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Abstract

Models of balance control can aid in understanding the mechanisms by which humans maintain balance. A balance control model of

quiet upright stance based on an optimal control strategy is presented here. In this model, the human body was represented by a simple

single-segment inverted pendulum during upright stance, and the neural controller was assumed to be an optimal controller that

generates ankle control torques according to a certain performance criterion. This performance criterion was defined by several physical

quantities relevant to sway. In order to accurately simulate existing experimental data, an optimization procedure was used to specify the

set of model parameters to minimize the scalar error between experimental and simulated sway measures. Thirty-two independent

simulations were performed for both younger and older adults. The model’s capabilities, in terms of reflecting sway behaviors and

identifying aging effects, were then analyzed based on the simulation results. The model was able to accurately predict center-of-pressure-

based sway measures, and identify potential changes in balance control mechanisms caused by aging. Correlations between sway

measures and model parameters are also discussed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Upright stance is inherently unstable in that without
internal control, even minute amplitude disturbances can
compromise stability. Internal control is provided by the
postural control system which generates joint torques to
control upright stance (Ishida et al., 1997; Peterka, 2000).
Thus, investigating balance control mechanisms may aid in
understanding the postural control system.

A number of balance control models have been proposed
to investigate balance control mechanisms. The most
essential aspect of such models is the model neural
controller, for which two main approaches have been used.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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In the first, it is assumed that the neural controller adopts a
particular control strategy to maintain balance. These
include PID (proportional, derivative, and integral) control
(Iqbal and Roy, 2004; Johansson et al., 1988; Maurer and
Peterka, 2005), RIPID (recurrent integrator proportional
integral derivative) control (Jo and Massaquoi, 2004), and
sliding mode control (Bottaro et al., 2005), etc. While
providing a basis for applying control theory to the neural
controller, a common concern with such models is that it is
impossible to validate the fundamental control assumption,
since it is still unknown how the neural controller works. In
the second approach, the neural controller is completely
determined by available experimental data (Fujisawa et al.,
2005; Ishida et al., 1997; Kiemel et al., 2002). These models
appear more valid, as no assumptions about the controller
have to be made, yet are limited by a dependence on
experimental data. Further, when using the second type of
model, the neural controller has to be modeled as a discrete
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system, which may induce errors related to discretizing
continuous data. Such errors can result in instability when
modeling upright stance (Ishida et al., 1997).

Human motions are generally effective and efficient. For
example, hand paths taken in point-to-point reaching
movements are the shortest between the initial hand
position and the target since they tend to be straight and
smooth (Morasso, 1981; Ohta et al., 2004), and these
movements appear to be organized to minimize energy
expended (Soechting et al., 1995). Some type of optimiza-
tion also appears present in the control of muscle
recruitment for generating motions (Fagg et al., 2002).
Some investigations of upright stance control have been
based on the assumption that sway motions are planned
according to optimal objectives, and have yielded realistic
motion trajectories (Ferry et al., 2004; Martin et al., 2006).
Thus, we may consider that the neural controller is an
optimal controller that is able to optimize the generation of
sway motion (though we may not know, a priori, what is
optimized).

The purpose of this study was to develop a new balance
control model based on an optimal control strategy. Since
center-of-pressure (COP) based sway measures are most
commonly used to characterize sway behaviors (Baratto
et al., 2002; Peterka, 2000; Prieto et al., 1996), this model
was expected to be able to accurately simulate actual
COP-based measures. Recent studies have shown that
older adults have a reduced ability to maintain balance
(Du Pasquier et al., 2003), indicating that aging likely
compromises balance control. Thus, results are presented
on the ability of the model to simulate spontaneous sway
measures, to reflect differences in sway associated with age,
and to identify potential internal mechanisms that cause
these differences.
2. Methods

2.1. Model structure

The postural control system was modeled as a feedback control system

(Masani et al., 2006; Peterka, 2002). The closed loop in the postural
h 

T 

θ
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Fig. 1. Single-segment inverted pendulum model of sway dynamics.
control system model consists of three parts: human body dynamics, the

sensory (afferent) feedback, and a neural controller. Human body

dynamics was described by a single-segment inverted pendulum model

(Fig. 1). Sway motion was assumed to be restricted to the sagittal plane,

and anthropometry of the simulated subject was set to that of an average

adult male (Maurer and Peterka, 2005). The equation of motion for the

inverted pendulum model of the body is given by:

