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Abstract

Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is
based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed
physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where
absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants,
coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is
log k, = ¢ + mMF + a3y + b3 B3 + sn5' + rR, + vV where Sab' is the hydrogen-bond donor acidity, 385" is the hydrogen-bond acceptor
basicity, 73" is the dipolarity/polarizability, R, represents the excess molar refractivity, and ¥y is the McGowan volume of the penetrants of
interest; ¢, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k,) of 12 penetrants (atrazine,
chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, p-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and
triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium
lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were
included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations.
Across all exposures with no MF, R? for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the
MF include refractive index, polarizability and log (1/Henry’s Law Constant) of the mixture components. These factors should not be
considered final as the focus of these studies was solely to determine if knowledge of the physical properties of a mixture would improve
predicting skin permeability. Inclusion of multiple mixture factors should further improve predictability. The importance of these findings is
that there is an approach whereby the effects of a mixture on dermal absorption of a penetrant of interest can be quantitated in a standard
QSPeR model if physicochemical properties of the mixture are also incorporated.
© 2005 Elsevier Inc. All rights reserved.
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Introduction

A primary exposure route for environmental and occupa-
tional chemicals is the skin. Significant progress has been
made on defining quantitative structure permeation relation-
ships (QSPeRs) to describe chemical absorption across the
skin. The roots of this field extend to the early work of
Hansch and Dunn (1972). Existing experimental approaches
to quantitate chemical dermal absorption utilize simple in
vitro diffusion cell systems possessing an intact stratum
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corneum barrier. For most chemicals, the outermost layer of
the epidermis, the stratum corneum, is considered the rate
limiting diffusion barrier to compound penetration into skin.
Studies have shown that this barrier is composed primarily
of the intercellular lipids that surround dead keratin-filled
corneocytes that comprise this layer, with chemical pene-
tration occurring through these intercellular lipids (Elias,
1983). Partition coefficients (ratio of concentration in skin to
vehicle) and permeability constants (log k,,) are estimated in
such experiments. They generally correlate to the octanol/
water partition coefficient (K,,) and are predictive of the
absorption of a single chemical across this rate limiting
barrier (Bronaugh et al., 1982; Buchwald and Bodor, 2001;
Moss et al., 2002; Sartorelli et al., 1998).
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The first such relationship applied to pharmaceutics and
toxicology which received widespread attention was that of
Potts and Guy (1992) which incorporated octanol-water
partition coefficient (log K,.,) and molecular weight
(MW) to predict in vitro skin permeation [log &, = 0.71 log
Ky — 0.0061 MW — 6.3]. This approach has been
incorporated into Environmental Protection Agency (EPA)
guidelines (EPA, 1999). Numerous approaches have since
been formulated. In a number of contributions, Abraham et al.
(1995, 1999) and Abraham and Martins (2004) attempted to
generalize these solute-solvent interactions for permeability
through biological membranes, including skin, in the context
of linear-free energy relationships (LFERs) expressed as
basic solvation equations. Most QSPeRs applied to dermal
absorption are LFERs that link the specific molecular des-
criptors (molecular size, hydrogen bonding) with the process
being modeled (e.g., partitioning, membrane permeation). A
number of widely quoted published dermal QSPeRs have
recently been critically reviewed by Geinoz et al. (2004).

There is general agreement that such an approach which
links skin permeability to a set of basic molecular descriptors
is the preferred method to characterize skin absorption across
chemicals as mechanistic insight is obtained both when
compounds can be predicted and when lack of predictability
occurs. The common thread running through existing
QSPeR approaches is that individual chemical penetrants
are characterized by various physical properties that include
solvatochromatic molecular descriptors or experimentally
measured partition coefficients for the penetrants of issue.

However, most topical chemical exposures are not to
individual chemicals but rather are to penetrants exposed in
complex chemical mixtures consisting of different vehicles or
chemical additives. Drugs are applied in formulations where
additives are present for specific functions related to drug
delivery or stability. In contrast, occupational and environ-
mental exposures are often to chemicals more loosely
associated with the penetrant of interest (e.g., contaminants,
additives, solvents). Risk assessment models are based either
on experimental estimates of skin permeability or on the
physicochemical properties of the individual penetrant as
defined by LFERs established in the system of interest (e.g.,
skin permeability, log k). It is important to realize that these
models are only parameterized using molecular properties of
the penetrants and not the vehicle or other mixture
components in which the penetrants being modeled are
dosed. Most such models are defined in aqueous systems.
Hostynek and Magee (1997) used indicator variables
embedded in LFER equations to allow analysis across
exposures consisting of different vehicles or occlusive
conditions. These indicator variables did not contain any
information concerning the vehicles, but were a statistical
regression tool to allow the base LFER model to be applied to
penetrants dosed under different experimental conditions.

