

ties of the mixture components independent of the physical

properties of the penetrants that are accounted for by the

molecular descriptors in the LFER equation.
Materials and methods

Chemicals. Atrazine-ring-UL-14C (specific activity = 15.1

mCi/mmol, purity = 98.1%), MethylParathion-ring-UL-14C

(specific activity = 13.8 mCi/mmol, purity = 99.5%), 4-

Nitrophenol-UL-14C (specific activity = 6.4 mCi/mmol,

purity = 99.6%), Parathion-ring-UL-14C (specific activity =

9.2 mCi/mmol, purity = 97.1%), Pentachlorophenol-ring-

UL-14C (PCP) (specific activity = 11.9 mCi/mmol, purity =

98.0%), Permethrin-benzyl-ring-UL-14C (specific activity =

10.9 mCi/mmol, purity = 96.1%), Phenol-UL-14C (specific

activity = 9.0 mCi/mmol, purity = 98.5%) and Simazine-

ring-UL-14C (specific activity = 15.5 mCi/mmol, purity =

99.0%) were obtained from Sigma Chemical Co., St.

Louis, MO, USA. Chlorpyrifos[pyridine-2,6-14C] (specific

activity = 32 mCi/mmol, purity =99.0%), Fenthion-ring-

UL-14C (specific activity = 55 mCi/mmol, purity = 98.5%),

Propazine-ring-UL-14C (specific activity = 15 mCi/mmol,

purity = 96.6%), Ricinoleic acid [12-3H] (specific activity =

20,000 mCi/mmol, purity = 99%), and 1,3,5,-Triethyl

hexahydro-S-triazine [methylene-14C] (specific activity =

10mCi/mmol, purity = 98.6%) were obtained fromAmerican

Radiolabeled Chemicals, Inc., St. Louis, MO, USA. p-

Nonylphenol-ring-14C (specific activity = 76.6 mCi/mmol)

was obtained from BioDynamics Radiochemicals, Billing-

ham, UK. Sodium 2-dodecylbenzene sulfonate-ring-UL-14C

(SDS) (specific activity = 50.77 mCi/mmol, purity = 99.1%)

was obtained from Wizard Laboratories, Sacramento, CA.

N,N Diethyl-m-toluamide (DEET) (purity = 98%) was



Table 2

Composition of the 24 mixtures investigated

EtOH PG

EtOH + MNA PG + MNA

EtOH + SLS PG + SLS

EtOH + MNA + SLS PG + MNA + SLS

EtOH + Water PG + Water

EtOH + Water + MNA PG + Water + MNA

EtOH + Water + SLS PG + Water + SLS

EtOH + Water + MNA + SLS PG + Water + MNA + SLS

EtOH + PG + Water Water

EtOH + PG + Water + MNA Water + MNA

EtOH + PG + Water + SLS Water + SLS

EtOH + PG + Water + MNA + SLS Water + MNA + SLS

EtOH—Ethanol; PG—Propylene glycol; MNA—Methyl nicotinate;

SLS—Sodium lauryl sulfate.
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obtained from Chem Service Company, West Chester, PA.

(DEET was not radiolabeled, but was analyzed via HPLC).

Absolute ethyl alcohol (200 proof) was obtained from Aaper

Alcohol and Chemical Co. Shelbyville, KY, USA. Propylene

glycol (purity = 99%), Sodium lauryl sulfate (purity = 99%),

and Methyl nicotinic acid (purity = 99%) were obtained from

Sigma Chemical Co., St. Louis, MO, USA. Water was

distilled in our in-house still.

Porcine skin flow-through diffusion cells and mixture

exposures. The flow-through diffusion cell (Bronaugh and

Stewart, 1985; Chang and Riviere, 1991) was used to perfuse

porcine skin obtained from the dorsal area of weanling

female Yorkshire pigs according to protocols approved by

the North Carolina State University Institutional Animal

Care and Use Committee. Skin was dermatomed to a

thickness of 500 Am with a Padgett Dermatome (Padgett

Instruments, Inc., Kansas City, MO, USA). Each circular

skin disk was punched to provide a dosing surface area of

0.64 cm2 and then placed into a two-compartment Teflon

flow-through diffusion cell (Crowne Glass, Somerville, NJ).