I €yðtÞ �Mgh sin yðtÞ ¼ TðtÞ, (1)

where I ¼ 66 kg/m2 is the moment of inertia of the body about the ankle,

M ¼ 76 kg is body mass, h ¼ 0.87m is the height of the body center of

mass (COM), y is the sway angle, T is the ankle torque, and g ¼ 9.81m/s2

is the acceleration due to gravity. For spontaneous sway, y(t) is small

enough so that sin y(t)Ey(t). Thus, Eq. (1) can be linearized as

I €yðtÞ �Mgh yðtÞ ¼ TðtÞ. (2)

Sensory systems were assumed to provide accurate body orientation

measures to the neural controller (e.g. Masani et al., 2006; Peterka, 2000),

but with an inherent time delay due to sensory transduction, transmission,

and processing (van der Kooij et al., 1999). We assumed that this delay

was time-invariant for a given individual under consistent conditions. In

order to linearize the sensory system model, the delayed sway angular

displacement, ŷðtÞ ¼ yðt� tdÞ, was expanded using a Taylor series (Bajpai

et al., 1977), and thereby approximated as

ŷðtÞ � yðtÞ � td _yðtÞ þ 1
2
t2d €yðtÞ, (3)

where td is the time-invariant delay time.

According to Eqs. (2) and (3), given a zero initial condition, the

properties of body dynamics and sensory systems can be represented by

the following transfer functions, respectively:

yðsÞ
TðsÞ
¼

1

Is2 �Mgh
, (4)

ŷðsÞ
yðsÞ
¼

1

2
t2ds2 � tdsþ 1,

or

_̂yðsÞ
_yðsÞ
¼

1

2
t2ds2 � tdsþ 1. (5)

To stabilize the postural control system, so that the body is kept

upright, the properties of both body dynamics and sensory systems should

be taken into account by the neural controller. Thus, the controlled part in

the postural control system includes both body dynamics and sensory

systems. Derived from Eqs. (4) and (5), the transfer function from joint

torque to delayed sway angular displacement is

ŷðsÞ
TðsÞ
¼

1
2
t2ds2 � tdsþ 1

Is2 �Mgh
. (6)

Since the Laplace ‘s’ can be directly replaced by the differentiation

operator, according to Eq. (6):

€̂yðtÞ ¼
Mgh

I
ŷðtÞ þ

1

I
TðtÞ �

td
I
_TðtÞ þ

1

2
t2d €TðtÞ. (7)

Thus, we obtained the state equations accounting for the properties of

body dynamics and sensory systems as follows:

_xðtÞ ¼ AxðtÞ þ BuðtÞ, (8)

where

A ¼

0 1 0 0
Mgh

I
0

1

I

�td
I

0 0 0 1

0 0 0 0

0
BBBB@

1
CCCCA; B ¼

0

t2d
2I
0

1

0
BBBB@

1
CCCCA,
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the state is

xðtÞ ¼

ŷðtÞ
_̂yðtÞ

TðtÞ

_TðtÞ

0
BBBB@

1
CCCCA,

and the control signal is uðtÞ ¼ €TðtÞ.
The neural controller was designed according to the above state equations,

and it assumed to be an optimal controller that incorporates an optimal

control processor and two integration units. The optimal control processor

generates the optimal control signal (u) according to some performance

criterion. Two integration units ensure that the output of the neural controller

is the joint torque. We also assumed that spontaneous sway was caused by

both the torque generated by the neural controller and a random disturbance

torque (e.g. Peterka, 2000), the latter modeled as white noise. The complete

postural control system model can thus be illustrated as in Fig. 2(a).

