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In statistical analyses, metabolic syndrome as a
dependent variable is often utilized in a binary
form (presence ⁄ absence) where the logistic regres-
sion model is used to estimate the odds ratio as
the measure of association between health-related
factors and metabolic syndrome. Since metabolic
syndrome is a common outcome the interpretation
of odds ratio as an approximation to prevalence
or risk ratio is questionable as it may overestimate
its intended target. In addition, dichotomizing a
variable that could potentially be treated as dis-
crete may lead to reduced statistical power. In this
paper, the authors treat metabolic syndrome as a
discrete outcome by defining it as the count of
syndrome components. The goal of this study is to
evaluate the usefulness of alternative generalized
linear models for analysis of metabolic syndrome
as a count outcome and compare the results with

models that utilize the binary form. Empirical
data were used to examine the association
between depression and metabolic syndrome.
Measures of association were calculated using two
approaches; models that treat metabolic syndrome
as a binary outcome (the logistic, log-binomial,
Poisson, and the modified Poisson regression) and
models that utilize metabolic syndrome as
discrete ⁄ count data (the Poisson and the negative
binomial regression). The method that treats
metabolic syndrome as a count outcome (Poisson ⁄
negative binomial regression model) appears more
sensitive in that it is better able to detect associa-
tions and hence can serve as an alternative to
analyze metabolic syndrome as count dependent
variable and provide an interpretable measure of
association. J Clin Hypertens (Greenwich).
2010;12:365–373. ª2010 Wiley Periodicals, Inc.

The metabolic syndrome is a cluster of condi-
tions that occur together increasing the risk

of heart disease, stroke, and diabetes. It is consid-
ered present when an individual has 3 or more of
the following 5 syndrome components1: (1) ele-
vated waist circumference (�102 cm in men,
�88 cm in women); (2) elevated triglycerides
(�150 mg ⁄ dL); (3) reduced high-density lipopro-
tein (HDL) cholesterol (<40 mg ⁄ dL in men, <50
mg ⁄ dL in women); (4) glucose intolerance (fast-
ing glucose �100 mg ⁄ dL or diabetic medication
use); and (5) hypertension (systolic blood pressure
(SBP) �130 mm Hg or diastolic blood pressure
(DBP) �85 mm Hg or antihypertensive medica-
tion use). Metabolic syndrome is highly prevalent
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among adults in the United States.2 The preva-
lence of metabolic syndrome is increasing, espe-
cially in North and South American countries
and may present a major worldwide public health
challenge in the future.3 In light of this, studies
on improved scientific approaches that would
enable researchers to better understand factors
that lead to or are associated with the metabolic
syndrome could be worthwhile.

In cross-sectional as well as prospective studies,
investigators are frequently interested in determin-
ing the association between numerous health-
related variables and metabolic syndrome.4–7 In a
cross-sectional design, when metabolic syndrome is
the outcome of interest, the relationship between
exposure variable(s) and metabolic syndrome is
analyzed using two of the distributions from the
class of generalized linear models; the logistic and
the log-binomial regression models where the odds
and prevalence ratios are the measures of associa-
tion, respectively.8–12 Both models utilize metabolic
syndrome as a binary outcome measure. Dichoto-
mization of metabolic syndrome simplifies the sta-
tistical analysis and leads to easy interpretation of
the results. However, dichotomizing an outcome
variable that could otherwise be treated as discrete
may lead to some loss of information and overall
reduced statistical power.13 The definition of meta-
bolic syndrome can be modified, as the total count
of syndrome components for an individual, to rep-
resent a discrete outcome (0, 1, 2, 3, 4, or 5)
where statistical models for count data can be
used as an alternative to assess the association
between exposure variable(s) and metabolic syn-
drome. To our knowledge, the latter approach has
not been used in research studies to date. General-
ized linear models for discrete outcomes include
the Poisson and the negative binomial regression
models.14–16 This study uses empirical data from
the Buffalo Cardio-Metabolic Occupational Police
Stress (BCOPS) study17 to evaluate the use of
alternative generalized linear models for statistical
analyses of metabolic syndrome as a discrete out-
come measure and compares the results with the
commonly used models that employ metabolic
syndrome as a binary response variable. The
paper first provides a review of generalized linear
models including models for discrete and binary
outcomes.