Skin was perfused using a Krebs–Ringer bicarbonate buffer

spiked with dextrose and bovine serum albumin, and

topically dosed with 20 AL of one of 12 marker penetrant

compounds listed in Table 1 (10 Ag/cm2) formulated in one

of 24 specified mixtures listed in Table 2. This resulted in a

total of 288 treatments with n = 4–5 replicates/treatment

designed as a randomized complete factorial experiment. To

extend and validate this analysis, a second series of four

compounds (DEET, permethrin, ricinoleic acid, SDS) in

multiple mixtures (combinations of chemicals in water,

ethanol or aqueous ethanol) and triazine in new mixtures

from previously published data from our laboratory (Baynes

and Riviere, 2004; Baynes et al., 2002a, 2003; Riviere and
Table 1

Molecular descriptor values of penetrants used to parameterize LFER

model

Marker Aa2
H Ab2

H p2
H R2 Vx

Substituted phenols

Nonylphenol 0.5295 0.3799 0.7434 0.7911 2.0432

Pentachlorophenol 0.7467 0.0412 0.8710 1.2624 1.3871

Phenol 0.5295 0.3135 0.8713 0.8095 0.7751

U-Nitrophenol 0.8677 0.2250 1.6711 1.0712 0.9493

Organophosphates

Chlorpyrifos 0.0030 0.9687 2.1268 1.4788 2.1503

Ethylparathion 0.0030 0.8730 2.1084 1.2678 1.9984

Fenthion 0.0030 0.9183 1.7252 1.3858 1.9877

MethylParathion 0.0030 0.8702 2.1108 1.2702 1.7166

Triazine herbicides

Atrazine 0.1801 0.8802 1.2398 1.5097 1.6196

Propazine 0.1801 0.8974 1.1993 1.4944 1.7605

Simazine 0.1801 0.8630 1.2803 1.5250 1.4787

Triazine 0.0030 1.8501 1.0621 0.5015 1.5675

Values obtained from ABSOLV Solute Property Prediction Software (Sirius

Analytical Instruments, Ltd., East Sussex, UK).
Monteiro-Riviere, 2002; Riviere et al., 2003) yielding 56

treatment combinations were also included in a second

analysis of 16 compounds in 344 treatment combinations.

The temperature of the perfusate and flow-through cell was

maintained at 37 8C using a Brinkmann constant temperature

circulator (Brinkmann, Inc., Wesbury, NY, USA) and the pH

was maintained between 7.3 and 7.5. Perfusate flow-rate was

4 mL/h, and perfusate samples were collected every 15 min

for 2 h and every h thereafter until the end of the 8-h dosing

period. A representative 1 mL sample of each perfusate

sample was analyzed for radioactivity using Bioscint

scintillation cocktail (National Diagnostics, Atlanta, GA,

USA) and a Packard 2500TR Tricarb Scintillation Counter

(Downers Grove, IL, USA). The permeability constant [kp]

(cm/h) of chemical through porcine skin was determined by

dividing the steady state flux, calculated using regression as

the slope of cumulative Ag/cm2 versus time regression, by

applied surface concentration.

The model and its parameters. We elected to use

Abraham’s LFER model as our base equation since it is

representative of the dermal QSPeR approaches presently

available (Abraham and Martins, 2004). Preliminary anal-

yses applying 16 LFER equations reviewed by Geinoz et al.

(2004) confirmed a superior fit of our data set to the

Abraham equation compared to most other models

reviewed. It must be stressed that the purpose of this paper

is not to identify the optimal LFER for predicting dermal

permeation, nor to validate that this model is predictive of

dermal absorption. Rather, we selected this model since it is

broadly accepted by the scientific community as being

descriptive of the key molecular/physiochemical parameters

relevant to solute absorption across skin. Our focus was to

apply such a widely accepted model to the mixture problem.

This base model can be written as:

logkp ¼ cþ aAaH2 þ bAbH
2 þ spH

2 þ rR2 þ vVx ð1Þ

where kp is the permeability constant for the PSFT experi-

ments, Aa2
H is the hydrogen-bond donor acidity, Ab2

H is the

hydrogen-bond acceptor basicity, p2
H is the dipolarity/
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polarizability, R2 represents the excess molar refractivity,

and Vx is the McGowan volume. All of these parameters are

for the 12 penetrants being studied. The parameters c, a, b,

s, r, and v are strength coefficients coupling the molecular

descriptors to skin permeability in our experimental system.

