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Air concentrations of nine volatile organic compounds
were measured over 48-h periods at 23 locations in three
communities in the Minneapolis-St. Paul metropolitan
area. Concentrations at the same times and locations were
modeled using a standard regulatory air dispersion
model (ISCST3). The goal of the study was to evaluate
model performance by comparing predictions with
measurements using linear regression and estimates of
bias. The modeling, done with mobile and area source
emissions resolved to the census tract level and characterized
as model area sources, represents an improvement over
large-scale air toxics modeling analyses done to date. Despite
the resolved spatial scale, the model did not fully capture
the spatial resolution in concentrations in an area with
a sharp gradient in emissions. In a census tract with a major
highway at one end of the tract (i.e., uneven distribution
of emissions within the tract), model predictions at the opposite
end of the tract overestimated measured concentrations.
This shortcoming was seen for pollutants emitted mainly by
mobile sources (benzene, ethylbenzene, toluene, and
xylenes). We suggest that major highways would be better
characterized as line sources. The model also failed to
fully capture the temporal variability in concentrations, which
was expected since the emissions inventory comprised
annual average values. Based on our evaluation metrics,
model performance was best for pollutants emitted mainly
from mobile sources and poorest for pollutants emitted
mainly from area sources. Important sources of error appeared
to be the source characterization (especially location)
and emissions quantification. We expect that enhancements
in the emissions inventory would give the greatest
improvement in results. As anticipated for a Gaussian
plume model, performance was dramatically better when

compared to measurements that were not matched in
space or time. Despite the limitations of our analysis, we
found that the regulatory air dispersion model was generally
able to predict space and time matched 48-h average
ambient concentrations of VOC species within a factor of
2 on average, results that meet regulatory model
acceptance criteria.

Introduction
Speciated volatile organic compounds (VOCs) are today
routinely measured in urban air, and ambient air concentra-
tions of some compounds, like benzene, often exceed health
benchmarks (1, 2). Similarly, modeling studies have predicted
concentrations of some VOC species above levels of concern
across large portions of the United States (3-5). These
findings have increased concern about the health implica-
tions of air toxics and spurred further work on tools for
evaluating air toxics concentrations and exposures.

Air dispersion modeling (ADM) is widely used to estimate
ambient air pollutant concentrations and, in fact, is required
for criteria pollutant (SO2, NO2, O3, Pb, CO, and PM) regulatory
programs in the United States. The ADM methodology
includes development of an emissions inventory for pol-
lutants of concern within the model domain, followed by
calculations of downwind dispersion yielding predictions of
concentrations at designated receptor locations. The most
commonly used regulatory models treat downwind disper-
sion as a Gaussian plume formulation. The U.S. Environ-
mental Protection Agency (EPA) has developed regulatory
air dispersion models and modeling guidance, including
recommended models whose performance has been tested
against measurements (6). ADM is increasingly used for air
toxics, although the performance of the ADM methodology
has rarely been compared to toxics measurements, especially
over averaging times of less than 1 yr. Both Pratt et al. (2) and
Rosenbaum et al. (5) found that modeled annual average
concentrations tended to be lower than measured values.
Lorber et al. (7) found that EPA regulatory model predictions
of 48-h average dioxin air concentrations from emissions of
a solid waste incinerator were generally within a factor of 10
of measured air concentrations.

U.S. EPA regulatory air dispersion models undergo an
evaluation and validation process before being accepted for
use as a regulatory tool, and the EPA has developed criteria
for judging model acceptability. An important part of the
process involves comparing model predictions with mea-
sured data. The necessary measurement databases are
typically taken from studies that have concurrently measured
meteorological variables, emissions, and concentrations.
These standard databases typically involve emissions of one
pollutant from a single, isolated point source. It is useful to
know how regulatory model predictions compare with
monitored values for a number of air toxics emitted from a
variety of source types within a complex metropolitan area.
It is also of interest to evaluate model performance over
periods of time shorter than 1 yr under simulation conditions
similar to those often seen in regulatory settings.

The work described here occurred within a larger study
of personal exposure to air toxics. The study design and initial
monitoring results were presented in earlier publications
(8-10). The concept behind the larger study was to simul-
taneously measure personal exposures (i.e., concentrations
near the breathing zone), residential indoor air concentra-
tions, outdoor concentrations at the home, and outdoor air
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at community monitoring sites and finally to model ambient
concentrations at the outdoor locations using standard
regulatory modeling methods. The goal was to investigate
the relationships among these various measures, recognizing
that personal exposure is the most relevant for human health
impacts. It was found in earlier work (8, 9) that outdoor air
concentrations were poorly correlated with indoor and
personal concentrations. This paper examines one facet of
the overall study (i.e., the usefulness of regulatory ADM for
estimating air toxics concentrations in outdoor air). The
analysis focuses on comparing concentrations measured at
outdoor locations with predictions from a widely used
regulatory air dispersion model.

Study Design
Three communities, Phillips (PHI), East St. Paul (ESP), and
Battle Creek (BCK), were selected to cover a range of expected
concentrations in the central metropolitan area determined
from a pilot modeling analysis (11). PHI is a densely
populated, predominantly minority, inner-city community
in south Minneapolis where outdoor VOC concentrations
were expected to be among the highest in the metropolitan
area due mainly to mobile source emissions. ESP is a blue-
collar, racially mixed community in St. Paul with elevated
VOC concentrations expected in parts of the community due

mainly to industrial point sources. BCK is a predominantly
white, affluent community on the eastern edge of St. Paul
with the lowest expected VOC concentrations of the three
communities. Figure 1 is a map of the study area showing
benzene emissions from point, area, and mobile sources and
the locations of monitors.