GENERALIZED LINEAR MODELS
Traditional linear models are extensively used
in statistical data analyses but departures from
the restrictive assumption (continuous response,

normally distributed data with constant variance)
are common in practice. A powerful and flexible
set of models called generalized linear models18–22

can handle a broader class of regression problems.
The class of generalized linear models is simply an
extension of the traditional linear model where: (1)
the distribution of error terms can come from a
family of exponential distributions rather than just
the normal distribution; (2) the link function
enables a wide variety of response variables to be
modeled rather than just continuous variables; and
(3) the variance can be a specified function of the
mean rather than just being constant. Generalized
linear models relate the mean of a population to a
linear predictor through a nonlinear link function
and allow the response probability distribution to
be any member of an exponential family of distri-
butions. The GENMOD procedure in SAS ⁄STAT
(SAS Institute, Cary, NC) provides a number of
tools that are built to accommodate these different
modeling situations.

Models for Discrete Outcome
Poisson Regression Model. Poisson regression is a
widely used modeling technique for discrete, often
highly skewed, count data where the response vari-
able has only nonnegative integer values (0, 1, 2, 3,
etc.) without an upper limit.19,22 In Poisson regres-
sion it is assumed that the dependent variable, the
number of occurrences of an event of interest, has
a Poisson distribution conditional on the values of
the independent variables X1i, X2i,…, Xki. Since the
Poisson mean is required to be positive, the Poisson
regression uses a log link function to relate the
expected value of the response variable (E(Yi)=li)
to a linear combination of the explanatory variables
(which could be continuous, ordinal, nominal, or a
mixture of those) as follows:

log lið Þ ¼ b0 þ b1X1i þ b2X2i þ :::þ bkXki ð1Þ

The parameter estimates represent the expected
change in the log scale. After some algebraic
manipulation, it can be shown that the measure of
association between an explanatory variable Xi and
the response, referred from here on as ratios of
means (RM), is

RM ¼ E Y=Xi ¼ xþ 1ð Þ
E Y=Xi ¼ xð Þ ¼ exp bið Þ ¼ ebi ð2Þ

and represents a multiplicative effect on the esti-
mated mean count (l̂) for a one-unit increase in
Xi. The expression 100 (RM)1) represents the
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percent change in the expected number of events
with each one-unit increase in the predictor vari-
able Xi.

If Poisson regression is the method of choice to
model count data, the sample distribution of the
response variable should have a fairly small
mean,23 below 10, preferably below 5, and ideally
in the neighborhood of 1. An unusual property of
the Poisson distribution is that the mean and vari-
ance are equal, l=r2. This could be a limitation
when modeling count data because count observa-
tions usually have variances much higher than the
means,24 indicative of over-dispersion. Over-disper-
sion leads to underestimates of the standard errors
(SEs) yielding large values of the chi-square statis-
tics which consequently increases the type I error.
The deviance (DV), or the chi-square (v2) statistic
divided by degrees of freedom (df), is often used to
detect over-dispersion (>1) or under-dispersion
(<1). There are two approaches to account for
over-dispersion in a Poisson regression model: (1)
to use a multiplicative over-dispersion factor (w)
when defining the relationship between the variance
and the mean19,24 or (2) to use the more flexible
negative binomial distribution as the model.16

Using the multiplicative over-dispersion factor,
the variance is now defined as Var (Yi)=w�l,
where the multiplicative over-dispersion factor (w)
is w=DV ⁄df or w=v2 ⁄df. The SEs of each coefficient
are adjusted by multiplying the unadjusted SEs by
the square root of the multiplicative over-dispersion
factor; SE bið Þadjusted¼

ffiffiffiffi

w
p
� SE bið Þunadjusted. The

introduction of the multiplicative dispersion factor
does not introduce a new probability distribution,
but rather adjusts the standard errors of the regres-
sion coefficients for testing the parameter estimates
under the Poisson model.25 The second approach
of accounting for over-dispersion in Poisson regres-
sion is discussed below.

Negative Binomial Regression Model. The nega-
tive binomial regression is used to analyze count
data when the Poisson estimation is inadequate due
to over-dispersion. Unlike the highly restrictive
Poisson distribution, the negative binomial distribu-
tion has an additional parameter (m) that allows
one to model subject heterogeneity and account for
over-dispersion.16,22 The relationship between the
variance and the mean for a negative binomial dis-
tribution has the following quadratic form:
V(Y)=E(Y)+m[E(y)]2 m>0, where m is the disper-
sion parameter that allows the variance to exceed
the mean (m=0 yields the Poisson distribution). The
negative binomial regression model assumes the

same form as shown in ‘‘equation 1’’ above except
for the additional dispersion parameter (m) that
allows accounting for variation due to other
factors not included in the model. If the dispersion
parameter is much >0, then the negative binomial
model is more appropriate than the Poisson model
and the inferences from the negative binomial
model are more accurate due to its accurate
parameterization.