These are the regression coefficients obtained when the

LFER equation describing the system (e.g., kp in skin) is

solved across multiple chemicals where the molecular

descriptors for each chemical are known. Table 1 is a list

of the molecular descriptor values used in this analysis for

the 12 defining original compounds. Descriptor values for

the 5 validation chemicals were obtained from ABSOLV

(Sirius Analytical Instruments, Ltd., East Sussex, UK) and

ADME Boxes (Pharma Algorithms, Toronto, Canada).

In order to incorporate mixture effects, we add another

term to this Eq. (1) called the mixture factor (MF) yielding:

logkp¼ cþ mMFþ aAaH2 þ bAbH
2 þ spH

2 þ rR2 þ vVx (2)

The nature of the MF is determined by examining the

residual plot (actual-predicted log kp) generated from Eq. (1)

based on molecular descriptors of the permeants as a

function of the physical chemical properties of the

mixture/solvents in which they were dosed. Twenty non-

duplicate physical chemical properties of the mixture

components (see Table 2) were analyzed; including param-

eters of molecular size and volume, hydrogen bonding

properties, pKa, ovality, Henry’s Law Constant, polar-

izability, refractive indices, melting point, boiling point,

and vapor pressure. We then computed a composite physical

chemical MF (MF1, MF2, etc.) by weighting the compo-

nent’s physical chemical parameter (e.g., refraction index,

etc) by its contribution to its MF based on the summation of

the weight percentage of each of the bulk components in the

mixtures for a particular parameter. Minor mixture compo-

nents based on weight percentages, in this case the actual

penetrant, did not materially contribute to the value of the

MF for a specific treatment and could be excluded. The

following is an example of this calculation for PCP in the

EtOH + PG + MNA + SLS mixture.
Component Ag Percentage log (1/HC) Contribution

EtOH 5920 28.6 5.008 1.430

Water 5000 24.1 5.579 1.345

PG 7771 37.5 7.666 2.873

MNA 25.4 0.1 6.235 0.007

SLS 2000 9.6 8.124 0.783

PCP 15.2 0.1 3.393 0.002P
log (1/HC) = 6.443
Statistical analysis. Multiple regression analysis was carried

out using SAS 8.1 for Windows (SAS Institute, Cary, NC).

Data was initially fit to Eq. (1) using the molecular descriptor
values in Table 1 for the 12 penetrants across all 288

treatment combinations (12 penetrants � 24 mixtures)

ignoring the dosing mixture into which the chemicals were

administered. Four to five replicates per treatment combi-

nation were studied. Due to the wide range of possible

responses across these diverse treatments, no attempt was

made to remove individual treatment outliers. All collected

data in the complete factorial block design was used in these

analyses. The bpredicted vs. observedQ kp residuals were

then analyzed to determine if a covariate (termed mixture

factor-MF) could be identified which explained any trend

evidenced in these data related to the effect of the vehicle/

mixture. In other words, a covariate was included in the

model if it were correlated to the residual pattern as

evidenced by R2. Twenty physical chemical properties of

the mixture components were analyzed based on strength of

the correlation against the residuals of Eq. (1). To confirm

selection of these specific parameters, principal component

analyses of these descriptor’s effects on kp also yielded three

groups of descriptors which accounted for different patterns

of variability seen in the 12 compound � 24 mixture

balanced data set. Refraction index, polarizability, and log

(1/Henry’s Law Constant) were representative of these

primary properties. These parameters were then incorpo-

rated as the MF in Eq. (2). To generate final equations

covering a wider set of compounds and mixtures, the

additional 5 so-called validation chemicals in 56 treatment

combinations (note triazine was present in both sets but

were exposed in different mixtures) were also analyzed

against the three MFs selected from the original balanced

design, yielding a final dataset of 16 compounds adminis-

tered in 344 different treatment combinations. Correlation

matrices for these regressions were also determined.
Results

Fig. 1 is a plot of observed versus predicted log kp
and its associated residual plot from PSFT experiments

for the original 288 treatment combinations. The residual

plot for this regression illustrates no specific pattern is

evident, except that data were grouped within the

penetrants (vertical columns of spread). The LFER

equation (mean F SEM for strength coefficients)

describing these data was:

logkp ¼ � 0:412 F0:417ð Þ � 1:403 F0:303ð ÞAaH2
� �

þ 0:129 F0:166ð ÞAbH
2

� �
þ 0:297 F0:085ð ÞpH

2

� �

� 0:498 F0:135ð ÞR2ð Þ � 1:885 F0:110ð ÞVxð Þ (3)

