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The proteins are biological macromolecules that are of primary importance to all living or­
ganisms. These macromolecules do the major work in building and controlling cells and tissues . 
There are more than 30,000 diferent kinds of proteins in our bodies. For example hemoglobin 
which carries oxygen to our tissues, insulin that regulates sugar level in the blood, the antibodies 
that. fight infection, the actin and myosin that allows our muscles to contract, and keratin in 
skin, hair and finger nails are all proteins. 

Proteins are polymers made up of many amino acids (often called residues) linked together 
to form a chain. Amino acids are molecules that consist of three functional groups, a basic 
amino group (N H2 ), acidic (COOH) group and a side chain. There are 20 different kinds of 
amino acids. Two or more amino acids can merge together to form amide bonds which are also 
known as peptide bonds. The repeating chain of amide linkages to which the side chains are 
attached is called the backbone. 

Proteins arc compact polymers. Like shoelaces ( usually schematically represented by rib­
bons), their polypeptide chains loop about each other in a variety of ways (i.e. they fold) . Only 
one of these many ways allows the protein to function properly. Protein misfolding can lead to 
insoluble lumps and can either cause or promote many deadly diseases such as the Alzheimer's 
disease, mad cow disease, cystic fibrosis and some types of cancer. In order to cure protein 
misfolding diseases, it is important to understand protein stability and the undelying physical­
chemical principals of the process. One day we may witness a development of small molecules 
(drugs) that can correct or prevent misfolding problems, or new genetic therapies that substitute 
for them. For more details about protein structures and protein misfolding the reader is referred 
to [111, [61 , · 

With all the excitement generated by gene sequencing, it is easy to forget that the primary 
purpose of most genes is to code for proteins. Indeed, DNA is a molecule of life and 23 such 
very long macromolecules (namely chromosomes) code full information necessary to reproduce 
a human being. This information is read and interpreted depending on the conformation of 
a particular part of DNA molecule on which this information is recorded; i.e., depending on 
the conformation of DNA, genetic information may become readable or become silent. That 
is how different tissues ( e.g. brain, liver and muscles) arc developed from the identical set of 
information stored in the DNA molecule. Abnormal interpretation of genetic information may 
create tumor tissue. Thus, all biological processes arc ultimately driven by the information 
and conformation (state) of DNA. Conformation of any polyatomic molecule including DNA 
and proteins is essentially determined by a set of its internal dihedral angles which result from 
rotations around molecular bonds. That is why it is important to study populations of these 
angles in the molecules and their coherent change from one conformation to another. To sum 
up, if gene sequencing is like the recording of music, then proteins are like the playback. 

To understand factors that are involved in the stability of a given molecular conformational 
state ( such as in a protein) and in changing from one conformation to another, it is important to 
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determine the conformational entropy of the state. In molecular mechanics, the bond lengths, 
bond angles and rotational angles around the bond (torsional angles) constitute internal· co­
ordinates of the molecule . The bond lengths and bond angles are "rigid" degrees of freedom. 
Thus, the entropy of conformational ensemble is mainly determined by random rotational fluc­
tuations around the bonds. Therefore, probabilistic modeling of torsional angles in molecules is 
a paramount goal on the way to full contol over the molecular processes. 

Let ft, f2, .. . , fm be the m torsional angles of a a conformation, and f( 'Pt, th, . . . , 'Pm) 
be the joint probability density function of ft, f2 , ... , tm . Then the internal configurational 
( conformational) entropy of the molecule is given by 

= -kB j j · · · j log(f('Pt,'P2, · ·· ,'Pm))/('Pt,'P2, ... ,'Pm)diptdth . . . dipm 

where E denotes expectation (or mean) and ka i_s the Bottzman's constant . Note, that the 
configurational entropy in statistical thermodynamics is ka times Shannon entropy defined in 
statistics. 

Karplus and Kushik (5], and Levy et al. (7] have modeled internal torsional coordinates of 
macromolecules using multivariate normal distribution. Assuming that the f;'s are distributed 
according to a multivariate normal distribution with variance-covariance matrix E, the configu­
rational torsional entropy is given by 

mk k · 
S,=-t-+ ;1og((2,rynlEIJ. (1) 

The authors have used this approach for entropy calculations on butane and decaglycine. 

Reliance on a multivariate normal distribution that docs not take in to consideration the 
circular nature of the torsional angles is a major drawback of this approach. It does not provide a 
good fit when either the fluctuations around rotatable bonds are large or if anglular distributions 
are multipeaked. Refer to (9] and (l] for a .comprehensive review in circular statistics. 

In order to solve this problem, Demchuk and Singh (2] introduced a probabilistic approach 
to molecular modelling that is based on circular probability distributions rather than a linear 
Gaussian approach. Assuming that t,'s are independent and f ; follow a von Mises distribution 
with the concentration parameter Ki, they derived the following expression for configurational 
entropy of the molecule 

S, = kB [mlog(2,r) + t log(Io(I(,)) - t Ki It((Ki)] . 
i=t i=t Io Ki) 

(2) 

where Io and It are the modified Bessel functions of order O and 1 respectively. 

As a case study, they modelled the torsional angle of methanol molecule (Figure 1) by the 
3-mode von Mises distribution with a probability density function given by 

f(ip) = __ I_e~co,IJ(q,-q,o)J _ 7f $ 'P $ ,r, 
2,rI0 (1() ' 
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Figure 1: Methanol molecule. The cone denotes a rotatable bond . 

where I( > 0 and ip0 = -2,r /3 . These three modes have a physical explanation. Let us fix in 
Figure 1 one of the three hydrogen atoms at CH 3 group. Then a hydrogen atom at the OH bond 
is free to rotate, whereas the other two hydrogen atoms at the CH3 group are not . However, 
there exist three points of minimum along the path of this 'free' hydrogen atom because of 
repulsion by the three CH bonds. Further, 8 is a dihedral angle between the planes HOC and 
OCHl, where Hl denotes the sel~cted hydrogen atom at the CH3 group . 