In this manuscript, we present a modeling strategy
whereby a term that accounts for mixture effects (additives,
vehicles) on the absorption process is added to the LFER

equation parameterized only using individual penetrant
properties. This results in a hybrid LFER that explicitly in-
corporates both penetrant and mixture properties. This model
was formulated using data obtained from a complete factorial
experimental study of 12 diverse compounds (MW: 94-350
g/mol; log Kx,: —0.1 to 5.8) administered in 24 vehicle/
mixture additive combinations (water, ethanol, propylene
glycol, sodium lauryl sulfate, methyl nicotinate) resulting in
a dataset of 288 treatment combinations with 4—5 replicates
per treatment. This model was then further assessed using an
additional 4 compounds plus new triazine mixtures admin-
istered in a total of 56 treatment combinations. All studies
were conducted under identical experimental conditions
using in vitro porcine skin flow-through diffusion cells
(PSFT). This model system was selected because porcine
skin is widely accepted as being an animal model for human
dermal absorption; and in vitro systems are considered
predictive of in vivo absorption when the stratum corneum is
the rate limiting step in absorption (Bronaugh and Stewart,
1985; Bronaugh et al., 1982; Monteiro-Riviere, 1991).

We present these data as a novel approach to dermal
QSPeR analysis as it incorporates physical chemical proper-
ties of the mixture components independent of the physical
properties of the penetrants that are accounted for by the
molecular descriptors in the LFER equation.

Materials and methods

Chemicals. Atrazine-ring-UL-'*C (specific activity = 15.1
mCi/mmol, purity = 98.1%), MethylParathion-ring-UL-"*C
(specific activity = 13.8 mCi/mmol, purity = 99.5%), 4-
Nitrophenol-UL-'*C (specific activity = 6.4 mCi/mmol,
purity = 99.6%), Parathion-ring-UL-"*C (specific activity =
9.2 mCi/mmol, purity = 97.1%), Pentachlorophenol-ring-
UL-"*C (PCP) (specific activity = 11.9 mCi/mmol, purity =
98.0%), Permethrin-benzyl-ring-UL-'*C (specific activity =
10.9 mCi/mmol, purity = 96.1%), Phenol-UL-"*C (specific
activity = 9.0 mCi/mmol, purity = 98.5%) and Simazine-
ring-UL-"*C (specific activity = 15.5 mCi/mmol, purity =
99.0%) were obtained from Sigma Chemical Co., St.
Louis, MO, USA. Chlorpyrifos[pyridine-2,6-'*C] (specific
activity = 32 mCi/mmol, purity =99.0%), Fenthion-ring-
UL-"*C (specific activity = 55 mCi/mmol, purity = 98.5%),
Propazine-ring-UL-"*C (specific activity = 15 mCi/mmol,
purity = 96.6%), Ricinoleic acid [12-*H] (specific activity =
20,000 mCi/mmol, purity = 99%), and 1,3,5,-Triethyl
hexahydro-S-triazine [methylene-'*C] (specific activity =
10 mCi/mmol, purity = 98.6%) were obtained from American
Radiolabeled Chemicals, Inc., St. Louis, MO, USA. p-
Nonylphenol-ring-'*C (specific activity = 76.6 mCi/mmol)
was obtained from BioDynamics Radiochemicals, Billing-
ham, UK. Sodium 2-dodecylbenzene sulfonate-ring-UL-"*C
(SDS) (specific activity = 50.77 mCi/mmol, purity = 99.1%)
was obtained from Wizard Laboratories, Sacramento, CA.
N,N Diethyl-m-toluamide (DEET) (purity = 98%) was
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obtained from Chem Service Company, West Chester, PA.
(DEET was not radiolabeled, but was analyzed via HPLC).
Absolute ethyl alcohol (200 proof) was obtained from Aaper
Alcohol and Chemical Co. Shelbyville, KY, USA. Propylene
glycol (purity = 99%), Sodium lauryl sulfate (purity = 99%),
and Methyl nicotinic acid (purity = 99%) were obtained from
Sigma Chemical Co., St. Louis, MO, USA. Water was
distilled in our in-house still.

