Emerg Infect DisEmerging Infect. DisEIDEmerging Infectious Diseases1080-60401080-6059Centers for Disease Control and Prevention23750366364765712-100110.3201/eid1903.121001Letters to the EditorLetterM. tuberculosis Beijing Type Mutation FrequencyMycobacterium tuberculosis Beijing Type Mutation FrequencyWerngrenJimAuthor affiliation: Swedish Institute for Communicable Disease Control, Solna, SwedenAddress for correspondence: Jim Werngren, Unit of Highly Pathogenic Microorganisms, Dept of Preparedness, Swedish Institute for Communicable Disease Control, Nobels väg 18 S-17182, Solna, Stockholm S 17182, Sweden; email: jim.werngren@smi.se32013193522522 de SteenwinkelJEM , ten KateMT , de KnegtGJ , KremerK , AarnoutseRE , BoereeMJ , Drug susceptibility of Mycobacterium tuberculosis Beijing genotype, association with MDR TB. Emerg Infect Dis. 2012;19:6603. 10.3201/eid1804.110912Keywords: Mycobacterium tuberculosisBeijing typedrug resistancemutation frequencytuberculosis and other mycobacteria

To the Editor: A striking finding in the study by de Steenwinkel et al. (1) is the high frequency of mutation to rifampin resistance by 2 Mycobacterium tuberculosis Beijing strains, which might play a role in the association between the Beijing strains and multidrug-resistant tuberculosis. Earlier reported frequency of mutation to rifampin resistance by M. tuberculosis has been 10−8 CFU (2,3), including the Beijing genotype (3,4). Of note, the Beijing 2002–1585 strain, for which frequency of mutation to rifampin resistance is 10−3 CFU (1 mutant/1,000 CFU), showed a moderate frequency of 10−8 CFU in another study (4). We think that a mutation frequency increase of 100,000× is remarkably high. In contrast, rifampin-resistant mutants of the Beijing 1585 strain did not emerge in low-density cultures (5 × 105 CFU/mL) used for time-kill kinetics experiments, although frequency of mutation to rifampin resistance was determined to be 10−3 CFU.

Mutation frequency is determined by fluctuation assays. To exclude preexisting mutants, which would bias the mutation frequency by so-called jackpots, a series of low-inoculum cultures is typically used (5). However, for unknown reasons, de Steenwinkel et al. used only 1 high-density culture of 1010 CFU of each strain to determine mutation frequency. This strategy is not recommended because mutations can occur early or late, resulting in substantial mutation frequency fluctuation between test episodes. A strain with known mutation rates should preferably be included to rule out possible technical errors.

We propose the following explanations for the remarkable results: 1) the rifampin concentration for selecting mutants might have been too low, enabling growth of some colonies of drug-susceptible bacteria; 2) rifampin mutants arose early or preexisted in the cultivation of Beijing strains 1585 and 1607, producing jackpots; or 3) the 2 Beijing isolates might contain rifampin-resistant subpopulations (heteroresistance). The capacity of the Beijing strain to develop and, especially, transmit multidrug-resistant tuberculosis remains to be further analyzed.

Suggested citation for this article: Werngren J. Mycobacterium tuberculosis Beijing type mutation frequency [letter]. Emerg Infect Dis [Internet]. 2013 Mar [date cited]. http://dx.doi.org/10.3201/eid1903.121001

Referencesde Steenwinkel JEM, ten Kate MT, de Knegt GJ, Kremer K, Aarnoutse RE, Boeree MJ, Drug susceptibility of Mycobacterium tuberculosis Beijing genotype, association with MDR TB. Emerg Infect Dis. 2012;4:6603 10.3201/eid1804.11091222469099David HL. Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl Microbiol. 1970;20:81044991927Werngren J, Hoffner SE. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J Clin Microbiol. 2003;41:15204 10.1128/JCM.41.4.1520-1524.200312682139Bergval I, Kwok B, Schuitema K, Kremer K, van Soolingen D, Klatser P, Pre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitro. PLoS ONE. 2012;7:e29108 10.1371/journal.pone.002910822235262Gillespie SH. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother. 2002;46:26774 10.1128/AAC.46.2.267-274.200211796329