Models for Binary Outcome
Logistic Regression. The logistic regression model
has been the principal method for studying the
association between a set of exposure variables and
a binary response variable adjusting for covariates.
The method uses the logit link to produce odds
ratio estimates as a measure of association. The
usefulness of the odds ratio in epidemiological
research has been questioned over a number of
years,8 particularly for prospective26,27 and cross-
sectional9 studies. The odds ratio adequately
approximates the risk or prevalence ratio when the
outcome is rare in all exposure and confounder cat-
egories27 but it increasingly overstates its target as
the outcome becomes more common. Although
there are procedures for converting odds ratios to
risk ratios, they are not directly applicable when it
involves adjustment for covariates.28

Log-Binomial Regression. Several studies advo-
cate the use of log-binomial regression as the pre-
ferred method, compared with logistic regression,
for prospective or cross-sectional studies with com-
mon binary outcomes.10,12,29,30 The log-binomial
model is similar to logistic regression in assuming a
binomial distribution of outcome. However, instead
of using a logit link function, as is customary in
standard logistic regression, a log link is applied.
The regression coefficients from the log-binomial
regression model can be used to directly estimate
risk ratios in prospective studies and prevalence
ratios in cross-sectional data.12 The log-binomial
model may produce confidence intervals (CIs) that
are narrower since the estimated SEs are smaller
but it can also have convergence problems.

Poisson Regression ⁄ Modified Poisson
Regression. Poisson regression can also be used for
analysis of cross-sectional studies with binary out-
comes10 to provide correct estimates of the preva-
lence ratio and is considered a better alternative
than logistic regression, since the prevalence ratio is
more interpretable and easier to communicate. The
application of Poisson regression to binary data
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follows from the fact that the standard generalized
linear models parameterization of the mean of the
Poisson model is of the same form as the log-bino-
mial model.12 Hence, the regression model and the
measure of association have the same form as in
log-binomial regression except it assumes a Poisson
distribution for the outcome. For binary data the
Poisson regression model produces CIs that tend to
be too wide10 because the Poisson errors are over-
estimates of the binomial errors when the outcome
is not rare. Hence the Poisson regression is conser-
vative for binary outcomes (less likely to be statisti-
cally significant). To correct for this potential
limitation, Zou31 proposed a modified Poisson
regression approach (ie, Poisson regression with a
robust error variance) where the information sand-
wich estimator is used to obtain variance estimates
that are robust to the error misspecification. The
modified Poisson regression is functionally the same
as the simple Poisson regression model except that
to adjust for heterogeneity in the model, robust
standard errors are estimated for the regression
coefficients and it is more conservative. The Poisson
and modified Poisson regression approaches for
binary data require no data modification and can
be easily performed using the GENMOD procedure
in the SAS software.

Empirical Data. Data obtained from a cross-sec-
tional study of Buffalo police officers, BCOPS
study,17 were used to examine the association
between depressive symptoms, as measured by the
Center for Epidemiologic Studies Depression Rating

Scale (CES-D score), and metabolic syndrome,
adjusting for age and education. The study had 115
randomly selected officers of which 96 had com-
plete data on the primary variables of interest.
Table I shows the characteristics of the study par-
ticipants. For each participant, metabolic syndrome
was defined in two ways: as a binary outcome rep-
resenting presence (�3 components) or absence of
the syndrome (0, 1, or 2 components) and as a
count of syndrome components (0, 1, 2, 3, 4, or
5). Fifteen of the participants had metabolic syn-
drome while the remaining 81 did not meet the cri-
teria for metabolic syndrome. The count of
metabolic syndrome components was derived for
all participants (n=96) regardless of their metabolic
syndrome status. Using the binary outcome, the
logistic, the log-binomial, the Poisson, and the
modified Poisson regression models were fit to esti-
mate the odds ratio (OR) for logistic and preva-
lence ratio (PR) for log-binomial and Poisson
models. The count of syndrome components as a
discrete outcome variable was modeled by fitting
the Poisson and the negative binomial regression
models to estimate the RM as the measure of asso-
ciation. The CES-D score and age in years are con-
tinuous variables while educational attainment is a
nominal variable with 3 categories. The regression
models were fit using PROC GENMOD in SAS.
The same study sample data (n=96) were used for
fitting all the statistical models. When fitting the
Poisson regression for the discrete outcome, over-
dispersion was accounted for by using the PSCALE
or DSCALE options in the model statement of
PROC GENMOD. For the modified Poisson
regression, the robust error variance was estimated
using the REPEATED statement and the participant
identifier and specifying the unstructured correla-
tion matrix, even if there is only one observation
per subject.