Porcine skin flow-through diffusion cells and mixture
exposures. The flow-through diffusion cell (Bronaugh and
Stewart, 1985; Chang and Riviere, 1991) was used to perfuse
porcine skin obtained from the dorsal area of weanling
female Yorkshire pigs according to protocols approved by
the North Carolina State University Institutional Animal
Care and Use Committee. Skin was dermatomed to a
thickness of 500 um with a Padgett Dermatome (Padgett
Instruments, Inc., Kansas City, MO, USA). Each circular
skin disk was punched to provide a dosing surface area of
0.64 cm® and then placed into a two-compartment Teflon
flow-through diffusion cell (Crowne Glass, Somerville, NJ).
Skin was perfused using a Krebs—Ringer bicarbonate buffer
spiked with dextrose and bovine serum albumin, and
topically dosed with 20 pL of one of 12 marker penetrant
compounds listed in Table 1 (10 pg/cm?®) formulated in one
of 24 specified mixtures listed in Table 2. This resulted in a
total of 288 treatments with n = 4-5 replicates/treatment
designed as a randomized complete factorial experiment. To
extend and validate this analysis, a second series of four
compounds (DEET, permethrin, ricinoleic acid, SDS) in
multiple mixtures (combinations of chemicals in water,
ethanol or aqueous ethanol) and triazine in new mixtures
from previously published data from our laboratory (Baynes
and Riviere, 2004; Baynes et al., 2002a, 2003; Riviere and

Table 1
Molecular descriptor values of penetrants used to parameterize LFER
model

Marker Sl S5 il R, Vy
Substituted phenols

Nonylphenol 0.5295  0.3799  0.7434  0.7911 2.0432
Pentachlorophenol 0.7467 0.0412 0.8710 1.2624 1.3871
Phenol 0.5295  0.3135  0.8713  0.8095  0.7751
p-Nitrophenol 0.8677  0.2250 1.6711 1.0712  0.9493
Organophosphates

Chlorpyrifos 0.0030  0.9687  2.1268 1.4788  2.1503
Ethylparathion 0.0030  0.8730  2.1084 1.2678 1.9984
Fenthion 0.0030  0.9183 1.7252 1.3858 1.9877

MethylParathion 0.0030 0.8702 2.1108 1.2702 1.7166

Triazine herbicides

Atrazine 0.1801 0.8802 1.2398 1.5097 1.6196
Propazine 0.1801 0.8974 1.1993 1.4944 1.7605
Simazine 0.1801 0.8630 1.2803 1.5250 1.4787
Triazine 0.0030 1.8501 1.0621 0.5015 1.5675

Values obtained from ABSOLV Solute Property Prediction Software (Sirius
Analytical Instruments, Ltd., East Sussex, UK).

Table 2

Composition of the 24 mixtures investigated

EtOH PG

EtOH + MNA PG + MNA

EtOH + SLS PG + SLS

EtOH + MNA + SLS PG + MNA + SLS
EtOH + Water PG + Water

EtOH + Water + MNA
EtOH + Water + SLS PG + Water + SLS

EtOH + Water + MNA + SLS PG + Water + MNA + SLS
EtOH + PG + Water Water

EtOH + PG + Water + MNA Water + MNA

EtOH + PG + Water + SLS Water + SLS

EtOH + PG + Water + MNA + SLS Water + MNA + SLS

EtOH—Ethanol; PG—Propylene glycol; MNA-—Methyl nicotinate;
SLS—Sodium lauryl sulfate.

PG + Water + MNA

Monteiro-Riviere, 2002; Riviere et al., 2003) yielding 56
treatment combinations were also included in a second
analysis of 16 compounds in 344 treatment combinations.
The temperature of the perfusate and flow-through cell was
maintained at 37 °C using a Brinkmann constant temperature
circulator (Brinkmann, Inc., Wesbury, NY, USA) and the pH
was maintained between 7.3 and 7.5. Perfusate flow-rate was
4 mL/h, and perfusate samples were collected every 15 min
for 2 h and every h thereafter until the end of the 8-h dosing
period. A representative 1 mL sample of each perfusate
sample was analyzed for radioactivity using Bioscint
scintillation cocktail (National Diagnostics, Atlanta, GA,
USA) and a Packard 2500TR Tricarb Scintillation Counter
(Downers Grove, IL, USA). The permeability constant [k,]
(cm/h) of chemical through porcine skin was determined by
dividing the steady state flux, calculated using regression as
the slope of cumulative pg/cm? versus time regression, by
applied surface concentration.