2.2. Optimal control processor

The optimal control processor was designed following an optimal

control strategy. Since there is no clear final condition for spontaneous

sway, the optimal control processor is determined by an infinite-time

linear quadratic regulator (LQR). The LQR minimizes a performance

index of the standard form

J ¼
1

2

Z 1
0

ðx0ðtÞQxðtÞ þ u0ðtÞRuðtÞÞ dt; (9)

where Q and R are time-invariant weighting matrices for state x and

control signal u (see Eq. (8)), and are chosen by regulating certain physical

quantities relevant to sway.
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Fig. 2. (a) Human postural control system model of balance control. y, sway an
ytarget, target sway angle. Human body dynamics is defined by Eq. (4). Sensory

K2, K3, K4} is the optimal feedback gain.
State x and control signal u should be able to represent selected

physical quantities, and do so in a form that allows the weighting matrices

to be easily obtained. Ferry et al. (2004) and Martin et al. (2006) used the

criterion of minimum torque change rate to simulate sway motion and

found that it could yield realistic trajectories. Humans may also try to

minimize the displacement and velocity of the sway angle, and/or other

joint torque measures over time in order to maintain balance effectively

and efficiently. Therefore, the optimal controller’s performance index was

defined by:

J ¼
1

2

Z 1
0

ðw1ŷ
2
ðtÞ þ w2

_̂y
2

ðtÞ þ w3T2ðtÞ

þ w4
_T
2
ðtÞ þ w5

€T
2
ðtÞÞ dt, ð10Þ

where w1, w2, w3, w4 and w5 are weightings of the respective relevant

physical quantities. These weights are not predetermined. Rather, they are

determined as described below, and are subsequently interpreted as

indicating which physical quantities play a more important role in balance

control.

In order to apply formulated optimal control equations, the

performance index (Eq. (10)) must first be converted into the standard

form. Doing so yields the weighting matrices Q and R in Eq. (9) as

Q ¼

w1 0 0 0

0 w2 0 0

0 0 w3 0

0 0 0 w4

0
BBB@

1
CCCA; R ¼ w5. (11)

After determining the weighting matrices of the performance index in

the standard form, and state equations of the controlled part in the

postural control system, the optimal state feedback gain (K ¼ {K1, K2, K3,

K4}) is needed. This gain is used to define the optimal control processor
T (t)
Human Body 

Dynamics 

Random 
Disturbance

s

s
1

T (t)

� (t)

� (t)

� (t)

.

..

gular displacement; ŷ, delayed sway angular displacement; T, ankle torque;

systems are defined by Eq. (5). (b) Optimal control processor model. {K1,



ARTICLE IN PRESS

N

GA

Y

Start 

Determine state equations

Set model parameters

Determine the neural 

controller’s performance index

Determine the optimal neural controller

Simulate spontaneous sway

Calculate optimization 

procedure’s cost function 

Minimized 

cost function?

Stop 

Fig. 3. Flow of model simulations (GA, genetic algorithm).
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(Fig. 2(b)), and can be calculated by solving the Riccati equation (Naidu,

2003). Given the state x, the optimal control processor generates the

optimal control signal that can minimize the performance index (Eq. (10)):

uðtÞ ¼ � KxðtÞ ¼ �ðK1ŷðtÞ þ K2
_̂yðtÞ

þ K3TðtÞ þ K4
_TðtÞÞ. ð12Þ

Note that when using the Riccati equation to calculate the optimal

feedback gain, only the state matrices A and B (see Eq. (8)), and the

weighting matrices Q and R (see Eq. (9)) were required, and the properties

of the random disturbance torque were not taken into account. This is

appropriate since the random disturbance torque is not contained in the

closed loop of the postural control system, and thus cannot account for

the internal properties of the postural control system.

2.3. Optimization procedure

Unlike the anthropometry of the simulated subject, some model

parameters, e.g. sensory delay time, cannot be specified in advance. In

addition, the balance control model was expected to be able to accurately

simulate sway measures. To this end, an optimization procedure was

performed to determine the values of the unspecified model parameters, so

that the simulation results can best match the experimental results. These

model parameters were the weights of the relevant physical quantities in

the optimal controller’s performance index, the random disturbance gain,

and the sensory delay time.

COP-based measures of sway were desired from the model output for

comparison with experimental data. From body dynamics, the COP

displacement along the A/P direction (Xcop) was determined using

(Maurer and Peterka, 2005):

X cop ¼
ðMh2 � IÞ€yþMxBðgþ €yBÞ �MyB €xB �MhF €xB þmFdFg

Mðgþ €yBÞ þmFg
, (13)

where mF ¼ 2.01 kg is the mass of the feet, hF ¼ 0.085m is the height of

the ankle, and dF ¼ 0.052m is the A/P distance between the ankle and the

COM of the feet (additional terms are as defined above).