RESULTS
Distribution of the Count of Syndrome
Components
The distribution of the count of syndrome compo-
nents shown in Figure 1 indicates that 39% had no
components, 31% had 1, 15% had 2, 7% had 3,
5% had 4, and 3% had 5 components. The distri-
bution of the count of syndrome components (Fig-
ure 1) has a mean of 1.19 which is relatively small
(<10) and is highly skewed to the right. The high
skewness, the small mean, and the discrete nature
of the variable tend to suggest that the Poisson
regression may be the appropriate model for the
data. A chi-square goodness of fit test was performed

Table I. Characteristics of BCOPS Study Participants

(1999–2000)

Characteristics No.

% or

Mean � SD

Age, y 96 39.80�7.66
CES-D score 96 7.02�6.25

Count of syndrome
components

96 1.19�1.33

Metabolic syndrome, %
Present 15 15.63

Absent 81 84.38
Education, %
�High school ⁄ GED 18 18.75

College <4 y 30 31.25
College 4+ y 48 50.00

Abbreviations: BCOPS, Buffalo Cardio-Metabolic

Occupational Police Stress; CES-D, Center for
Epidemiologic Studies Depression Rating Scale; GED,
General Equivalency Diploma; SD, standard deviation.
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to compare the fit of the observed distribution of
the count of syndrome components to the theoreti-
cal binomial, Poisson, and normal distributions
using all data (Figure 2A) and excluding 5 influen-
tial observations (Figure 2B). The results suggest
that the observed data closely follow the Poisson
distribution and this model can be used as a basis

to study the count of metabolic syndrome compo-
nents. To detect nonlinearity between the response
variable and the predictor we plotted the log means
of the response variable by the continuous predictor
(Figure 3). The plot is fairly linear indicating that
the predictor variable meets the assumption of line-
arity in the log means needed to fit the Poisson
regression model. If the plot had shown a nonlinear
relationship (e.g., quadratic) then remedies would
include adding a quadratic term of the predictor in
the model or treating the predictor variable as a
categorical variable by creating 3 or more groups.

Measure of Association
The measures of association, their SE and 95% CI
for the unadjusted and age-and education-adjusted
association of CES-D score with metabolic syn-
drome from the generalized linear models for bin-
ary and discrete outcomes are shown in Table II.
The OR from the logistic model (OR, 1.51; 95%
CI, 0.93–2.48) was larger than the PR from the
log-binomial model (PR, 1.37; 95% CI, 0.99–1.89)
as this is usually the case with common outcomes
where the OR overestimates the PR. The Poisson
(PR, 1.38; 95% CI, 0.92–2.07) and the modified
Poisson (PR, 1.38; 95% CI, 0.97–1.97) regression
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Figure 1. Histogram of the count of syndrome compo-
nents, the Buffalo Cardio-Metabolic Occupational
Police Stress (BCOPS) study (1999–2000).
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(BCOPS) study (1999–2000). The P values test the null hypothesis that the empirical data fit the specified probability
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approaches for the binary outcome yielded a simi-
lar point estimate as the log-binomial but with
wider CIs. The PRs from log-binomial and Pois-
son ⁄modified Poisson regression approaches had
smaller SEs and narrower CIs than the OR from
the logistic regression model. However, all the
models that are based on the binary outcome did
not detect significant associations at the nominal
level of significance in the unadjusted as well as the
covariate-adjusted models. For common binary out-
comes, the modified Poisson regression is the pre-
ferred alternative when the log-binomial model is
numerically unstable. Generally, the modified Pois-
son estimates are not fully efficient when compared
with log-binomial estimators32 but in this particular
dataset the efficiency of the two models is similar
as indicated by width of the CIs.

The regression models that used the count of syn-
drome components as an outcome variable, the Pois-
son and the negative binomial regression models,
yielded significant associations with CES-D score.
The RM from the Poisson (RM, 1.28; 95% CI,
1.09–1.49) and the negative binomial regression
model (RM, 1.29; 95% CI, 1.05–1.59) indicate a sig-
nificant positive association between CES-D score
and count of syndrome. Adjustment for age and edu-
cational attainment did not attenuate the association.
The inference from the unadjusted and covariate-
adjusted models are similar; for every 1 standard
deviation (SD) increase in CES-D score, the partici-
pants would expect a 28% or 29% increase in the
mean count of syndrome components.