As expected, this model did not accurately predict log kp for

these penetrants since they were dosed inmultiple vehicles, in



Fig. 1. Plot of predicted versus observed log kp (A) and associated residual plot (B) with no MF for the 12 compounds in Table 1 dosed in all combinations of

mixtures listed in Table 2. The predicted line (U) is based on Eq. (3).
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contrast to single vehicle studies where QSPeR studies are

normally defined. The residuals of this model showed no

further correlation to any penetrant property.

In contrast, when vehicle/mixture component proper-

ties (mixture components listed in Table 2) were analyzed

against these residuals (x axis of residual plot is now

mixture property of interest), trends in residuals became

evident which suggests that a mixture property could

explain variance in the LFER model defined from penetrant

properties alone. Of the 20 properties analyzed for mixture

components, three were clearly superior based upon R2

predicting the residuals as well as the increase in the R2 of

the LFER multiple regression analysis compared to the

model without a MF based on this property (Eq. (3) above).

Separate covariance and principal component analysis also

indicated that these three factors were relatively independent

in reducing residual variance. The final values for these

parameters were obtained from the SPARC online calculator

(http://ibmlc2.chem.uga.edu/sparc/).
The predicted versus observed plots for a MF equal to

refractive index (Fig. 2 also illustrates residual plot),

polarizability (Fig. 3) or log (1/Henry’s Law Constant)

(Fig. 4) demonstrated a significant improvement in

predicting kp. Note that these residual plots are before

inclusion of the specific MF to show correlation of the Eq.

(3) residuals against the specific physical chemical property

studied. All other molecular descriptors in these analyses

were fixed to the values of the penetrants listed in Table 1.

The improvement in kp predictability can best be appre-

ciated when correlations are compared across equations in

Table 3. In addition, these three parameters were relatively

independent as evidenced by low covariances between each

pair of parameters, suggesting that they explain different

components of the residual variances reflecting different

physical chemical properties of the mixtures/solvents. This

is also evident by comparing the different patterns in the

residual plots for each of the variables. The resulting LFERs

now including a mixture factor are:

 http:\\www.ibmlc2.chem.uga.edu 


Fig. 2. Plot of predicted versus observed log kp (A) and associated residual plot (B) for the 12 compounds in Table 1 dosed in all combinations of mixtures

listed in Table 2 where MF1 is Refractive Index. The predicted line (U) is based on Eq. (4).

Fig. 3. Plot of predicted versus observed log kp for the 12 compounds in Table 1 dosed in all combinations of mixtures listed in Table 2 where MF2 is

Polarizability. The predicted line (U) is based on Eq. (5).
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Refractive Index

logkp ¼ 13:921 F0:845ð Þ � 10:394 F0:577ð ÞMF1ð Þ

� 1:527 F0:207ð ÞAaH2
� �

þ 0:045 F0:113ð ÞAbH
2

� �

þ 0:327 F0:058ð ÞpH
2

� �

� 0:561 F0:092ð ÞR2ð Þ � 1:904 F0:075ð ÞVxð Þ ð4Þ

Polarizability

logkp ¼ 0:801 F0:327ð Þ � 0:318 F0:022ð ÞMF2ð Þ

� 1:529 F0:229ð ÞAaH2
� �

þ 0:043 F0:126ð ÞAbH
2

� �

þ 0:327 F0:064ð ÞpH
2

� �

� 0:563 F0:102ð ÞR2ð Þ � 1:902 F0:083ð ÞVxð Þ ð5Þ

log(1/Henry’s Law Constant)

logkp ¼ 2:372 F0:359ð Þ � 0:479 F0:032ð ÞMF3ð Þ

� 1:282 F0:225ð ÞAaH2
� �

þ 0:195 F0:123ð ÞAbH
2

� �

þ 0:280 F0:063ð ÞpH
2

� �

� 0:453 F0:099ð ÞR2ð Þ � 1:863 F0:082ð ÞVxð Þ ð6Þ

In order to assess the robustness of this approach, the

additional five compounds in 56 treatment combinations

were analyzed using the same approach as presented for the

original 12 compounds. Mixtures studied were very differ-

ent from the original analysis. Triazine was included in both

sets of data however different mixtures were involved.