We chose nine COP-based sway measures according to the classifica-

tion suggested by Maurer and Peterka (2005). These measures are: mean

distance (MD), root mean square distance (RMS), maximum distance

(MAXD), mean velocity (MV), mean frequency (MFREQ), 50% power

frequency (P50), 95% power frequency (P95), centroidal frequency

(CFREQ), and frequency dispersion (FREQD). The cost function is then

given by:

E ¼
XN

i¼1

COPMi � COPMi

^

SD
L

i

0
@

1
A

2

, (14)

where N ¼ 9 is the number of COP-based measures, COPMi is the mean

of the ith COP-based measure from the simulation results, and SD
^

i and

COPMi

^

are, respectively, the standard deviation and mean of the ith

COP-based measure from the experimental results of Prieto et al. (1996).

This optimization procedure is sufficiently complex that heuristic

approaches are suitable for searching for a good solution (Hillier and

Lieberman, 2005). Thus, a genetic algorithm (GA) was implemented to

determine the optimal set of model parameters.

2.4. Model simulation

Fig. 3 shows the flow of model simulation. Initially, the state equations

of the controlled part in the postural control system were determined.

Then, the values of the model parameters were randomly set for a

simulation trial. Based on the current model parameters, the weighting

matrices of the optimal control processor’s performance index were

determined, and then the corresponding optimal feedback gain was

obtained by solving the Riccati equation. This optimal feedback gain was

then used to determine the optimal control processor. At this stage, the

kinematics and dynamics during spontaneous sway could be simulated.
Based on the simulation output, the cost function (Eq. (14)) was calculated

and the GA was used here to determine whether this cost function was

minimized. If so, this simulation trial was stopped. Otherwise, the GA

would aid in finding another set of model parameters, and the above

procedures would be repeated until the cost function was minimized or a

stopping criterion (maximum number of generations or iterations ¼ 50)

was met.

Thirty-two independent simulations with different initial random

disturbance seeds were performed for both younger and older adults.

The whole simulation procedure was coded using the Matlab program-

ming language (The MathWorks, Natick, MA), and each simulated sway

trial was 40 s in duration. After obtaining the simulation results for all the

simulated trials, two-sample t-tests were used to identify significant

(po0.05) differences in any model parameters between younger and older

adults. We also determined linear correlations between model parameters

and simulated sway measures.
3. Results

3.1. Simulated sway measures

Nearly all the simulated sway measures from the 64
simulation trials were within the one standard deviation
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Table 1

Model parameter means (SD) for younger and older adults (p-values given

for age-related differences)

Younger adults Older adults p-Value

Weight w1 0.330 (0.195) 0.397 (0.188) 0.083

Weight w2 0.540 (0.198) 0.434 (0.177) o0.05

Weight w3 0.072 (0.050) 0.098 (0.063) o0.05

Weight w4 0.053 (0.038) 0.069 (0.066) 0.123

Weight w5 3.84 (3.00)� 10�3 1.96 (2.97)� 10�3 o0.05

Disturbance gain kn 151.8 (23.1) 356.1 (83.3) o0.05

Sensory delay td (ms) 25.6 (18.0) 33.3 (23.0) 0.073

X. Qu et al. / Journal of Biomechanics 40 (2007) 3590–35973594
ranges of the corresponding experimental data (Fig. 4). The
only exception occurred in the measure of MFREQ.

3.2. Model parameters

Several modeled parameters differed between younger
and older adults (Table 1). Significant differences were
found in the weights of sway angular velocity (w2), ankle
torque (w3), ankle torque acceleration (w5), and random
disturbance gain (kn). More specifically, w2 and w5 were
significantly larger in younger adults, while w3 and kn were
significantly larger in older adults. In addition, some
differences in the parameters approached significance,
including the weight of sway angular displacement (w1)
and sensory time delay (td), which were both larger in the
older group.

3.3. Correlations between the simulated sway measures and

some model parameters

Typically, the simulated sway measures were positively
correlated with w1, w3, w4, kn, and td, and negatively
correlated with w2 and w5 (Table 2). Two exceptions were
that FREQD was positively correlated with w5, and P95
was uncorrelated (r ¼ 0.003) with td. Not all of these
correlations were significant. For example, although w1

seemed positively correlated with all of the simulated sway
measures, none of these correlations was significant.
However, most of the sway measures (MAXD, MV,
MFREQ, P95, CFREQ) were significantly correlated with
Fig. 4. Simulated sway measures obtained from 32 simulation trials of both y

deviation ranges of the corresponding experimental data given by Prieto et al
w2, w3, w5, and kn. In addition, MD and RMS were
significantly correlated with w2, w5, and kn, P50 with w5, kn,
and td, and FREQD with w4 and kn.