The model and its parameters. We elected to use
Abraham’s LFER model as our base equation since it is
representative of the dermal QSPeR approaches presently
available (Abraham and Martins, 2004). Preliminary anal-
yses applying 16 LFER equations reviewed by Geinoz et al.
(2004) confirmed a superior fit of our data set to the
Abraham equation compared to most other models
reviewed. It must be stressed that the purpose of this paper
is not to identify the optimal LFER for predicting dermal
permeation, nor to validate that this model is predictive of
dermal absorption. Rather, we selected this model since it is
broadly accepted by the scientific community as being
descriptive of the key molecular/physiochemical parameters
relevant to solute absorption across skin. Our focus was to
apply such a widely accepted model to the mixture problem.
This base model can be written as:

logky = ¢ + aXo + bIBY + sy + rRy + v (1)

where kj, is the permeability constant for the PSFT experi-
ments, 303 is the hydrogen-bond donor acidity, 343" is the
hydrogen-bond acceptor basicity, 73’ is the dipolarity/



102 J.E. Riviere, J.D. Brooks / Toxicology and Applied Pharmacology 208 (2005) 99110

polarizability, R, represents the excess molar refractivity,
and V, is the McGowan volume. All of these parameters are
for the 12 penetrants being studied. The parameters c, a, b,
s, r, and v are strength coefficients coupling the molecular
descriptors to skin permeability in our experimental system.
These are the regression coefficients obtained when the
LFER equation describing the system (e.g., k,, in skin) is
solved across multiple chemicals where the molecular
descriptors for each chemical are known. Table 1 is a list
of the molecular descriptor values used in this analysis for
the 12 defining original compounds. Descriptor values for
the 5 validation chemicals were obtained from ABSOLV
(Sirius Analytical Instruments, Ltd., East Sussex, UK) and
ADME Boxes (Pharma Algorithms, Toronto, Canada).

In order to incorporate mixture effects, we add another
term to this Eq. (1) called the mixture factor (MF) yielding:

logk,= ¢ + mMF + aSodl + b3 B +smil + 7Ry + vV (2)

The nature of the MF is determined by examining the
residual plot (actual-predicted log k) generated from Eq. (1)
based on molecular descriptors of the permeants as a
function of the physical chemical properties of the
mixture/solvents in which they were dosed. Twenty non-
duplicate physical chemical properties of the mixture
components (see Table 2) were analyzed; including param-
eters of molecular size and volume, hydrogen bonding
properties, pK,, ovality, Henry’s Law Constant, polar-
izability, refractive indices, melting point, boiling point,
and vapor pressure. We then computed a composite physical
chemical MF (MF,, MF,, etc.) by weighting the compo-
nent’s physical chemical parameter (e.g., refraction index,
etc) by its contribution to its MF based on the summation of
the weight percentage of each of the bulk components in the
mixtures for a particular parameter. Minor mixture compo-
nents based on weight percentages, in this case the actual
penetrant, did not materially contribute to the value of the
MF for a specific treatment and could be excluded. The
following is an example of this calculation for PCP in the
EtOH + PG + MNA + SLS mixture.

Component ug Percentage log (1/HC) Contribution
EtOH 5920 28.6 5.008 1.430
Water 5000 24.1 5.579 1.345
PG 7771 375 7.666 2.873
MNA 25.4 0.1 6.235 0.007
SLS 2000 9.6 8.124 0.783
PCP 15.2 0.1 3.393 0.002

S log (I/HC) = 6.443

Statistical analysis. Multiple regression analysis was carried
out using SAS 8.1 for Windows (SAS Institute, Cary, NC).
Data was initially fit to Eq. (1) using the molecular descriptor