Monitoring locations were chosen in each community
from among the homes and community monitoring sites
available from the larger personal exposure study (n ) 6, 7,
and 10 for BCK, ESP, and PHI, respectively) and thus were
a convenience sample not selected with any spatial relation-
ship to the milieu of sources within the community. Monitors
were deployed for 48-h sampling periods. Two types of
monitors were used; passive diffusion-based organic vapor
monitors (OVMs) were deployed at all locations (outside study
participants’ homes and at the central community monitoring
site) and stainless steel canisters were deployed at central
community monitoring sites (one site per community).

Sampling days were chosen based upon the design of the
larger personal exposure study. There were three sampling
seasons: spring, summer, and fall in 1999. During each
season, 48-h sampling periods were begun every third day,
with one idle day between samples. Measurements were
made at the centralized community sites on every sampling
day. OVM samples were collected outside study participants’

FIGURE 1. Map of the study area (i.e., the center of the Minneapolis-St. Paul metropolitan area) showing the three communities (outlined
with dotted lines), the study homes (circles), the community monitoring sites (circles with center dots), and the locations of point sources
emitting benzene (yellow squares). Census tracts are shaded according to the sum of area and mobile source benzene emissions in the
census tract.
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homes on a subset of sampling days (to match days when
personal and indoor sampling was conducted at a home).
The number of OVM samples collected outside a given
participant’s home ranged from 1 to 11, while the number
of canister and OVM samples collected at the central
community sites ranged from 46 to 55. All samples were
analyzed in the laboratory for a suite of nine pollutants.

Canister VOC Measurements
One canister VOC monitoring station was established in each
of the three communities (Figure 1). The canister measure-
ment methodology was described previously (2). Briefly, VOC
samples were collected following the U.S. Federal Reference
Method (TO-14A) in evacuated, summa-polished, stainless
steel canisters, two-valve model (Scientific Instrumentation
Specialists, Moscow, ID). The canisters were deployed using
a Xon Tech model 910A canister sampler housed in an
enclosure that allowed heating during the cold season (Xon
Tech, Inc., Van Nuys, CA). Samples were collected for 48 h
to be comparable with the sampling period for personal
organic vapor monitors. Sample analysis was done using a
Varian Saturn model 2000 gas chromatograph/mass spec-
trometer (Varian, Inc., Palo Alto, CA). Laboratory duplicates
run daily showed high precision (Pearson’s correlation
coefficients >0.94 for all analytes except chloroform ) 0.82).
Collocated samplers run by the same laboratory (but at sites
outside of this study) also showed high reproducibility
(Pearson’s correlation coefficients >0.78 for all analytes
except chloroform ) 0.64, trichloroethylene ) 0.66, and
styrene ) 0.66). Xylenes were measured as two sets of isomers,
o-xylene, and m,p-xylene. These two were added to give total
xylenes for comparability with the modeling analysis because
emissions data for the model were typically available for total
xylenes.

Concentrations that were less than the analytical detection
limit but that produced an instrument reading greater than
zero were included in calculations. Concentrations that
produced an instrument reading of zero were also included
in calculations by assigning them a value of one-half the
analytical detection limit defined as the standard deviation
of seven replicate analyses of a standard prepared to five
times the estimated detection limit divided by the square
root of n (i.e., 7) and multiplied by the Student’s t-value
appropriate for a 99% confidence level with n - 1 (i.e., 6)
degrees of freedom. Out of 160 total canisters deployed, the
number of values below the ADL ranged from none for
benzene and toluene to 160 for tetrachloroethylene (Table
1). Given that all canister measurements were below the ADL,
tetrachloroethylene canister measurements were dropped
from further analysis.

Personal Organic Vapor Monitors (OVMs)
Concentrations of VOCs were also measured using charcoal-
based passive diffusion samplers referred to as organic vapor
monitors (OVMs, model 3500, 3M Corporation, Maplewood,
MN). The method was described previously (8, 12). OVMs
can be effectively used to measure VOC concentrations, and
canister and OVM VOC measurements have been found to
be in good agreement (13). In a pilot study, a sampling period
of 48 h was required to obtain quantifiable results for the
suite of pollutants of interest at the concentrations present
in the study area.

Concentrations that were less than the analytical detection
limit but that produced an instrument reading greater than
zero were included in calculations. Concentrations that
produced an instrument reading e0 were included in the
calculations by assigning them a value of one-half the
analytical detection limit (ADL). The ADL was determined
from an analysis of seven solutions of each of a series of
low-concentration standards. The ADL was defined as the
standard deviation of the seven analyses of the lowest
concentration standard that yielded a relative standard
deviation of e10%, multiplied by the Student’s t-value
appropriate for a 99% confidence level with n - 1 (i.e., 6)
degrees of freedom. Duplicate OVMs were run in ap-
proximately 10% of cases and showed generally good
reproducibility (Pearson’s correlation coefficients >0.81 for
all analytes). The ADLs and the number of measurements
below the ADL are given in Table 1. Duplicates were treated
as separate samples in the statistical analysis, although we
recognize that this approach slightly overweights their
importance. The statistical analysis was done using SPSS
(version 8.0.2, SPSS, Inc., Chicago, IL).

