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Abstract

Models of balance control can aid in understanding the mechanisms by which humans maintain balance. A balance control model of
quiet upright stance based on an optimal control strategy is presented here. In this model, the human body was represented by a simple
single-segment inverted pendulum during upright stance, and the neural controller was assumed to be an optimal controller that
generates ankle control torques according to a certain performance criterion. This performance criterion was defined by several physical
quantities relevant to sway. In order to accurately simulate existing experimental data, an optimization procedure was used to specify the
set of model parameters to minimize the scalar error between experimental and simulated sway measures. Thirty-two independent
simulations were performed for both younger and older adults. The model’s capabilities, in terms of reflecting sway behaviors and
identifying aging effects, were then analyzed based on the simulation results. The model was able to accurately predict center-of-pressure-
based sway measures, and identify potential changes in balance control mechanisms caused by aging. Correlations between sway

measures and model parameters are also discussed.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Upright stance is inherently unstable in that without
internal control, even minute amplitude disturbances can
compromise stability. Internal control is provided by the
postural control system which generates joint torques to
control upright stance (Ishida et al., 1997; Peterka, 2000).
Thus, investigating balance control mechanisms may aid in
understanding the postural control system.

A number of balance control models have been proposed
to investigate balance control mechanisms. The most
essential aspect of such models is the model neural
controller, for which two main approaches have been used.
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In the first, it is assumed that the neural controller adopts a
particular control strategy to maintain balance. These
include PID (proportional, derivative, and integral) control
(Igbal and Roy, 2004; Johansson et al., 1988; Maurer and
Peterka, 2005), RIPID (recurrent integrator proportional
integral derivative) control (Jo and Massaquoi, 2004), and
sliding mode control (Bottaro et al., 2005), etc. While
providing a basis for applying control theory to the neural
controller, a common concern with such models is that it is
impossible to validate the fundamental control assumption,
since it is still unknown how the neural controller works. In
the second approach, the neural controller is completely
determined by available experimental data (Fujisawa et al.,
2005; Ishida et al., 1997; Kiemel et al., 2002). These models
appear more valid, as no assumptions about the controller
have to be made, yet are limited by a dependence on
experimental data. Further, when using the second type of
model, the neural controller has to be modeled as a discrete
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system, which may induce errors related to discretizing
continuous data. Such errors can result in instability when
modeling upright stance (Ishida et al., 1997).

Human motions are generally effective and efficient. For
example, hand paths taken in point-to-point reaching
movements are the shortest between the initial hand
position and the target since they tend to be straight and
smooth (Morasso, 1981; Ohta et al., 2004), and these
movements appear to be organized to minimize energy
expended (Soechting et al., 1995). Some type of optimiza-
tion also appears present in the control of muscle
recruitment for generating motions (Fagg et al., 2002).
Some investigations of upright stance control have been
based on the assumption that sway motions are planned
according to optimal objectives, and have yielded realistic
motion trajectories (Ferry et al., 2004; Martin et al., 2006).
Thus, we may consider that the neural controller is an
optimal controller that is able to optimize the generation of
sway motion (though we may not know, a priori, what is
optimized).

The purpose of this study was to develop a new balance
control model based on an optimal control strategy. Since
center-of-pressure (COP) based sway measures are most
commonly used to characterize sway behaviors (Baratto
et al., 2002; Peterka, 2000; Prieto et al., 1996), this model
was expected to be able to accurately simulate actual
COP-based measures. Recent studies have shown that
older adults have a reduced ability to maintain balance
(Du Pasquier et al., 2003), indicating that aging likely
compromises balance control. Thus, results are presented
on the ability of the model to simulate spontaneous sway
measures, to reflect differences in sway associated with age,
and to identify potential internal mechanisms that cause
these differences.