These studies are not as balanced as the complete factorial

design of the original group. The three mixture factors

identified earlier were used in this validation analysis to

determine if kp from these new compounds could be

predicted. The LFERs for the complete dataset of 16

compounds in 344 treatment combinations are:

No MF

logkp ¼ � 2:200 F0:296ð Þ

� 0:174 F0:213ð ÞAaH2
� �

þ 0:574 F0:136ð ÞAbH
2

� �

þ 0:382 F0:082ð ÞpH
2

� �

� 0:326 F0:127ð ÞR2ð Þ � 1:391 F0:063ð ÞVxð Þ ð7Þ
Refractive index (Fig. 5A)

logkp ¼ 10:751 F0:830ð Þ � 9:242 F0:571ð ÞMF1ð Þ

� 0:525 F0:162ð ÞAaH2
� �

þ 0:329 F0:103ð ÞAbH
2

� �

þ 0:407 F0:062ð ÞpH
2

� �

� 0:411 F0:096ð ÞR2ð Þ � 1:385 F0:048ð ÞVxð Þ ð8Þ

Polarizability (Fig. 5B)

logkp ¼ � 1:804 F0:268ð Þ � 0:149 F0:016ð ÞMF2ð Þ

� 0:155 F0:191ð ÞAaH2
� �

þ 0:546 F0:122ð ÞAbH
2

� �

þ 0:421 F0:074ð ÞpH
2

� �

� 0:433 F0:115ð ÞR2ð Þ � 1:255 F0:059ð ÞVxð Þ ð9Þ

log(1/Henry’s Law Constant) (Fig. 5C)

logkp ¼ 0:105 F0:296ð Þ � 0:419 F0:031ð ÞMF3ð Þ

þ 0:050 F0:174ð ÞAaH2
� �

þ 0:693 F0:110ð ÞAbH
2

� �

þ 0:388 F0:067ð ÞpH
2

� �

� 0:323 F0:103ð ÞR2ð Þ

� 1:328 F0:052ð ÞVxð Þ ð10Þ

The correlations for this dataset [all 16 compounds in 344

treatment combinations] are listed in Table 4. These data

suggest that the same factors identified in the original 12

compound analysis also improved prediction of kp for these

additional compounds in different vehicle/mixture exposure

scenarios.

The regression correlation matrices for Eqs. (7) Eqs. (8)

Eqs. (9) Eqs. (10) are presented in Table 5. Across all

equations, including the no-MF control, the strongest

parameter correlations are with the two hydrogen bond

parameters. As expected, incorporation of the mixture

factors had minimal effect on the penetrant parameter

correlations (e.g., those in Eq. (1)). However, the intercept

correlations are now different due to the ability of the

mixture factors to explain this source of variation not related

to penetrant descriptors.
Conclusions

Our results suggest that incorporating properties of a

solvent or mixture improves prediction of a chemical’s



Fig. 4. Plot of predicted versus observed log kp for the 12 compounds in Table 1 dosed in all combinations of mixtures listed in Table 2 where MF3 is log(1/

Henry’s Law Constant). The predicted line (U) is based on Eq. (6).
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permeability across skin. The preponderance of QSPeR skin

absorption studies reported in the literature to date have

focused on selecting the appropriate molecular descriptors

that correlate to dermal permeability of individual chemical

permeants using in vitro excised skin. These studies,

epitomized in the Abraham model used in the present work

(Abraham and Martins, 2004), and comprehensively

reviewed in Geinoz et al. (2004), employ aqueous donor

and receptor solutions. However, as is widely acknowledged

by the risk assessment community, most occupational and

environmental exposures to chemicals are to complex

mixtures, and not individual compounds in defined aqueous

vehicles. Experimental skin absorption studies have previ-

ously shown that mixture/vehicle effects significantly

modify an individual chemical’s dermal absorption and

may even overshadow the magnitude of permeability differ-

ences between individual compounds (Baynes et al., 2002b;

Brooks and Riviere, 1996; Idson, 1983; Qiao et al., 1996;

Riviere and Monteiro-Riviere, 2002; Riviere et al., 2001,

2003; Rosado et al., 2003). The mechanism of the ethanol

and SLS effects on penetrant absorption seen in the present

studies are described elsewhere (van der Merwe and Riviere,

2004a, 2004b). These experimental absorption mixture

studies suggest that for QSPeR models to be useful for

realistic risk assessment estimates in the field, vehicle and

mixture component effects should also be considered. The
Table 3

Improvement of log kp predictability (R2) using physical chemical

properties of the mixture components listed in Table 2

MF Predicted vs.