values in Table 1 for the 12 penetrants across all 288
treatment combinations (12 penetrants X 24 mixtures)
ignoring the dosing mixture into which the chemicals were
administered. Four to five replicates per treatment combi-
nation were studied. Due to the wide range of possible
responses across these diverse treatments, no attempt was
made to remove individual treatment outliers. All collected
data in the complete factorial block design was used in these
analyses. The “predicted vs. observed” k, residuals were
then analyzed to determine if a covariate (termed mixture
factor-MF) could be identified which explained any trend
evidenced in these data related to the effect of the vehicle/
mixture. In other words, a covariate was included in the
model if it were correlated to the residual pattern as
evidenced by R?. Twenty physical chemical properties of
the mixture components were analyzed based on strength of
the correlation against the residuals of Eq. (1). To confirm
selection of these specific parameters, principal component
analyses of these descriptor’s effects on &, also yielded three
groups of descriptors which accounted for different patterns
of variability seen in the 12 compound X 24 mixture
balanced data set. Refraction index, polarizability, and log
(1/Henry’s Law Constant) were representative of these
primary properties. These parameters were then incorpo-
rated as the MF in Eq. (2). To generate final equations
covering a wider set of compounds and mixtures, the
additional 5 so-called validation chemicals in 56 treatment
combinations (note triazine was present in both sets but
were exposed in different mixtures) were also analyzed
against the three MFs selected from the original balanced
design, yielding a final dataset of 16 compounds adminis-
tered in 344 different treatment combinations. Correlation
matrices for these regressions were also determined.

Results

Fig. 1 is a plot of observed versus predicted log &,
and its associated residual plot from PSFT experiments
for the original 288 treatment combinations. The residual
plot for this regression illustrates no specific pattern is
evident, except that data were grouped within the
penetrants (vertical columns of spread). The LFER
equation (mean = SEM for strength coefficients)
describing these data was:

loghy = — 0.412(£0.417) — (1.403(£0.303)30}))
+(0.129(£0.166)25) + (0.297(+0.085)7})

— (0.498(+0.135)R,) — (1.885(+0.110)%%)  (3)

As expected, this model did not accurately predict log &, for
these penetrants since they were dosed in multiple vehicles, in



J.E. Riviere, J.D. Brooks / Toxicology and Applied Pharmacology 208 (2005) 99-110 103

Predicted logip A
I t t t =
6 =5 4 3 i)
14
24
&
34 E"
)
g
4+ k
2
(=]
54
6+
74
+ Logkp
Predicted logkp Residuals B
2_-
¥ 151
+ + T =
i e % : 14 5
+ ¥ E Ei + i I g
+ ¥ + + ~
tF L+ " 05 1
: : 1 3T I £
+
: % ' AR % r : ~ =
+ g
6 Is i f i-ﬁ : % 3001 b
i §t$.+1 e 05+ %
+ ¥ Foig ©
+
y 01 t a4
+ + T
* .15+
+ Residuals

Fig. 1. Plot of predicted versus observed log &, (A) and associated residual plot (B) with no MF for the 12 compounds in Table 1 dosed in all combinations of

mixtures listed in Table 2. The predicted line (—) is based on Eq. (3).

contrast to single vehicle studies where QSPeR studies are
normally defined. The residuals of this model showed no
further correlation to any penetrant property.

In contrast, when vehicle/mixture component proper-
ties (mixture components listed in Table 2) were analyzed
against these residuals (x axis of residual plot is now
mixture property of interest), trends in residuals became
evident which suggests that a mixture property could
explain variance in the LFER model defined from penetrant
properties alone. Of the 20 properties analyzed for mixture
components, three were clearly superior based upon R?
predicting the residuals as well as the increase in the R? of
the LFER multiple regression analysis compared to the
model without a MF based on this property (Eq. (3) above).
Separate covariance and principal component analysis also
indicated that these three factors were relatively independent
in reducing residual variance. The final values for these
parameters were obtained from the SPARC online calculator
(http://ibmlc2.chem.uga.edu/sparc/).

The predicted versus observed plots for a MF equal to
refractive index (Fig. 2 also illustrates residual plot),
polarizability (Fig. 3) or log (1/Henry’s Law Constant)
(Fig. 4) demonstrated a significant improvement in
predicting k,. Note that these residual plots are before
inclusion of the specific MF to show correlation of the Eq.
(3) residuals against the specific physical chemical property
studied. All other molecular descriptors in these analyses
were fixed to the values of the penetrants listed in Table 1.
The improvement in k, predictability can best be appre-
ciated when correlations are compared across equations in
Table 3. In addition, these three parameters were relatively
independent as evidenced by low covariances between each
pair of parameters, suggesting that they explain different
components of the residual variances reflecting different
physical chemical properties of the mixtures/solvents. This
is also evident by comparing the different patterns in the
residual plots for each of the variables. The resulting LFERs
now including a mixture factor are:
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Refractive Index

logk, = 13.921(+0.845) — (10.394(+0.577)MF)
— (1.527(£0.207)%0')