Modeling Methods
Air dispersion modeling was done to predict 48-h average
ambient concentrations that were matched in space and time
with the canister and OVM VOC measurements. The recom-
mended U.S. EPA air dispersion model at the time of the
study, ISCST3 version 02035, was used with regulatory default
model options (6). Model receptors were located at all
sampling sites. Terrain elevations were not included because
the sampling areas do not have large variations in terrain
(terrain elevations are often omitted from regulatory model-
ing analyses in the study area). Atmospheric chemistry was
not considered, and although we recognize that this omission
may introduce errors, we believe them to be small. For
example, with average wind speeds in the study area of 5
m/s and source-receptor distances averaging about 10 km,
the average source-receptor transport times are less than 1
h. This time was considered short enough so that atmospheric
chemistry could be ignored given the reactive half-lives of
the chemicals in our study. Meteorological data were taken
from the U.S. National Weather Service site at the Min-
neapolis-St. Paul international airport for 1999 and processed
for model input for each of the times when monitoring was
done, thereby allowing the model runs to be done using the
meteorological data for the precise times when the monitor-
ing occurred. Airport data were used because they were
readily available, because on-site meteorological data were
not collected at the monitoring locations, and to be consistent
with common practice in regulatory ADM. The most im-
portant meteorological variables in determining the predicted
concentration are wind speed, wind direction, stability
category, and mixing height. It is our experience that these
parameters are typically fairly uniform across the metro-
politan area except during frontal passages, so the use of
airport data is not expected to introduce substantial errors.
Furthermore, since our goal was to test the regulatory model
as a tool for predicting air toxics concentrations, we chose

TABLE 1. Analytical Detection Limits (ADLs), Number of
Measurements (both Canister and OVM) below the ADL,
Number e0 That Were Substituted with Half the ADL, and
Number of Measurements below the ADL but >0 That Were
Retained in the Analysis

canister (n ) 160) OVM (n ) 223)

ADL

total
no.

below
ADL

no. ) 0
substituted
with half

ADL ADL

total
no.

below
ADL

no. e 0
substituted

with half
ADL

benzene 0.13 0 0 (0%) 0.11 0 0 (0%)
chloroform 0.12 56 56 (35%) 0.11 170 170 (76%)
ethylbenzene 0.12 1 1 (0%) 0.16 22 3 (1%)
dichloromethane 0.18 15 9 (6%) 0.73 193 34 (15%)
styrene 0.16 14 3 (2%) 0.19 148 127 (57%)
tetrachloroethylene 0.16 160 156 (98%) 0.10 28 6 (3%)
toluene 0.09 0 0 (0%) 0.11 41 40 (18%)
trichloroethylene 0.32 83 8 (5%) 0.10 111 60 (27%)
xylenes 0.16 1 1 (0%) 0.11 16 7 (3%)
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to apply the model using airport meteorological data as is
usually done in regulatory analyses.

Annual average point, area, and mobile source emissions
in 1999 for each pollutant were estimated as part of the
Minnesota Pollution Control Agency (MPCA) air toxics emis-
sions inventory using the Regional Air Pollutant Inventory
Development System (RAPIDS is an emission inventory tool
developed by the Great Lakes Commission; 14). Table 2 shows
the percentage of emissions of each pollutant from each major
source category. Point sources were defined as larger
stationary sources whose emissions are tabulated individually
in the regulatory agency emission inventory system.

Air toxics emissions from point sources were determined
by direct facility reporting, by the use of emission factors,
and by incorporating data from the U.S. Emergency Planning
and Community Right to Know Act Toxics Release Inventory.
Point source locations were determined by facility self-
reporting, global positioning, and geographic information
system (GIS) addressing matching. Point source stack
parameters were taken from (i) regulatory agency (MPCA)
files; (ii) default values developed by the Ozone Transport
and Assessment Group (OTAG) by source classification code
(OTAG is a partnership between the U.S. EPA, the Environ-
mental Council of the States (ECOS), and various industry
and environmental groups aimed at creating agreements
among industry and government for control of ground-level
ozone and related pollutants in the eastern United States);
or (iii) average OTAG values across all facilities. A total of 425
point sources in the metropolitan area were included in the
modeling analysis. Within a given facility, stack-by-stack
emissions were not available. Therefore, each facility was
represented as a single stack whose location was taken as
the centroid of the facility (when available) or as the location

of the front entrance. Similarly, stack parameters were taken
as averages across all emission points at the facility, weighted
by the throughput for the emission point.

Area sources were defined as stationary sources whose
emissions are not individually tabulated in the point source
emissions inventory. Area source emissions for 1999 were
developed by the MPCA using the RAPIDS system. Emissions
were estimated from 22 area source categories, although eight
of the source categories did not emit the pollutants considered
in this study. One area source category, publicly owned
treatment works, was modeled as individual point sources.
The RAPIDS system generates area and mobile source
emissions on a county basis. To capture greater spatial
resolution, the county total emissions were allocated to
census tracts by one of four methods. For most area source
categories, the emissions assigned to a census tract were
taken as the county total emissions multiplied by the fraction
of the county population residing in the census tract. Landfill
emissions were assigned to the census tract in which the
landfill was located. Emissions from marking of traffic lanes
were apportioned according to the fraction of the county
total lane miles occurring in the census tract, and wildfire
emissions were apportioned by land area. Table 3 gives the
area source categories, the method of apportioning county-
wide emissions estimates into census tracts, and the total
emissions of each pollutant from each source category.