2. Methods
2.1. Model structure

The postural control system was modeled as a feedback control system
(Masani et al., 2006; Peterka, 2002). The closed loop in the postural
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Fig. 1. Single-segment inverted pendulum model of sway dynamics.

control system model consists of three parts: human body dynamics, the
sensory (afferent) feedback, and a neural controller. Human body
dynamics was described by a single-segment inverted pendulum model
(Fig. 1). Sway motion was assumed to be restricted to the sagittal plane,
and anthropometry of the simulated subject was set to that of an average
adult male (Maurer and Peterka, 2005). The equation of motion for the
inverted pendulum model of the body is given by:

10(t) — Mghsin 0(¢) = T(1), (6]

where I = 66 kg/m2 is the moment of inertia of the body about the ankle,
M = T76kg is body mass, # = 0.87m is the height of the body center of
mass (COM), 0 is the sway angle, T is the ankle torque, and g = 9.81 m/s>
is the acceleration due to gravity. For spontaneous sway, 0(¢) is small
enough so that sin 6(z) = 0(¢). Thus, Eq. (1) can be linearized as

10(t) — Mgh 0(t) = T(1). @

Sensory systems were assumed to provide accurate body orientation
measures to the neural controller (e.g. Masani et al., 2006; Peterka, 2000),
but with an inherent time delay due to sensory transduction, transmission,
and processing (van der Kooij et al., 1999). We assumed that this delay
was time-invariant for a given individual under consistent conditions. In
order to linearize the sensory system model, the delayed sway angular
displacement, (;(t) = 0(t — 14), was expanded using a Taylor series (Bajpai
et al., 1977), and thereby approximated as

0(0) = 0() — 1a0(r) + 1730(0), (3)

where 14 is the time-invariant delay time.

According to Egs. (2) and (3), given a zero initial condition, the
properties of body dynamics and sensory systems can be represented by
the following transfer functions, respectively:

0(s) 1

T(s) Is® — Mgh’ “
0s) 1,5,

% = 2rds 198 + 1,

or

0s) 1

%=§T§S27'Ed§+l. %)

To stabilize the postural control system, so that the body is kept
upright, the properties of both body dynamics and sensory systems should
be taken into account by the neural controller. Thus, the controlled part in
the postural control system includes both body dynamics and sensory
systems. Derived from Egs. (4) and (5), the transfer function from joint
torque to delayed sway angular displacement is

0(s) A —tas+ 1

T(s)  Is> — Mgh ©

Since the Laplace ‘s’ can be directly replaced by the differentiation
operator, according to Eq. (6):

Mgh »

i) = 7000+ ; T(t) — er (1) + %rg (). o)

Thus, we obtained the state equations accounting for the properties of
body dynamics and sensory systems as follows:

X(1) = Ax(?) + Bu(?), ®)
where
0 1 0 0 0
Mgh 0 1 - ﬁ
A= 1 I I |, B=|2|,
0 0 0 1 0
0o 00 0 1
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the state is
0
0

x(1) = o |
T(2)

and the control signal is u(r) = T'(¢).

The neural controller was designed according to the above state equations,
and it assumed to be an optimal controller that incorporates an optimal
control processor and two integration units. The optimal control processor
generates the optimal control signal (1) according to some performance
criterion. Two integration units ensure that the output of the neural controller
is the joint torque. We also assumed that spontaneous sway was caused by
both the torque generated by the neural controller and a random disturbance
torque (e.g. Peterka, 2000), the latter modeled as white noise. The complete
postural control system model can thus be illustrated as in Fig. 2(a).

2.2. Optimal control processor

The optimal control processor was designed following an optimal
control strategy. Since there is no clear final condition for spontaneous
sway, the optimal control processor is determined by an infinite-time
linear quadratic regulator (LQR). The LQR minimizes a performance
index of the standard form

J= % /0 (X' (1)Ox(1t) + / (f)Ru(?)) dt, )

where Q and R are time-invariant weighting matrices for state x and
control signal u (see Eq. (8)), and are chosen by regulating certain physical
quantities relevant to sway.

State x and control signal u# should be able to represent selected
physical quantities, and do so in a form that allows the weighting matrices
to be easily obtained. Ferry et al. (2004) and Martin et al. (2006) used the
criterion of minimum torque change rate to simulate sway motion and
found that it could yield realistic trajectories. Humans may also try to
minimize the displacement and velocity of the sway angle, and/or other
joint torque measures over time in order to maintain balance effectively
and efficiently. Therefore, the optimal controller’s performance index was
defined by:

) . 22
J = %/ ()1/102(1‘) + W20 (l) —+ w3 Tz(l‘)
0
g T() + ws Tz(t)) ds, (10)

where wy, wy, w3, ws and ws are weightings of the respective relevant
physical quantities. These weights are not predetermined. Rather, they are
determined as described below, and are subsequently interpreted as
indicating which physical quantities play a more important role in balance
control.