+ (0.045(+0.113)384)
+ (0.327(£0.058)m5 )
— (0.561(+0.092)R,) — (1.904(+0.075) %)  (4)

Polarizability

logk, = 0.801(£0.327) — (0.318(0.022)MF,)

— (1.529(%0.229)304')

+ (0.043(+0.126)35Y)

+ (0.327(+0.064) 7' )

— (0.563(£0.102)Ry) — (1.902(£0.083)%%)  (5)

log(1/Henry’s Law Constant)

logh, = 2.372(+0.359) — (0.479(+0.032)MFs)

— (1.282(+0.225)30})

(
0.195(%0.123)385)
(£
— (0.453(%

)

+ )2

+(0.280(0.063)7})
( 0.099)R,) — (1.863(+0.082)%%)  (6)

In order to assess the robustness of this approach, the
additional five compounds in 56 treatment combinations
were analyzed using the same approach as presented for the
original 12 compounds. Mixtures studied were very differ-
ent from the original analysis. Triazine was included in both
sets of data however different mixtures were involved.
These studies are not as balanced as the complete factorial
design of the original group. The three mixture factors
identified earlier were used in this validation analysis to
determine if k, from these new compounds could be
predicted. The LFERs for the complete dataset of 16
compounds in 344 treatment combinations are:

No MF
logk, = — 2.200(+0.296)
— (0.174(+0.213)SaH)
+ (0.574(+0.136)384)
+(0.382(+0.082)mt)

— (0.326(+0.127)Ry) — (1.391(+0.063)V;)  (7)

Refractive index (Fig. 5A)
loghk, = 10.751(£0.830) — (9.242(+0.571)MF,)

— (0.525(£0.162)344)

+ (0.329(£0.103)3. %)

+ (0.407(£0.062)73)

— (0.411(£0.096)R,) — (1.385(+0.048)V,)  (8)

Polarizability (Fig. 5B)
logk, = — 1.804(+0.268) — (0.149(+0.016)MF,)
— (0.155(+£0.191)325)
+ (0.546(+0.122)385)
+ (0.421(£0.074)73)

(0.433( )

— (0.433(£0.115)Ry) — (1.255(+£0.059)%,)  (9)

log(1/Henry’s Law Constant) (Fig. 5C)
logk, = 0.105(%0.296) — (0.419(£0.031)MF3)
+ (0.050(+0.174)304')
0.110)283)
0.067)7%)
0.103)R,)
0.052)

0.693

0.323

I+

(
+(0.693(+
+(0.388(+
—(0.323(
— (1.328(£

1.328 8 (10)
The correlations for this dataset [all 16 compounds in 344
treatment combinations] are listed in Table 4. These data
suggest that the same factors identified in the original 12
compound analysis also improved prediction of &, for these
additional compounds in different vehicle/mixture exposure
scenarios.

The regression correlation matrices for Egs. (7) Egs. (8)
Egs. (9) Egs. (10) are presented in Table 5. Across all
equations, including the no-MF control, the strongest
parameter correlations are with the two hydrogen bond
parameters. As expected, incorporation of the mixture
factors had minimal effect on the penetrant parameter
correlations (e.g., those in Eq. (1)). However, the intercept
correlations are now different due to the ability of the
mixture factors to explain this source of variation not related
to penetrant descriptors.

Conclusions

Our results suggest that incorporating properties of a
solvent or mixture improves prediction of a chemical’s
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Fig. 4. Plot of predicted versus observed log &, for the 12 compounds in Table 1 dosed in all combinations of mixtures listed in Table 2 where MFj is log(1/

Henry’s Law Constant). The predicted line (—) is based on Eq. (6).

permeability across skin. The preponderance of QSPeR skin
absorption studies reported in the literature to date have
focused on selecting the appropriate molecular descriptors
that correlate to dermal permeability of individual chemical
permeants using in vitro excised skin. These studies,
epitomized in the Abraham model used in the present work
(Abraham and Martins, 2004), and comprehensively
reviewed in Geinoz et al. (2004), employ aqueous donor
and receptor solutions. However, as is widely acknowledged
by the risk assessment community, most occupational and
environmental exposures to chemicals are to complex
mixtures, and not individual compounds in defined aqueous
vehicles. Experimental skin absorption studies have previ-
ously shown that mixture/vehicle effects significantly
modify an individual chemical’s dermal absorption and
may even overshadow the magnitude of permeability differ-
ences between individual compounds (Baynes et al., 2002b;
Brooks and Riviere, 1996; Idson, 1983; Qiao et al., 1996;
Riviere and Monteiro-Riviere, 2002; Riviere et al., 2001,
2003; Rosado et al., 2003). The mechanism of the ethanol
and SLS effects on penetrant absorption seen in the present
studies are described elsewhere (van der Merwe and Riviere,
2004a, 2004b). These experimental absorption mixture
studies suggest that for QSPeR models to be useful for
realistic risk assessment estimates in the field, vehicle and
mixture component effects should also be considered. The