With the assumption of 3-mode von Mises distribution, the torsional potential energy of the 

molecule is given by 

Vo 
V = 2 {l - cos (3(t - ip0 )]} (3) 

where V0 is the maximum torsional potential energy of the molecule. 

Demchuk and Singh (2] also derived the following bathtub shaped probability density function 
of the torsional potential energy V of the molecule 

(4) 

The three mode von Mises distribution provided an excellent fit to the data of torsional an­
gles in methanol obtained by molecular dynamics simulations. The bathtub shaped probability 
distribution provided an excellent fit to the torsional energy data (Figure 2). 
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Figure 2: Histograms of torsion a.ngles a.nd energy of met ha.no!. Angles a.t ( a.) 298 K a.nd (b) 
1000 K, energy a.t (c) 298 K a.nd (d) a.t 1000 K. Fitted lines a.re solid. 

In genera.I, molecules ha.ve more tha.n one torsional a.nglc a.nd these a.re often dependent . 
Ma.cromolecules such a.s proteins ha.vc a. very la.rge number of torsional a.nglcs. See Figure 3 
for picture of a. sma.11 protein, huma.n TNF-.{1 factor, which is one of the most important huma.n 
cytokines regulating the life a.nd dea.th of huma.n cells, a.nd it is one ofthe key media.tors of AIDS 
pathogenesis. It consists of 144 a.mino a.cids or 2200 a.toms a.nd contains 707 torsional a.ngles. 

Singh, Hnizdo a.nd Demchuk [12) introduced a. new probability distribution on the torus 
for modeling the distribution of two dependent torsional a.nglcs of a. molecule. The proposed 
distribution belongs to a. genera.I cla.ss of distributions introduced earlier by Ma.rdia. [8), [9). Let 
0 1 a.nd 0 2 be two circular ra.ndom variables in the range of [-,r, ,r) . Singh et a.I . introduce a 
joint probability distribution for 0 1 and 02 with probability density function given by 

(5) 

-,r $ 81,82 $ ir, where 1<1 ,1<2 2'. 0,-oo < >. < oo,-,r $ µ 1 ,µ2 $,rand C is a normalizing 
constant, so that /(81 ,82) is a probability density function. 

They showed that for sma.11 fluctuations, the a.hove distribution ca.n be approximated by a 
bivariate normal distribution, and they obtained expressions for the normalizing constant and 
marginal circular variances. They a.Isa showed that conditional distributions arc van Mises . The 
marginal distributions are either unimodal von Mises like or bimodal symmetric. They defined 
a generalization of the a.hove model which a.llows a.n arbitrary number of peaks in the marginal 
distributions. They illustrated the utility of this distribution by modeling two angular variables 
in methanol a.nd in a linea.r peptide described by Demchuk ct a.I (3). 

Mardia, Singh, Hnizdo and Dcmchuk (10) introduced a multivariate version of the above dis­
tribution a.nd discussed moment and pseudo likelihood methods for estimation of the parameters 
of the distribution. 

The above models assume marginal distributions to be symmetric. In genera.I, at least some 
of the torsional degrees of freedom of macromolecules ca.n ha.vc skewed marginal distributions . 
Hnizdo, Singh and Demchuk (4) proposed a Courier series expansion of the potential function 
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Figure 3: Human TNF-.0 factor. 
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approach for modeling such a distribution. For a large number of dependent torsional angles , 
this approach poses a serious computational challenge in the parameter estimation procedure. 
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1 Introduction 
Microarray (or DNA chip)-based hybridisation analyses using high density DNA probe arrays 
is a powerful tool for a broad and diverse set of genetic applications, including gene expression 
monitoring, sequence information, and genotype_analysis (see, for example, Chipping Forecast, 
1999). It allows new biomolecular approaches that promise to revolutionise our understand-

. ing of physiology and disease. A good starting point for finding out more about this rapidly 
developing field is the web site: www . gene- chips . com 

To study the difference in gene expression between two samples, each gene is placed as a 
spot on a glass slide. and the slide is then hybridized with the two samples, each labelled with 
a fluorescent marker. Finally, the microarray is scanned at high spatial resolution at the two 
wavelengths. For example, Fig 1 shows an array comparing two strains of Human Cytomegalo 
Virus (HCMV). Red spots reveal genes only expressed by virus strain one, green spots show 
genes only expressed by strain two, yellow spots show genes expressed by both strains and dark 
spots by neither. The first stages in the analysis of such data are estimation of expression of 
each gene, and identification of differential gene expression. We consider them in the following 
two sections. 

2 Image analysis 

Image analysis is the first step in analysing microarray data. Methods of noise reduction, back­
ground correction and segmentation are needed before the integrated intensity of individual 
spots can be obtained. Work is reported at the US National Human Genome Research Institute 
web page www. nhgri. nih . gov /DIR/LCG/ ;I.SK/HTML/ img_analysis. html and in 
Yang et al. (2000). However, there remain needs and opportunities for exploration of alternative, 
improved methods and for extensive, empirical and theoretical comparisons between methods. 

In the talk we illustrate the use of median filters to reduce the effects of speckle noise. We 
also use morphological operators such as the top-hat filter to correct the images for background 
tren_d. as proposed by Yang et al. (2000). Then we consider alternative segmentation methods 
to isolate the spots in the images. 

To estimate the difference in spot intensity between the two samples, we model pixel values 
by bivariate log-normal distributions. The maximum likelihood estimator for this model , and 
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