In order to apply formulated optimal control equations, the
performance index (Eq. (10)) must first be converted into the standard
form. Doing so yields the weighting matrices Q and R in Eq. (9) as

w 0 0 0
0O w, 0 O

=10 0 w o[ R=ws an
0 0 0 wy

After determining the weighting matrices of the performance index in
the standard form, and state equations of the controlled part in the
postural control system, the optimal state feedback gain (K = {K, K5, K3,
K,}) is needed. This gain is used to define the optimal control processor
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Fig. 2. (a) Human postural control system model of balance control. 0, sway angular displacement; 0, delayed sway angular displacement; 7, ankle torque;
Otarget> target sway angle. Human body dynamics is defined by Eq. (4). Sensory systems are defined by Eq. (5). (b) Optimal control processor model. {K],

K>, K, K4} is the optimal feedback gain.
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(Fig. 2(b)), and can be calculated by solving the Riccati equation (Naidu,
2003). Given the state x, the optimal control processor generates the
optimal control signal that can minimize the performance index (Eq. (10)):

W)= — Kx(t) = —(K\0(r) + K20(0)
+ K3T(0) + K4T(2)). (12)

Note that when using the Riccati equation to calculate the optimal
feedback gain, only the state matrices 4 and B (see Eq. (8)), and the
weighting matrices Q and R (see Eq. (9)) were required, and the properties
of the random disturbance torque were not taken into account. This is
appropriate since the random disturbance torque is not contained in the
closed loop of the postural control system, and thus cannot account for
the internal properties of the postural control system.

2.3. Optimization procedure

Unlike the anthropometry of the simulated subject, some model
parameters, e.g. sensory delay time, cannot be specified in advance. In
addition, the balance control model was expected to be able to accurately
simulate sway measures. To this end, an optimization procedure was
performed to determine the values of the unspecified model parameters, so
that the simulation results can best match the experimental results. These
model parameters were the weights of the relevant physical quantities in
the optimal controller’s performance index, the random disturbance gain,
and the sensory delay time.

COP-based measures of sway were desired from the model output for
comparison with experimental data. From body dynamics, the COP
displacement along the A/P direction (X.,,) was determined using
(Maurer and Peterka, 2005):

v (M = D0+ Mxy(g + jig) — Myt — Mhyp + mpdrg
o M(g + ) + mrg

where myg = 2.01 kg is the mass of the feet, ir = 0.085m is the height of
the ankle, and dr = 0.052m is the A/P distance between the ankle and the
COM of the feet (additional terms are as defined above).

We chose nine COP-based sway measures according to the classifica-
tion suggested by Maurer and Peterka (2005). These measures are: mean
distance (MD), root mean square distance (RMS), maximum distance
(MAXD), mean velocity (MV), mean frequency (MFREQ), 50% power
frequency (P50), 95% power frequency (P95), centroidal frequency
(CFREQ), and frequency dispersion (FREQD). The cost function is then
given by:

. (13

2

A
COPM; — COPM;
E= Z — . (14)

=1 sD;

where N =9 is the number of COP-based measures, COPM,; is the mean
of the ith COP-based measure from the simulation results, and SD; and
COPM,; are, respectively, the standard deviation and mean of the ith
COP-based measure from the experimental results of Prieto et al. (1996).

This optimization procedure is sufficiently complex that heuristic
approaches are suitable for searching for a good solution (Hillier and
Lieberman, 2005). Thus, a genetic algorithm (GA) was implemented to
determine the optimal set of model parameters.

2.4. Model simulation

Fig. 3 shows the flow of model simulation. Initially, the state equations
of the controlled part in the postural control system were determined.
Then, the values of the model parameters were randomly set for a
simulation trial. Based on the current model parameters, the weighting
matrices of the optimal control processor’s performance index were
determined, and then the corresponding optimal feedback gain was
obtained by solving the Riccati equation. This optimal feedback gain was
then used to determine the optimal control processor. At this stage, the
kinematics and dynamics during spontaneous sway could be simulated.