Mobile source emissions from RAPIDS were available for
1997 at the time of the study. Mobile sources consist of two
major subcategories: on-road mobile sources include cars,
trucks, and buses and non-road mobile sources include
aircraft, watercraft, railways, construction equipment, farm
equipment, snowmobiles, lawn and garden equipment, and
other related subcategories. The details of emissions devel-
opment for each category can be found at the Great Lakes
Commission website (14). The resulting emissions are given
as county totals. In this study, on-road mobile source
emissions were apportioned to census tracts as the fraction
of the 1999 vehicle miles traveled in the census tract relative
to the county total. Vehicle miles traveled were determined
from traffic count data collected by the Minnesota Depart-
ment of Transportation, subdivided by roadway category.
The traffic count data were combined with data on the total
miles of each roadway category in each census tract using
a geographic information system. This calculation allowed
a determination of the vehicle miles traveled in each roadway
category within a census tract.

Aircraft emissions were apportioned to the census tracts
in which the airports were located, depending upon the
proportion of air traffic occurring at each airport. Railway
emissions were apportioned to census tracts according to
the length of railway in the tract as a fraction of the county
total. All other non-road mobile source emissions were
apportioned to census tracts according to population. This
apportioning by population was considered appropriate
because in the metro area a large fraction of non-road mobile
source emissions was attributable to lawn and garden
equipment. For example, 60% of non-road mobile source
benzene emissions in the largest metropolitan area county
(Hennepin) was attributed to lawn and garden equipment.

Mobile and area source emissions that were apportioned
to census tracts were represented as polygon area sources
in the ISCST3 model. The polygons were taken from a GIS
coverage of 1990 census tracts and processed so that each
was represented by no more than 10 vertices. This simpli-
fication was required to reduce model calculation time and
to meet model limitations. Within the center of the metro-
politan area, most census tracts are simple polygons so the
simplification process did not appreciably change the
geometric representation of most census tracts in the area
of interest for this study.

TABLE 2. Percentage of Pollutants Emitted from Each Major
Source Category in the Modeling Analysis and Percentage of
Modeled Concentrations Accounted for by Each Source
Category for Each Communitya

modeled concns (%)
pollutant

source
category

emissions
(%) BCK ESP PHI

benzene point 1 1 0 0
area 26 12 13 9
mobile 73 87 86 91

chloroform point 26 6 6 4
area 74 94 94 96
mobile 0 0 0 0

ethylbenzene point 5 4 4 6
area 10 4 5 2
mobile 85 92 91 92

dichloromethane point 21 38 39 39
area 79 62 61 61
mobile 0 0 0 0

styrene point 55 10 10 9
area 1 1 1 0
mobile 44 89 89 91

tetrachoroethylene point 14 5 3 3
area 86 95 97 97
mobile 0 0 0 0

toluene point 5 5 16 2
area 37 39 37 41
mobile 58 55 46 57

trichloroethylene point 66 56 71 90
area 34 44 29 10
mobile 0 0 0 0

xylenes point 7 6 5 5
area 34 40 44 44
mobile 59 54 51 51

a Total tons of emissions can be calculated by ratioing from the values
in Table 3. Publicly owned treatment works emissions from Table 1 are
included with area source emissions despite being modeled as point
sources.
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Background concentrations recommended by Rosen-
baum et al. (5) were added to the modeled concentrations
for chloroform (0.083 µg/m3), dichloromethane (0.15 µg/m3),
tetrachloroethylene (0.14 µg/m3), trichloroethylene (0.081 µg/
m3), and xylenes (0.17 µg/m3). The recommended background
concentration for benzene (0.48 µg/m3) was not used.
Background is defined as that part of the total concentration
not accounted for explicitly in the modeling analysis and
includes long-range transport, persistent historical emissions,
and nonanthropogenic emissions. A variety of types of
observations (taken from the literature) were used to estimate
background concentrations, including the midrange of
observations specified as background, the lower end of the
range specified as the Northern Hemisphere average, the
lower end of the range specified as the global average, and
the lower end of the range specified as remote or rural. The
dates of the studies used for background were benzene, 1985;
chloroform, 1990; dichloromethane, 1990; tetrachloroeth-
ylene, 1994; trichloroethylene, 1990; and xylenes, 1990. The
benzene estimate is the oldest and perhaps the most tenuous
because benzene emissions decreased nationally during the
1990s due to changes in gasoline formulation, meaning that
the background concentration had decreased by the time of
our study. Accurate benzene emissions data have only
recently begun to be collected in the metro area, but the
recent data illustrate the decrease in benzene emissions.
Hennepin County (the largest metropolitan area county)
benzene emissions decreased from 1.9 million lb in 1997 to
1.5 million lb in 1999. For these reasons, the benzene
background concentration used by Rosenbaum et al. (5) was
considered out of date and was not used.

Results and Discussion
Table 2 shows the percentages of modeled concentrations
attributable to point, area, and mobile source emissions
categories. In many cases, the percentage of model-predicted
pollutant concentrations from a source category was different
from that category’s percentage of emissions. For example,

the percentage of predicted benzene concentrations at-
tributable to mobile sources was higher than the percentage
of benzene emissions from mobile sources. The percentage
of predicted benzene concentrations attributable to point
sources was smaller than the percentage of emissions from
point sources. Similar patterns were seen for other pollutants
as well. These results are likely due to the model release
characteristics for mobile source emissions (e.g. as a model
area source with ground-level emissions). In contrast, point
source emissions were simulated as a release from an elevated
stack, usually with thermal and mechanical buoyancy. This
finding suggests that ground-level sources such as mobile
sources may contribute more to local concentrations per
mass of emissions than traditional, elevated-release point
sources.