Table 3
Improvement of log k, predictability (R?) using physical chemical
properties of the mixture components listed in Table 2

MF Predicted vs. Residuals
Observed log k,
No MF - 0.58 0
Refractive Index MF, 0.80 0.53
Polarizability MF, 0.76 0.43
log (1/Henry’s Law constant) MF; 0.77 0.45

data presented in this work are a promising start to this type
of analysis.

It should be stressed that only vehicle or mixture
components that make up a large fraction of a mixture
will contribute to the value of a computed MF. This is
clearly seen in the example of a MF computation in
Material and methods. Because the marker compounds are
in such low concentration compared to the rest of the
mixture components, the R values do not change if the
contribution of the markers were not included. This is
consistent with minor (low weight percentage) versus major/
bulk (high weight percentage) component effects on the
physical chemistry properties of a solution. However, if the
mixture factor were to directly chemically interact with a
penetrant, its presence would affect &, although it would not
be predicted from LFER parameters. This limitation is
discussed below.

In comparing this work with other QSPeR approaches, a
few points should be made. First, our strength coefficients
differ from those of Abraham and Martins (2004) because
the experimental systems were different, in terms of our use
of 24 different donor solutions, a protein-based receptor
solution, and the use of excised pig rather than human skin.
The strength coefficients in a LFER equation link the values
of the molecular descriptors for a penetrant to a specific
experimental system. It is interesting to note that the
relatively large variability in estimates of the hydrogen
bonding descriptors were also the descriptors that seemed
relatively more variable in many of the solvatochromatic
QSPeRs analyzed in the Geinoz et al. (2004) review. When
the five validation compounds and new mixtures were
added to our original analyses, the hydrogen bonding
parameters remained the most variable, but now Eﬂé{ was
more variable than o', This linkage is supported by the
relatively high correlations for these two parameters (0.85—
0.86) in the correlation matrices in Table 5. It was not the
purpose of our study to select the optimal LFER equation to
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Fig. 5. Plot of predicted versus observed log k;, for full data set of 16 compounds across all mixtures where: (A) MF, is Refractive Index, predicted line (—)
based on Eq. (8); (B) MF; is Polarizability, predicted line (—) is based on Eq. (9); (C) MF; is log (1/Henry’s Constant), predicted line based on Eq. (10).

predict chemical absorption (e.g., minimum number of previously reported in the literature for predicting chemical
independent parameters needed to describe the data). We absorption in a defined solvent, so that we could assess
selected this equation as being representative of those whether incorporation of a MF improved predictability
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Table 4

Improvement of log k, predictability (R?) using physical chemical
properties of the mixture components listed in Table 2 and of the five
validation compounds

MF Predicted vs. Residuals
Observed log &,
No MF - 0.62 0
Refractive index MF, 0.78 0.41
Polarizability MF, 0.69 0.17
log (1/Henry’s Law Constant) MF; 0.75 0.34

across different solvent systems. One advantage of the
present study, which is not shared by many studies based on
an analysis of historic literature, is that the present studies
were done under the constraints of a single experimental
design thereby removing any inter-laboratory variation that
exists in many modeling studies.

Concerning attempts to account for vehicle effects,
Hostynek and Magee (1997) used an indicator variable to
develop LFER models for chemical penetrants across
different solvent system. However, they did not make an
attempt to predict these solvent effects as we have done in
the present work. The need for such an approach can be
seen by the data patterns when MF was not incorporated
into the equations. In this scenario, log k, values clustered
around penetrants (Fig. 1) as only data related to penetrant
descriptors are included in the base LFER model (Egs. (1),
(3), and (7)). When a MF was included, these clusters
dissipated as now vehicle/mixture specific properties
explained some of the variance. All three MFs were
minimally correlated to the penetrant descriptors as appre-
ciated in Table 5. It is also suggested, based on examining
the pattern of data scattering when different MFs were used,
that different mixture interactions were being predicted.