Determine state equations

v

Set model parameters <}

.

Determine the neural

controller’'s performance index

.

Determine the optimal neural controller

v

Simulate spontaneous sway

v

Calculate optimization

GA

procedure’s cost function

Minimized

cost function?

Fig. 3. Flow of model simulations (GA, genetic algorithm).

Based on the simulation output, the cost function (Eq. (14)) was calculated
and the GA was used here to determine whether this cost function was
minimized. If so, this simulation trial was stopped. Otherwise, the GA
would aid in finding another set of model parameters, and the above
procedures would be repeated until the cost function was minimized or a
stopping criterion (maximum number of generations or iterations = 50)
was met.

Thirty-two independent simulations with different initial random
disturbance seeds were performed for both younger and older adults.
The whole simulation procedure was coded using the Matlab program-
ming language (The MathWorks, Natick, MA), and each simulated sway
trial was 40 s in duration. After obtaining the simulation results for all the
simulated trials, two-sample r-tests were used to identify significant
(p<0.05) differences in any model parameters between younger and older
adults. We also determined linear correlations between model parameters
and simulated sway measures.

3. Results
3.1. Simulated sway measures

Nearly all the simulated sway measures from the 64
simulation trials were within the one standard deviation
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ranges of the corresponding experimental data (Fig. 4). The
only exception occurred in the measure of MFREQ.

3.2. Model parameters

Several modeled parameters differed between younger
and older adults (Table 1). Significant differences were
found in the weights of sway angular velocity (w»), ankle
torque (ws), ankle torque acceleration (ws), and random
disturbance gain (k,). More specifically, w, and ws were
significantly larger in younger adults, while w3 and k, were
significantly larger in older adults. In addition, some
differences in the parameters approached significance,
including the weight of sway angular displacement (w;)
and sensory time delay (t4), which were both larger in the
older group.

3.3. Correlations between the simulated sway measures and
some model parameters

Typically, the simulated sway measures were positively
correlated with wy, ws, wy, k,, and 74, and negatively

ws, w3, ws, and k,. In addition, MD and RMS were
significantly correlated with w,, ws, and k,, P50 with ws, k,,,
and 74, and FREQD with wy4 and k.

4. Discussion

One of the objectives of this study was to develop a
balance control model based on an optimal control
strategy that could accurately reflect postural sway during
quiet upright stance. The simulation results showed that
almost all simulated sway measures were completely within
a one standard deviation range of the corresponding
experimental data. Therefore, the balance control model
appears to be capable of simulating realistic COP-based
measures of sway.

Since the proposed model was able to simulate realistic
COP-based measures, it can be used to identify potential

Table 1
Model parameter means (SD) for younger and older adults (p-values given
for age-related differences)

correlated with w, and ws (Table 2). Two exceptions were Younger adults  Older adults p-Value
that FREQD was positively cor'related with ws, and P95 Weight 1, 0330 (0.195) 0397 (0.188) 0.083
was un'correlated (( =‘0.003) with 7q. Not all of these  yeign( v, 0.540 (0.198) 0.434 (0.177) <0.05
correlations were significant. For example, although w; Weight 15 0.072 (0.050) 0.098 (0.063) <0.05
seemed positively correlated with all of the simulated sway Weight wy 0.053 (0.038) \ 0.069 (0.066) , 0.123
measures, none of these correlations was significant. W.elghgws - 3.84 (3.00)x 107 1.96 (2.97) x 107" <0.05
However, most of the sway measures (MAXD, MV, ]s);:ltslérryag:i}%?n (n']‘s) ;16‘8(1%36)1) 2363‘1(2(236)3 ) 0< (;)7'(3)5
MFREQ, P95, CFREQ) were significantly correlated with ! o - '
-3 MD(mm) 2 RMS(mm) MAXD(mm)
5X 10 6% 10 0.03
P I
4 i _— 0.02 i
3 H i v i
2 - 0.01
2 !
! Old Young 0 Old Young 0 Old Young
MV(mm/s) MFREQ(Hz) P50(Hz)
0.015 1 05, —
+
0.8 * 0.4 +
0.01 i i -
+ 0.6 i 0.3 g
0.005
_r 04 E 02 ——— -
0 Old Young 02 Old Young 01 Old Young
P95(Hz) CFREQ(H2) FREQD
2 1 058
—_— 0.75
15 08
07
1 z 06 E S i g
. i 0.65 o
03 ol Young 04 oid Young old Yoﬁng