Concentrations of all substances were low as compared
to measurements and model predictions in other large urban
areas. Both measured and modeled concentrations of nine
VOCs were lowest on average in BCK and higher in the other
communities (Table 4), although the differences between
communities were small for all substances. The variability
in modeled and measured concentrations and in model-
monitor differences was greatest in PHI and least in BCK for
most pollutants. The high variability in PHI is likely due to
the steeper emissions gradients in that community, especially
in mobile source emissions (shown for benzene by the
shading in Figure 1).

The aim of this analysis was to compare the results from
a regulatory type air dispersion modeling analysis with
measurements. We collected measurements using two
methods, canisters and OVMs. On the basis of the fact that
the canister method is the U.S. EPA Federal Reference
Method, we assume greater confidence in that method.
Nevertheless, we believe it is useful to compare the model
predictions with results from each method until further
studies systematically comparing the two methods can be
done. In most cases, we have also analyzed the results
separately by community due to the differences in both

TABLE 3. Area Source Emissions Categories, Pollutants and Amounts (metric tons per year) Emitted by Category, and Method of
Determining Census Tract Emissions from County Total Emissions. Column Totals Subject to Rounding Discrepancies

area source category

method of determining
census tract emissions
from county emissions benzene chloroform

dichloro-
methane

ethyl-
benzene styrene

tetrachloro-
ethylene toluene

trichloro-
ethylene

total
xylenes

agricultural pesticide
application

not done

architectural surface
coatings

population parsing 9 166 167 201 101

asphalt paving not done
auto body refinishing population parsing 61 349 835
chromium electroplating not done
consumer and commercial

solvent use
population parsing 0 2 4 77 60 913 1 432

dry cleaning population parsing 90
gasoline marketing population parsing 146 27 1202 696
graphic arts population parsing 55 8 322 35
hospital sterilizers not done
human cremation not done
industrial surface coating population parsing 10 1279 1411
landfills assign to census tract 1 1 12 8 - 5 29 5 35
marine vessel loading etc. not done
prescribed burning not done
public owned treatment

works
done as point sources 236 53 1 56 12 57 1699 87 596

residential fuel combustion population parsing 0 35
residential wood

combustion
population parsing 1203 453 126

solvent cleaning population parsing 95 785 322
structure fires not done
traffic lane marking lane miles parsing 1
wild fires area parsing 91 46 4

totals 1896 56 228 309 12 212 7313 93 4594
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measured and modeled concentrations between the com-
munities.

One way to compare modeled concentrations to mea-
surements is to plot the modeled values against the measured
values and to calculate linear regression statistics. Figure 2
shows scatterplots of model predictions versus measurements
(along with regression statistics) for benzene, ethylbenzene,
and xylenes. All sites and sample types within each com-
munity are included; however, the following interpretations
are not changed when the regressions are done separately
by sample type and community. Model performance was
best in BCK and worst in PHI. It was best for for benzene,
ethylbenzene, and xylenes and worst for chloroform, dichlo-
romethane, and tetrachloroethylene with intermediate per-
formance for styrene, toluene, and trichloroethylene. Two
points should be made about these comparisons. First, the
model appears to perform the best for pollutants emitted
predominantly from mobile sources, worst for pollutants
emitted predominantly from area sources, and intermediate
for pollutants mainly from point sources. Second, the model
performance is best for pollutants whose measurements are
always or nearly always above detection limits and worst for
pollutants that are often below detection. The treatment of
values below detection is often a difficult matter. There is
useful information in values below detection, and excluding
such data may introduce errors into an analysis. We do not
know the exact value for a particular below detection
measurement, but we do know that the value is low, and it

is within a specific range. If, for example, the model prediction
is low at the same time that the measurement is below
detection, then we have some (albeit imperfect) information
about model performance.

It can be seen in Figure 2 that the slopes of the regression
lines for the relationships between model predictions and
measurements are less than 1. Furthermore, at high measured
concentrations the model predictions tended to fall below
the 1:1 line, while at low measured concentrations, the model
predictions tended to fall above the 1:1 line. This result was
true for all pollutants and indicates that there was a tendency
for the model to overpredict when the monitored concen-
trations are low and to underpredict when the monitored
concentrations are high. Since the model used annual average
emissions, this finding is not surprising. We infer that the
model did not capture the full temporal variability due to
emissions variations on seasonal, weekly, and diurnal scales.

Although linear regression is a common method for
comparing the association between two variables, it is not
a complete characterization of the association. For example,
R2 values can be high in the case where two variables are
strongly related but there is a consistent bias (e.g., if a model
prediction is always half of the measured value). In addition,
it can be shown that potentially different values of R2 could
result from different distributions of the measured variables.

Another way of visualizing modeled versus measured
results is shown in Figure 3 as boxplots of the differences
between model-predicted benzene concentrations and mea-

TABLE 4. Monitored Mean Concentrations (µg/m3), Mean Differences between Model Predictions and Measurements (µg/m3),
Root Mean Squared Error, and Fractional Biasa

monitor site canisters monitor site OVMs home outdoor OVMs

pollutant metric
BCK

(n ) 54)
ESP

(n ) 55)
PHI

(n ) 51)
BCK

(n ) 49)
ESP

(n ) 50)
PHI

(n ) 46)
BCK

(n ) 26)
ESP

(n ) 18)
PHI

(n ) 34)

benzene mon. mean 0.9 1.9 1.5 1.0 2.1 1.8 0.9 1.7 2.0
mean diff. 0.3 -0.6 1.4 0.2 -0.9 1.3 0.4 -0.2 -0.1
RMSE 0.5 1.1 1.8 0.5 1.3 1.8 0.6 0.7 1.0
Fx-Bias -0.3 0.4 -0.6 -0.1 0.5 -0.5 -0.4 0.1 0.0