4. Discussion

One of the objectives of this study was to develop a
balance control model based on an optimal control
strategy that could accurately reflect postural sway during
quiet upright stance. The simulation results showed that
almost all simulated sway measures were completely within
a one standard deviation range of the corresponding
experimental data. Therefore, the balance control model
appears to be capable of simulating realistic COP-based
measures of sway.
Since the proposed model was able to simulate realistic

COP-based measures, it can be used to identify potential
ounger and older adults. Horizontal solid lines represent the one standard

. (1996).
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Table 2

Correlations (r) between simulated sway measures and model parameters

Weight w1 Weight w2 Weight w3 Weight w4 Weight w5 Disturbance gain kn Sensory delay td

MD 0.181 �0.247* 0.119 0.124 �0.262* 0.832* 0.187

RMS 0.176 �0.247* 0.150 0.112 �0.297* 0.850* 0.177

MAXD 0.160 �0.246* 0.229* 0.083 �0.343* 0.831* 0.108

MV 0.162 �0.276* 0.298* 0.112 �0.335* 0.878* 0.153

MFREQ 0.124 �0.267* 0.409* 0.099 �0.355* 0.812* 0.109

P50 0.112 �0.150 0.074 0.073 �0.259* 0.679* 0.265*

P95 0.133 �0.227* 0.257* 0.083 �0.328* 0.906* �0.003

CFREQ 0.170 �0.295* 0.260* 0.188 �0.267* 0.839* 0.174

FREQD 0.056 �0.203 0.197 0.312* 0.0917 0.338* 0.115

Correlations noted by * were significant (po0.05).
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underlying causes of the aging effect on balance control. It
is generally accepted that aging adversely affects the
accuracy of control signals by increasing sensory noise
and elevating sensory thresholds (Ahmed and Ashton-
Miller, 2005; Gilsing et al., 1995; Tian et al., 2002).
Accuracy of the control signal is influenced in the
simulation model by the random disturbance gain (kn).
With larger disturbance gains, the accuracy of the control
signal decreases. Since the predicted random disturbance
gain among older adults was significantly larger than that
of younger adults, the proposed model provides a plausible
mechanism to explain age-related differences in upright
balance control.

Sensory delay has also been generally considered to
increase with aging (Mackey and Robinovitch, 2006).
From the simulation results, the mean sensory delay time
among older adults was larger than that of younger adults,
though not significantly (p ¼ 0.073). In addition to
disturbance gain and sensory delay, other model para-
meters also showed effects of age (Table 1). For example,
the weight of ankle torque acceleration (w5) was signifi-
cantly larger in younger adults, so it might be concluded
that ankle torque acceleration plays a more important role
in balance control in younger versus older adults.

By examining the correlations between simulated sway
measures and model parameters, we found that some
model parameters (w2, w3, w5, and kn) may be predictable
from more directly observable sway measures. For
example, random disturbance gain (kn) was positively
(and significantly) correlated with all sway measures.
Hence, knowing certain tendencies regarding sway mea-
sures, which can be determined experimentally, may aid in
estimating the differences in underlying random distur-
bance magnitudes among different subject groups.

Predicted sensory delay, accounting for the time delay in
the feedback loop, was �30ms. This time delay could be
interpreted as the latency from the instant that mechan-
oreceptive afferents (e.g. in the foot) are stimulated, until
the instant a sensory evoked potential is recorded in the
somatosensory area of the brain (Masani et al., 2006).
Applegate et al. (1988) reported that this time delay was in
the range of 35.4–40.1ms, which is comparable to our
simulation results. There are clearly other sources of
delays, such as the motor command time delay in the
postural control system, but these time delays are not in the
feedback loop. In order to simplify the model, we did not
model these time delays. Note that errors may still be made
in estimating sensory delay primarily due to two factors.
First, the GA cannot guarantee that exact global optimal
solutions are found, so the predicted sensory delay may not
be the exact time delay in the feedback loop. Second, the
delayed sway angle considered in the model was only an
approximation (see Eq. (3)).
A PID control strategy has been widely used to design