Fig. 4. Simulated sway measures obtained from 32 simulation trials of both younger and older adults. Horizontal solid lines represent the one standard
deviation ranges of the corresponding experimental data given by Prieto et al. (1996).
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Table 2

Correlations (r) between simulated sway measures and model parameters

Weight w; Weight w, Weight ws Weight wy Weight ws Disturbance gain &, Sensory delay 74
MD 0.181 —0.247" 0.119 0.124 —0.262" 0.832" 0.187
RMS 0.176 —0.247" 0.150 0.112 —0.297" 0.850" 0.177
MAXD 0.160 —0.246" 0.229" 0.083 —0.343" 0.831" 0.108
MV 0.162 —0.276" 0.298" 0.112 —0.335" 0.878" 0.153
MFREQ 0.124 —0.267" 0.409" 0.099 —0.355" 0.812" 0.109
P50 0.112 —0.150 0.074 0.073 —0.259" 0.679" 0.265"
P95 0.133 —0.227" 0.257" 0.083 —0.328" 0.906" —0.003
CFREQ 0.170 —0.295" 0.260" 0.188 —0.267" 0.839" 0.174
FREQD 0.056 —0.203 0.197 0.312" 0.0917 0.338" 0.115

Correlations noted by ~ were significant (p<0.05).

underlying causes of the aging effect on balance control. It
is generally accepted that aging adversely affects the
accuracy of control signals by increasing sensory noise
and elevating sensory thresholds (Ahmed and Ashton-
Miller, 2005; Gilsing et al., 1995; Tian et al., 2002).
Accuracy of the control signal is influenced in the
simulation model by the random disturbance gain (k).
With larger disturbance gains, the accuracy of the control
signal decreases. Since the predicted random disturbance
gain among older adults was significantly larger than that
of younger adults, the proposed model provides a plausible
mechanism to explain age-related differences in upright
balance control.

Sensory delay has also been generally considered to
increase with aging (Mackey and Robinovitch, 2006).
From the simulation results, the mean sensory delay time
among older adults was larger than that of younger adults,
though not significantly (p =0.073). In addition to
disturbance gain and sensory delay, other model para-
meters also showed effects of age (Table 1). For example,
the weight of ankle torque acceleration (ws) was signifi-
cantly larger in younger adults, so it might be concluded
that ankle torque acceleration plays a more important role
in balance control in younger versus older adults.

By examining the correlations between simulated sway
measures and model parameters, we found that some
model parameters (w,, wsz, ws, and k) may be predictable
from more directly observable sway measures. For
example, random disturbance gain (k,) was positively
(and significantly) correlated with all sway measures.
Hence, knowing certain tendencies regarding sway mea-
sures, which can be determined experimentally, may aid in
estimating the differences in underlying random distur-
bance magnitudes among different subject groups.

Predicted sensory delay, accounting for the time delay in
the feedback loop, was ~30ms. This time delay could be
interpreted as the latency from the instant that mechan-
oreceptive afferents (e.g. in the foot) are stimulated, until
the instant a sensory evoked potential is recorded in the
somatosensory area of the brain (Masani et al., 2006).
Applegate et al. (1988) reported that this time delay was in
the range of 35.4-40.1 ms, which is comparable to our

simulation results. There are clearly other sources of
delays, such as the motor command time delay in the
postural control system, but these time delays are not in the
feedback loop. In order to simplify the model, we did not
model these time delays. Note that errors may still be made
in estimating sensory delay primarily due to two factors.
First, the GA cannot guarantee that exact global optimal
solutions are found, so the predicted sensory delay may not
be the exact time delay in the feedback loop. Second, the
delayed sway angle considered in the model was only an
approximation (see Eq. (3)).