chloroform mon. mean 0.1 0.1 0.3 0.1 0.1 0.1 0.0 0.0 0.1
mean diff. 0.0 0.0 -0.2 0.0 0.0 0.0 0.1 0.1 0.0
RMSE 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Fx-Bias -1.2 -0.1 1.0 -0.4 -0.3 -0.1 -0.8 -0.8 0.6

dichloromethane mon. mean 0.4 0.5 0.6 0.2 0.5 0.4 0.2 0.4 0.6
mean diff. -0.3 -0.4 -0.4 -0.1 -0.3 -0.2 -0.1 -0.2 -0.5
RMSE 0.8 0.6 1.4 0.3 0.8 0.4 0.3 0.4 0.7
Fx-Bias 0.9 1.0 1.2 0.3 1.0 0.8 0.3 0.7 1.2

ethylbenzene mon. mean 0.4 1.1 0.8 0.3 1.0 0.8 0.3 0.7 0.9
mean diff. -0.0 -0.6 0.2 0.0 -0.6 0.2 0.1 -0.3 -0.3
RMSE 0.2 0.9 0.5 0.2 0.8 0.5 0.2 0.5 0.5
Fx-Bias 0.1 0.9 -0.3 0.0 0.8 -0.2 -0.3 0.5 0.4

styrene mon. mean 0.3 0.4 0.4 0.1 0.2 0.2 0.1 0.1 0.2
mean diff. -0.2 -0.2 0.1 0.1 0.0 0.3 0.1 0.1 0.1
RMSE 0.2 0.3 0.3 0.1 0.2 0.4 0.2 0.2 0.2
Fx-Bias 0.6 0.7 -0.2 -0.5 0.0 -0.9 -0.6 -0.7 -0.4

tetrachloroethylene mon. mean nab na na 0.2 0.4 0.4 0.7 0.4 0.8
mean diff. na na na -0.0 -0.2 -0.2 -0.5 -0.2 -0.6
RMSE na na na 0.2 0.3 0.3 0.9 0.2 1.0
Fx-Bias na na na 0.2 0.6 0.5 1.1 0.6 1.1

toluene mon. mean 2.0 8.4 3.9 2.5 9.4 3.6 2.1 3.8 4.4
mean diff. 1.7 -2.3 4.0 1.0 -3.7 4.8 1.8 0.8 1.9
RMSE 2.1 7.1 5.0 4.7 14.3 6.5 4.1 3.1 4.4
Fx-Bias -0.6 0.3 -0.7 -0.3 0.5 -0.8 -0.6 -0.2 -0.4

trichloroethylene mon. mean 0.3 0.4 0.6 0.1 0.1 0.2 0.1 0.1 0.3
mean diff. -0.1 -0.3 -0.4 -0.0 -0.0 -0.0 0.0 0.0 -0.1
RMSE 0.3 0.4 0.5 0.1 0.2 0.2 0.1 0.1 0.2
Fx-Bias 0.7 0.9 1.0 0.1 0.1 0.1 -0.2 -0.4 0.3

xylenes mon. mean 1.8 5.1 3.7 1.6 4.8 3.9 1.4 3.5 4.6
mean diff. 0.8 -1.9 2.4 1.0 -1.8 2.5 1.4 -0.4 0.5
RMSE 1.2 3.3 3.3 1.3 3.0 3.5 1.6 1.9 2.2
Fx-Bias -0.4 0.5 -0.5 -0.5 0.5 -0.5 -0.7 0.1 -0.1

a See text for definition. Negative mean differences are indicative of model underprediction. b na, not available.
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sured values. Each bar shows the distribution of model-
monitor differences for one sampling location, with the
number of observations at that site shown beside the bar. In
general, there was a tendency for the model to overpredict
benzene concentrations at the BCK sites and to underpredict
at ESP sites, and there was a range from underprediction to
overprediction at PHI sites. A similar pattern of overprediction
in BCK, underprediction in ESP, and mixed results in PHI
was also found for ethylbenzene, toluene, and xylenes. For
the other pollutants, this pattern of over- versus underpre-
diction did not apply.

The overprediction at PHI was most noticeable and
occurred mainly at the community monitoring site (see bars
labeled PHI91OVM and PHI92CAN). Predictions at the other
PHI sites were closer to measurements. The reason for the
overprediction at this location appears to lie in the spatial
representation of mobile source emissions. The north end
of PHI abuts a major interstate highway exchange (I94-I35W
commons) that is one of the most heavily trafficked road
sections in the metropolitan area. Seventy-three percent of
estimated benzene emissions were from mobile sources
(Table 1), and these emissions were represented as census
tract-sized polygonal area sources in the model (Figure 1).

Census tracts spanning the major highway at the north end
of PHI had some of the highest estimated emissions densities
of mobile source pollutants in the metro area. One census
tract (27053006000) was unusually shaped and encompassed
a large section of the busiest part of the highway while also
extending a considerable distance (600 m) south of the
highway. The PHI community monitoring site was located
at the far southern extreme of tract 27053006000, at the point
most distant from the highway. Other nearby census tracts
that spanned the highway extended only a short distance
(280 m) from the highway.