Observed log kp

Residuals

No MF – 0.58 0

Refractive Index MF1 0.80 0.53

Polarizability MF2 0.76 0.43

log (1/Henry’s Law constant) MF3 0.77 0.45
data presented in this work are a promising start to this type

of analysis.

It should be stressed that only vehicle or mixture

components that make up a large fraction of a mixture

will contribute to the value of a computed MF. This is

clearly seen in the example of a MF computation in

Material and methods. Because the marker compounds are

in such low concentration compared to the rest of the

mixture components, the R2 values do not change if the

contribution of the markers were not included. This is

consistent with minor (low weight percentage) versus major/

bulk (high weight percentage) component effects on the

physical chemistry properties of a solution. However, if the

mixture factor were to directly chemically interact with a

penetrant, its presence would affect kp although it would not

be predicted from LFER parameters. This limitation is

discussed below.

In comparing this work with other QSPeR approaches, a

few points should be made. First, our strength coefficients

differ from those of Abraham and Martins (2004) because

the experimental systems were different, in terms of our use

of 24 different donor solutions, a protein-based receptor

solution, and the use of excised pig rather than human skin.

The strength coefficients in a LFER equation link the values

of the molecular descriptors for a penetrant to a specific

experimental system. It is interesting to note that the

relatively large variability in estimates of the hydrogen

bonding descriptors were also the descriptors that seemed

relatively more variable in many of the solvatochromatic

QSPeRs analyzed in the Geinoz et al. (2004) review. When

the five validation compounds and new mixtures were

added to our original analyses, the hydrogen bonding

parameters remained the most variable, but now Ab2
H was

more variable than Aa2
H. This linkage is supported by the

relatively high correlations for these two parameters (0.85–

0.86) in the correlation matrices in Table 5. It was not the

purpose of our study to select the optimal LFER equation to



Fig. 5. Plot of predicted versus observed log kp for full data set of 16 compounds across all mixtures where: (A) MF1 is Refractive Index, predicted line (U)

based on Eq. (8); (B) MF2 is Polarizability, predicted line (U) is based on Eq. (9); (C) MF3 is log (1/Henry’s Constant), predicted line based on Eq. (10).
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predict chemical absorption (e.g., minimum number of

independent parameters needed to describe the data). We

selected this equation as being representative of those
previously reported in the literature for predicting chemical

absorption in a defined solvent, so that we could assess

whether incorporation of a MF improved predictability



Table 4

Improvement of log kp predictability (R2) using physical chemical

properties of the mixture components listed in Table 2 and of the five

validation compounds

MF Predicted vs.

Observed log kp

Residuals

No MF – 0.62 0

Refractive index MF1 0.78 0.41

Polarizability MF2 0.69 0.17

log (1/Henry’s Law Constant) MF3 0.75 0.34
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across different solvent systems. One advantage of the

present study, which is not shared by many studies based on

an analysis of historic literature, is that the present studies

were done under the constraints of a single experimental

design thereby removing any inter-laboratory variation that

exists in many modeling studies.
Table 5

Correlation matrices of parameters

No MF

Intercept Aa2
H Ab

Intercept 1.00

Aa2
H �0.87 1.00

Ab2
H �0.83 0.85 1

p2
H �0.30 0.31 0

R2 �0.71 0.58 0

Vx �0.10 �0.15 �0

MF = refractive index

Intercept Refractive index Aa

Intercept 1.00

Refractive index �0.96 1.00

Aa2
H �0.36 0.13 1

Ab2
H �0.36 0.15 0

p2
H �0.05 �0.03 0

R2 �0.24 0.06 0

Vx �0.02 �0.01 �0

MF = polarizability

Intercept Polarizability Aa

Intercept 1.00

Polarizability �0.16 1.00

Aa2
H �0.86 �0.01 1

Ab2
H �0.82 0.03 0

p2
H �0.28 �0.06 0

R2 �0.72 0.10 0

Vx �0.05 �0.25 �0

MF = log(1/Henry’s Law Constant)