Table 5
Correlation matrices of parameters
No MF
Intercept Sob! SpY 7 R, Vy
Intercept 1.00
S —0.87 1.00
Ay —0.83 0.85 1.00
iz —0.30 0.31 0.14 1.00
R, —0.71 0.58 0.66 —0.25 1.00
Vi —0.10 —0.15 —0.26 —0.22 —0.12 1.00
MF = refractive index
Intercept Refractive index bt SN il R, Vy
Intercept 1.00
Refractive index —0.96 1.00
S —0.36 0.13 1.00
Py —0.36 0.15 0.85 1.00
2y —0.05 —0.03 0.31 0.13 1.00
R, —0.24 0.06 0.58 0.66 —0.25 1.00
Vi —0.02 —0.01 —0.15 —0.26 —0.22 —0.12 1.00
MF = polarizability
Intercept Polarizability St SpY iy R, Vy
Intercept 1.00
Polarizability —0.16 1.00
S —0.86 —0.01 1.00
SpY —0.82 0.03 0.85 1.00
s —0.28 —0.06 0.31 0.13 1.00
R, —0.72 0.10 0.57 0.66 —0.26 1.00
Vi —0.05 —0.25 —0.14 —0.26 —0.20 —0.14 1.00
MF = log(1/Henry’s Law Constant)
Intercept log(1/HC) Sob bty iy R, Vy
Intercept 1.00
Log(1/HC) —0.59 1.00
S —0.65 —0.10 1.00
3By —0.62 —0.08 0.85 1.00
s —0.24 —0.01 0.31 0.14 1.00
R, —0.58 0.00 0.57 0.66 —0.25 1.00
Vi —0.03 —0.09 —0.14 —0.25 —0.22 —0.12 1.00
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This is not surprising since principal components grouped
the three MFs as independent predictors. When the new
validation compounds and mixtures were added, polar-
izability was not as predictive. These observations suggest
that a combination of independent properties would better
predict mixture effects, that is a composite factor derived as
a function of MF;, MF,, and MF;. Unfortunately, the
present data set was not comprehensive enough, nor
properly balanced, to allow for such a complex analysis of
both penetrant and mixture properties to be undertaken at
this time.

The primary finding of the present study is that consid-
ering physical chemical properties of the solvent/mixture in
which a topical chemical is dosed on skin, significantly
improves the prediction of permeability in a QSPeR frame-
work based on LFER relationships. This can be accomplished
through the use of a covariate in the equation, the MF, which
is related to properties of the mixture/solvent rather than to
the individual penetrants.

Based on the analysis of a number of such mixture
properties, three—the refractive index, polarizability and
log (1/Henry’s Law Constant) seem to explain upwards of
50% of the variance not predicted from the penetrant-based
LFER model. These three parameters are related to
different physical chemical properties of the mixtures, that
is size, hydrophobicity, and volatility, respectively. There
were insufficient mixture combinations to make a credible
effort at combining these factors to improve predictability.
Additionally, only solvatochromatic interactions are pre-
dicted using this approach, since this experimental frame-
work restricts detection of mixture effects to those that
would be predictable from the molecular properties
quantitated in a LFER equation. Factors that modified
diffusivity of a penetrant would also not be predicted from
these solvatochromatic descriptors. Direct chemical reac-
tions (e.g., covalent binding) and biological effects in skin
(e.g., altered stratum corneum lipids) would not be
explained by such properties.

It is also unrealistic to expect three physical-chemical
properties, selected from the original solvents, to explain
interactions for very different mixtures. When the valida-
tion mixtures were added, the impact of polarizability
decreased. One potential approach to address this concern
would be to use MFs specifically related to solvent classes.
Creation of a composite MF should also address this
concern. To further define such interactions, more com-
pounds in a broader variety of solvents should be studied in
the framework.

We do not present this work as a final solution to the
mixture problem defined in the context of a QSPeR LFER
model relative to the specific structure of the MF. Rather, we
present data that clearly demonstrate that if mixture proper-
ties are incorporated into a LFER permeability model that is
based on molecular descriptors of the penetrant, signifi-
cantly improved prediction of k, results. This would
increase estimation of the internal dose in many risk

assessment scenarios. This finding has numerous implica-
tions to occupational and environmental risk assessment for
topical chemical exposure where the predominant exposure
scenario is to complex mixtures.
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