The ISCST3 model algorithm for representing area source
emissions (the representation we used for area and mobile
sources) is based on a numerical integration over the area
in the upwind and crosswind directions. Since the algorithm
estimates the integral over the area upwind of the receptor
location, receptors may be located within the area itself. This
is an improvement over area source representations in
previous air toxics modeling (3-5) in which area/mobile
source emissions were characterized as pseudo-stacks. The
ISCST3 area source algorithm assumes a uniform emissions
density within an area source, and the model predictions at
a receptor located within the area source are strongly

FIGURE 2. Scatterplots of log-modeled concentrations (y-axis) vs log-monitored concentrations (x-axis) matched in time and space for
three pollutants in each of the three communities. The linear regression lines are shown. The points represent all samples taken in the
community, both at the community monitoring site and at study participants’ homes, by canister and by OVM. The 1:1 line (not shown)
would extend diagonally from lower left to upper right of each plot. The regression coefficient and the slope are given. Asterisks indicate
the p-value of the slope (<0.01 and <0.001). Squares indicate canister measurements, circles represent OVMs at participants’ homes, and
triangles indicate OVMs at community monitoring sites.
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influenced by the emissions from that source. If the as-
sumption of uniform emissions is violated, the model will
likely overpredict at points of low emissions and underpredict
at points of high emissions within the area source.

In the present case, the combined factors of the high
emissions at one end of census tract 2705300600, the sharp
gradient in emissions, the shape of the tract, the location of
the monitoring site at the extreme end of the tract, and the
nature of ISCST3 area source algorithm probably caused the
model overprediction for benzene at the PHI community
monitoring site. This overprediction at the Phillips com-
munity monitoring site was also seen for the other pollutants
emitted predominantly from mobile sources (i.e., ethylben-
zene, toluene, and xylenes). We infer from these results that
the spatial representation of emissions, when characterized
as model area sources, can be especially important in an
area of sharp emissions gradients, and care must be taken
to capture the relevant scale of spatial variability in such
cases. Our analysis at the census tract resolution did not
adequately capture the gradient in mobile source emissions
near a major roadway. An alternative approach, such as
representing major highways as line sources, would likely
improve model performance in this regard.

Linear regression is a useful tool for judging model
performance, but it is only one metric, and it may not be
useful when a large percentage of measurements are below
detection. For example, consider a case where all the

measurements are below detection. The model could, in one
scenario, predict values across a wide range, all above the
measurement detection level. In another scenario, the model
could always predict values below the measurement detection
level. In both cases, given the lack of detection in the
measurements, the linear regressions will be insignificant,
but we think it is clear that the model is more useful in the
second scenario.

The final way in which we have considered model-
monitor comparisons is by characterizing the bias. We have
chosen to present three metrics relating to the bias, the mean
error (e.g., the mean difference between the model and the
measurement), the root mean-squared error (RMSE), and
the fractional bias (Table 4). Each of these metrics has pros
and cons. The mean error is easily understood and preserves
the sign of the bias. The RMSE is a measure of the deviations
from the 1:1 relationship and preserves the scale of the
original measurements. It is derived from the mean squared
error, which is comprised of bias (the extent of over or under
estimation) and variance (precision). The fractional bias is
presented because it is the statistic recommended by U.S.
EPA for model-monitor comparisons.

There were a total of 383 samples taken, 160 canisters
and 223 OVMs. Since each sample was analyzed for nine
pollutants, there were 9 × 383 ) 3447 possible model-
monitor comparisons. Overall, the model results were more
likely to underpredict than to overpredict (e.g., there were

FIGURE 3. Boxplot of differences between modeled and monitored ambient concentrations of benzene at each of the receptors (i.e.,
community monitoring sites and study homes). Community monitoring sites are designated by the last three letters “CAN” to designate
a canister sample or “OVM” to designate an OVM sample. All sites without designation were OVM samples. Each bar represents the results
for all monitoring days (including canister and OVM measurements) at one receptor and shows the 25th-75th percentile values. The center
line within the bar is the median, and the arms extend to encompass all values not considered outliers (outliers defined as values greater
than 1.5 box lengths from the edge of the box are shown as circles).
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1235/3447 cases (36%) where the mean error was positive
(34% for canisters and 37% for OVMs)). By pollutant, the
percentages of positive mean errors (overprediction) were
benzene (61%), chloroform (<1%), dichloromethane (<1%),
ethylbenzene (40%), styrene (56%), tetrachloroethylene (3%),
toluene (69%), trichloroethylene (14%), and xylenes (62%).
From this breakdown by pollutant, it is clear that for
chloroform, dichloromethane, and tetrachloroethylene the
model almost always predicts lower than the measurement.
However, these pollutants were often below the ADL, and
the measurement values often consisted of one-half ADL
replacement values. By community (excluding chloroform,
dichloromethane, and tetrachloroethylene), the percentages
of positive mean errors (overprediction) were BCK (59%),
ESP (23%), and PHI (68%). Thus, it appears that there was
a tendency for model overprediction at BCK and especially
at PHI and a tendency for model underprediction at ESP.

With a few exceptions, the RMSE was lowest in BCK,
intermediate in ESP, and highest in PHI (Table 4). Since the
RMSE measures the deviation from the 1:1 relationship, these
results indicate that the model performed best in BCK and
worst in PHI. Comparing RMSE between different pollutants
does not provide useful information because the magnitude
of the measurements affects the RMSE, and the concentra-
tions of the different pollutants have different magnitudes.
Thus, we cannot use the RMSE to evaluate the model
performance across pollutants. There was no difference in
the RMSE between sampling methods.