Intercept log(1/HC) Aa

Intercept 1.00

Log(1/HC) �0.59 1.00

Aa2
H �0.65 �0.10 1

Ab2
H �0.62 �0.08 0

p2
H �0.24 �0.01 0

R2 �0.58 0.00 0

Vx �0.03 �0.09 �0
Concerning attempts to account for vehicle effects,

Hostynek and Magee (1997) used an indicator variable to

develop LFER models for chemical penetrants across

different solvent system. However, they did not make an

attempt to predict these solvent effects as we have done in

the present work. The need for such an approach can be

seen by the data patterns when MF was not incorporated

into the equations. In this scenario, log kp values clustered

around penetrants (Fig. 1) as only data related to penetrant

descriptors are included in the base LFER model (Eqs. (1),

(3), and (7)). When a MF was included, these clusters

dissipated as now vehicle/mixture specific properties

explained some of the variance. All three MFs were

minimally correlated to the penetrant descriptors as appre-

ciated in Table 5. It is also suggested, based on examining

the pattern of data scattering when different MFs were used,

that different mixture interactions were being predicted.
2
H p2

H R2 Vx

.00

.14 1.00

.66 �0.25 1.00

.26 �0.22 �0.12 1.00

2
H Ab2

H p2
H R2 Vx

.00

.85 1.00

.31 0.13 1.00

.58 0.66 �0.25 1.00

.15 �0.26 �0.22 �0.12 1.00

2
H Ab2

H p2
H R2 Vx

.00

.85 1.00

.31 0.13 1.00

.57 0.66 �0.26 1.00

.14 �0.26 �0.20 �0.14 1.00

2
H Ab2

H p2
H R2 Vx

.00

.85 1.00

.31 0.14 1.00

.57 0.66 �0.25 1.00

.14 �0.25 �0.22 �0.12 1.00
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This is not surprising since principal components grouped

the three MFs as independent predictors. When the new

validation compounds and mixtures were added, polar-

izability was not as predictive. These observations suggest

that a combination of independent properties would better

predict mixture effects, that is a composite factor derived as

a function of MF1, MF2, and MF3. Unfortunately, the

present data set was not comprehensive enough, nor

properly balanced, to allow for such a complex analysis of

both penetrant and mixture properties to be undertaken at

this time.

The primary finding of the present study is that consid-

ering physical chemical properties of the solvent/mixture in

which a topical chemical is dosed on skin, significantly

improves the prediction of permeability in a QSPeR frame-

work based on LFER relationships. This can be accomplished

through the use of a covariate in the equation, the MF, which

is related to properties of the mixture/solvent rather than to

the individual penetrants.

Based on the analysis of a number of such mixture

properties, three—the refractive index, polarizability and

log (1/Henry’s Law Constant) seem to explain upwards of

50% of the variance not predicted from the penetrant-based

LFER model. These three parameters are related to

different physical chemical properties of the mixtures, that

is size, hydrophobicity, and volatility, respectively. There

were insufficient mixture combinations to make a credible

effort at combining these factors to improve predictability.

Additionally, only solvatochromatic interactions are pre-

dicted using this approach, since this experimental frame-

work restricts detection of mixture effects to those that

would be predictable from the molecular properties

quantitated in a LFER equation. Factors that modified

diffusivity of a penetrant would also not be predicted from

these solvatochromatic descriptors. Direct chemical reac-

tions (e.g., covalent binding) and biological effects in skin

(e.g., altered stratum corneum lipids) would not be

explained by such properties.

It is also unrealistic to expect three physical–chemical

properties, selected from the original solvents, to explain

interactions for very different mixtures. When the valida-

tion mixtures were added, the impact of polarizability

decreased. One potential approach to address this concern

would be to use MFs specifically related to solvent classes.

Creation of a composite MF should also address this

concern. To further define such interactions, more com-

pounds in a broader variety of solvents should be studied in

the framework.

We do not present this work as a final solution to the

mixture problem defined in the context of a QSPeR LFER

model relative to the specific structure of the MF. Rather, we

present data that clearly demonstrate that if mixture proper-

ties are incorporated into a LFER permeability model that is

based on molecular descriptors of the penetrant, signifi-

cantly improved prediction of kp results. This would

increase estimation of the internal dose in many risk
assessment scenarios. This finding has numerous implica-

tions to occupational and environmental risk assessment for

topical chemical exposure where the predominant exposure

scenario is to complex mixtures.
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