the neural controller in balance control models. In
particular, Maurer and Peterka (2005) obtained realistic
simulations of COP-based sway measures using such a
controller. The major difference between the presented
model and that of Maurer and Perterka (2005) is in the
control strategy used to define the neural controller. We
assumed that the neural controller adopted an optimal
control strategy. As a result, the inherent parameters of the
two models are different. Since these model parameters are
used to explain how the neural controller works, balance
control mechanisms are explained from different perspec-
tives. For example, we used weightings of several physical
quantities relevant to sway to indicate which of these plays
a more important role in balance control. In contrast,
Maurer and Peterka (2005) interpreted the effect of active
stiffness on balance control.
Kuo (1995, 2005) and van der Kooij et al. (1999) have

also successfully applied optimal control theory when
constructing balance control models. However, van der
Kooij et al. (1999) only took into account the properties of
human body dynamics when specifying the optimal feed-
back in their model. Sensory systems are also an important
aspect of the closed loop portion of the postural control
system. In order to optimize the performance of the whole
postural control system, properties of sensory systems
should be considered by the neural controller. In Kuo’s
study (1995), the state equations accounted for both body
dynamics and sensory properties. However, the system
matrices were specified by measuring the feasible accelera-
tion set (FAS) which is derived from many complex
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factors, e.g. musculoskeletal geometry and muscle proper-
ties. In contrast to these earlier models, the model
presented here derived the controlled state equations
(Eq. (8)) from the transfer functions of human body
dynamics and sensory systems, and the neural controller
was modeled according to these state equations. In
addition, no additional knowledge was necessary when
specifying the sensory systems.

The strength of the model presented here is that it was
able to accurately simulate sway behaviors. Further, we
have presented an approach for determining what to
optimize and how to optimize when modeling balance
control during spontaneous sway. Modeling the neural
controller as an optimal controller stems from a physio-
logical basis, in that it is possible to incorporate physical
quantities relevant to sway into the performance index
defined in the optimal controller. It is also physiologically
plausible that the state x (see Eq. (8)) can be fed back to the
neural controller to generate the optimal control signal.
Specifically, muscle spindles can sense the joint angular
displacement and velocity (van der Kooij et al., 1999), and
the state variables T and _T are internal states of the neural
controller. At the same time, this model can be used
to analyze potential balance control mechanisms for
different groups of subjects by simply comparing their
model parameters. In addition, this model may aid in
predicting human physiological reactions used in main-
taining balance, and facilitate evaluating the potential
impact of intervention strategies for the improvement of
balance.

The model presented here also has some limitations.
First, only a few physical quantities that may have effects
on spontaneous sway can be incorporated into the
performance index. Second, the neural controller may not
use an optimal control strategy to generate the motor plans
that lead to spontaneous sway, though based on the
simulation results, we may say that such a control strategy
can at least partly explain the neural controller. Third, the
presented model is only applicable for small amplitudes of
planar sway motion, given only ankle torques were
considered to contribute to maintaining balance (Kuo,
1995). Fourth, this model depends on experimental data to
determine the parameters. Note that in the current work,
the same anthropometry was assumed for both younger
and older adults. This represents a limitation in imple-
mentation, though not necessarily in the modeling
approach. Fifth, GAs are a heuristic approach and not
good at local searching, which may not guarantee that the
obtained set of model parameters were globally optimal.

It can also be argued that the real sensory systems are
much more complex than is represented in the model, as a
time delay, since to maintain upright stance body orienta-
tion information from visual, vestibular, and propriocep-
tive sensory systems should be integrated and fed back to
the neural controller (Kuo, 2005; Peterka, 2002). Two
reasons motivated our adoption of a simple time delay to
represent sensory systems. First, the focus of this study was
not on an investigation of the contributions of sensory
systems to balance control. Second, it is easy to linearize
sensory systems by simply using a time delay representa-
tion, so that the Ricatti equation can be used to calculate
the optimal feedback gain. Several studies have also used
this simplification to model sensory systems and obtained
realistic results (Masani et al., 2006; Maurer and Peterka,
2005; Peterka, 2000). However, we admit that modeling
sensory systems as a time delay is rather simplistic,
especially when the interest is in studying how sensory
systems work during quiet upright stance. Thus, in future
research, a balance control model with more complex
sensor dynamics should be investigated.
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