U.S. EPA guidance for selecting the best performing air
dispersion model (15) states, “Although a completely objec-
tive basis for choosing a minimum level of performance is
lacking, accumulated results from a number of model
evaluation studies suggests that a factor-of-two is a reasonable
performance target a model should achieve before it is used
for refined regulatory analyses”. The guidance goes on to
recommend the fractional bias as a screening tool for
evaluating whether a model should be eliminated from
consideration. The fractional bias is calculated as

where OB and PR refer to the average observed and predicted
values. The EPA guidance suggests that the fractional bias
calculation be made using the highest 25 concentrations
(unmatched in space and time), but due to the relatively
small n for a given pollutant by community comparison, we
used all available data. Furthermore, we used data matched
in space and time as a stricter test of model performance.
The fractional bias was chosen by the EPA because it is
symmetrical and bounded, with values ranging between +2
(extreme underprediction) and -2 (extreme overprediction).
In addition, the fractional bias is dimensionless, allowing
comparisons among different pollutants and concentration
levels. Fractional bias values between +0.67 and -0.67 are
equivalent to model predictions within the factor of 2
criterion, an EPA criterion for acceptance.

Table 4 shows the fractional bias values for each pollutant
by sample type and community. The EPA fractional bias
criterion for model acceptance (between +0.67 and -0.67)
was met for benzene across all communities and sample
types. For other pollutants, the acceptance criterion was
generally met. Notable exceptions were dichloromethane and
both tetrachloroethylene and trichloroethylene in canisters.
Based on the fractional bias criterion, the model usually
performed better in BCK than in the other two communities,
and there was a tendency for better model performance as
compared to OVM measurements than as compared to
canister measurements.

The modeling was done such that the predictions were
matched in space with the measurements. In addition, the
predictions were matched in time as nearly as possible (e.g.,
the meteorological data were matched in time, but the
emissions data were taken as annual average values since
these were the only data available). The comparisons
discussed previously were done with the data matched in
space and time. However, it is widely recognized that
Gaussian plume models are not formulated to predict a given
space and time matched event, rather the model results
represent the ensemble average of a population of events
that could occur under a given set of meteorological
conditions. Figure 4 shows model-monitor comparisons for
benzene unmatched in space and time, matched in space,
matched in time, and matched in both space and time. It is
clear from the figure that when the space and time matching
criterion is removed, the model predictions improved
dramaticallysin going from comparisons matched in time
and space to unmatched comparisons, the RMSE decreased
from 1.19 to 0.32 and the regression coefficient increased
from 0.27 to 0.97. Similar improvements were seen for other
pollutants.

The sources of error in model predictions include model
formulation, model inputs (met data, terrain data, source
physical representation, emissions data), and stochastic
nature of the atmosphere. Sources of measurement error
include a range of factors such as sample handling, meth-
odological uncertainties, analytical equipment performance,
and accuracy of analytical standards. On the basis of
measurement precision and accuracy (8) and on estimates
of model uncertainty (16), we believe that the measurement
error to be small as compared to model error.

In general, the differences in model performance among
pollutants were greater than among communities. A key
question is why the model performed better for some
pollutants and some locations than others. Possible reasons
include the model formulation itself and the inputs to the
model such as meteorological data, terrain data (or the lack
of it), source characterization data, and emissions data. The
model algorithms generally treat all pollutants alike; however,
they may not account for, or may treat incorrectly, some
atmospheric processes that are more important for some
pollutants than others. For example, the model (as it was
run) did not account for processes that remove a pollutant
from the atmosphere, such as deposition or chemical
reaction. In general, the substances considered in this study
are volatile and not thought to be removed from the
atmosphere substantially by deposition. With regard to
chemical transformation, the substances for which the model
performed most poorly are the substances with the longest
atmospheric half-lives of the pollutants in our study (i.e.,
those that are least susceptible to degradation). The model
performed better for substances with shorter half-lives (those
that are more susceptible to degradation). It may be inferred
from such evidence that deposition and chemical transfor-
mation are not likely to be the source of the difference in
model performance for the compounds considered here, and
we reject the hypothesis that the model formulation is
responsible for differences in performance among pollutants
and locations. We also reject meteorological data and terrain
data as sources of discrepancies in model performance
among pollutants since these were identical for all pollutants.

Two remaining factors that might account for the dif-
ference in model performance for certain compounds are
the physical representation of the sources and the quanti-
fication of the emissions data. It is true that some sources
were not adequately represented by treating the emissions
as a polygonal area source with the dimensions of the census
tract. However, the model generally performed better for
pollutants emitted primarily from mobile sources. These are

FB ) 2[OB - PR
OB + PR]
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ubiquitous ground-level sources in the metro area, so
representing them as model area sources is probably
reasonable except where strong gradients exist, such as near
major highways. Mobile source emissions from major
highways would likely be better characterized as line sources.

In contrast to mobile sources, point and area source
emissions usually occur at discrete locations, and precise
locational data and release characteristics (stack parameters)
are important for their characterization. In our study, we
used locational data for point sources, although in most cases
we did not have exact stack locations or stack parameters.
Nevertheless, the point source locational data and stack data
were better than for area sources that were modeled as census
tract-sized area sources. These issues of locational data and
stack parameters appear to be important factors in the
differences in model performance among pollutants.

The quantification of emission rates is also an important
source of error. Sax and Isakov (16) studied regulatory model
uncertainty and found that emissions estimation was the
primary source of uncertainty. We used the best available
emissions data, which were annual average emissions.
Clearly, the temporal variations in emissions need elucidation
to improve predictions. Finally, we note that, as a general
rule, air dispersion model performance improves as averaging
time increases. The 48-h average predictions in this study

are relatively short-term as compared to other VOC modeling
studies (3-5). Despite the limitations of this modeling analysis
and the short averaging time, the ISCST3 regulatory model
results were generally within a factor of 2 of measurements
for most VOCs, meeting the EPA model acceptance criteria.
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