A PID control strategy has been widely used to design
the neural controller in balance control models. In
particular, Maurer and Peterka (2005) obtained realistic
simulations of COP-based sway measures using such a
controller. The major difference between the presented
model and that of Maurer and Perterka (2005) is in the
control strategy used to define the neural controller. We
assumed that the neural controller adopted an optimal
control strategy. As a result, the inherent parameters of the
two models are different. Since these model parameters are
used to explain how the neural controller works, balance
control mechanisms are explained from different perspec-
tives. For example, we used weightings of several physical
quantities relevant to sway to indicate which of these plays
a more important role in balance control. In contrast,
Maurer and Peterka (2005) interpreted the effect of active
stiffness on balance control.

Kuo (1995, 2005) and van der Kooij et al. (1999) have
also successfully applied optimal control theory when
constructing balance control models. However, van der
Kooij et al. (1999) only took into account the properties of
human body dynamics when specifying the optimal feed-
back in their model. Sensory systems are also an important
aspect of the closed loop portion of the postural control
system. In order to optimize the performance of the whole
postural control system, properties of sensory systems
should be considered by the neural controller. In Kuo’s
study (1995), the state equations accounted for both body
dynamics and sensory properties. However, the system
matrices were specified by measuring the feasible accelera-
tion set (FAS) which is derived from many complex
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factors, e.g. musculoskeletal geometry and muscle proper-
ties. In contrast to these earlier models, the model
presented here derived the controlled state equations
(Eq. (8)) from the transfer functions of human body
dynamics and sensory systems, and the neural controller
was modeled according to these state equations. In
addition, no additional knowledge was necessary when
specifying the sensory systems.

The strength of the model presented here is that it was
able to accurately simulate sway behaviors. Further, we
have presented an approach for determining what to
optimize and how to optimize when modeling balance
control during spontancous sway. Modeling the neural
controller as an optimal controller stems from a physio-
logical basis, in that it is possible to incorporate physical
quantities relevant to sway into the performance index
defined in the optimal controller. It is also physiologically
plausible that the state x (see Eq. (8)) can be fed back to the
neural controller to generate the optimal control signal.
Specifically, muscle spindles can sense the joint angular
displacement and velocity (van der Kooij et al., 1999), and
the state variables 7 and 7 are internal states of the neural
controller. At the same time, this model can be used
to analyze potential balance control mechanisms for
different groups of subjects by simply comparing their
model parameters. In addition, this model may aid in
predicting human physiological reactions used in main-
taining balance, and facilitate evaluating the potential
impact of intervention strategies for the improvement of
balance.

The model presented here also has some limitations.
First, only a few physical quantities that may have effects
on spontaneous sway can be incorporated into the
performance index. Second, the neural controller may not
use an optimal control strategy to generate the motor plans
that lead to spontaneous sway, though based on the
simulation results, we may say that such a control strategy
can at least partly explain the neural controller. Third, the
presented model is only applicable for small amplitudes of
planar sway motion, given only ankle torques were
considered to contribute to maintaining balance (Kuo,
1995). Fourth, this model depends on experimental data to
determine the parameters. Note that in the current work,
the same anthropometry was assumed for both younger
and older adults. This represents a limitation in imple-
mentation, though not necessarily in the modeling
approach. Fifth, GAs are a heuristic approach and not
good at local searching, which may not guarantee that the
obtained set of model parameters were globally optimal.

It can also be argued that the real sensory systems are
much more complex than is represented in the model, as a
time delay, since to maintain upright stance body orienta-
tion information from visual, vestibular, and propriocep-
tive sensory systems should be integrated and fed back to
the neural controller (Kuo, 2005; Peterka, 2002). Two
reasons motivated our adoption of a simple time delay to
represent sensory systems. First, the focus of this study was

not on an investigation of the contributions of sensory
systems to balance control. Second, it is easy to linearize
sensory systems by simply using a time delay representa-
tion, so that the Ricatti equation can be used to calculate
the optimal feedback gain. Several studies have also used
this simplification to model sensory systems and obtained
realistic results (Masani et al., 2006; Maurer and Peterka,
2005; Peterka, 2000). However, we admit that modeling
sensory systems as a time delay is rather simplistic,
especially when the interest is in studying how sensory
systems work during quiet upright stance. Thus, in future
research, a balance control model with more complex
sensor dynamics should be investigated.
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