The ratio of the DV or the chi-square (v2) statistic
over the df for the unadjusted (DV ⁄df=1.501,
v2 ⁄df=1.498) and covariate adjusted (DV ⁄df=1.484,

v2 ⁄df=1.482) Poisson regression models was >1 sug-
gesting some (but not serious) evidence of over-dis-
persion. Over-dispersion was then accounted for by
using these ratios as estimates of the multiplicative
over-dispersion factor (w) and refitting the Poisson
regression to obtain adjusted SEs of the estimated
coefficients (Table II). For example, in the univariate
Poisson regression model the SE for CES-D score
was 0.1015, this was adjusted to 0.1242 (0:1015�
ffiffiffiffiffiffiffiffiffiffiffiffi

1:498
p

) and 0.1244 (0:1015�
ffiffiffiffiffiffiffiffiffiffiffiffi

1:501
p

) using v2 ⁄df
and DV ⁄df as estimates of the multiplicative over-
dispersion factor, respectively. The estimates of the
measures of association have not changed (Table II),
but the SEs have all been inflated by the scale param-
eter (

ffiffiffiffi

w
p

). The result of this increase in the SEs has
not affected the statistical significance of CES-D
score at the 0.05 level. However, over-dispersion,
when it is serious, can inflate the type I error and
could lead to incorrect inferences regarding signifi-
cance of associations.24 The alternative to the use of
the multiplicative over-dispersion factor to account
for over-dispersion is to fit the negative binomial
regression model. The estimated dispersion parame-
ter (m) for the unadjusted (m=0.3058) and covariate
adjusted (m=0.2890) regression models is not much
>0 but the likelihood ratio test for over-dispersion
()2[log likelihood for Poisson)log likelihood for
negative binomial]), which is distributed as chi-
square with 1 degree of freedom, showed that the
dispersion parameter is significantly different from
zero (P=.016 for unadjusted model, P=.041 for co-
variate adjusted model). The statistically significant
evidence of over-dispersion indicates that the nega-
tive binomial regression model is preferred to the
Poisson regression model. However, for this example
dataset the two procedures yield similar estimates
and inferences.

DISCUSSION
In this paper, we have explored and compared two
approaches of modeling metabolic syndrome as an
outcome (dependent) variable in cross-sectional stud-
ies: (1) application of logistic, log-binomial, Poisson,
and the modified Poisson regression models that uti-
lize the binary nature of metabolic syndrome; and
(2) redefining metabolic syndrome as the count of
syndrome components for an individual and apply-
ing alternative models for count data, the Poisson,
and the negative binomial regression, to model the
mean count of syndrome components as function of
explanatory variables. A real dataset from the
BCOPS study was used to model metabolic
syndrome, employing both approaches, as a function
of depression score adjusting for covariates. Analytic
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Figure 3. Scatter plot of the log of the means for count
of syndrome components by the Center for Epidemio-
logic Studies Depression Rating Scale (CES-D score).
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results from the empirical dataset demonstrate that
our conclusion regarding the significance and effect
size of the association between CES-D score and
metabolic syndrome is notably affected by the choice
of the modeling approach. The models based on the
binary metabolic syndrome failed to detect signifi-
cant associations at the nominal level of significance
while the Poisson and negative binomial regression
models that treat count of syndrome components as
a discrete outcome revealed strong associations.
Ignoring the discrete nature of the outcome leads to
an under-statement of the statistical significance. In a
cross-sectional design, the RM from Poisson and
negative binomial regression models can be inter-
preted as an (RM)1)�100 percent change in the
mean number (count) of syndrome components for
one unit increase in the exposure variable. The
change is an increase if the quantity (RM)1)�100 is
positive and a decrease otherwise. In this example,
an RM of 1.276 is interpreted as a 27.6% increase in
the mean count of metabolic syndrome components
for each 1 SD increase in CES-D score. This example
shows the potential for Poisson ⁄negative binomial
regression models to provide an alternative way to
analyze metabolic syndrome as a discrete outcome
and yield a readily interpretable measure of associa-
tion (RM) for cross-sectional study designs. The limi-
tation of modeling metabolic syndrome as a discrete
outcome is that the count of syndrome components
has an upper limit. The difference in statistical signi-
ficance of CES-D score between the two modeling
approaches could be due to the small sample size.
However, the alternative approach of using count
of syndrome components as the dependent variable
is more sensitive and can provide stronger associa-
tion even in large sample-based studies.

The current study has some epidemiological and
clinical implications. The epidemiological implica-
tion is that the alternative analytic method provides
a more sensitive measure of metabolic syndrome as
a dependent variable for modeling purposes.
Although this study is cross-sectional and definitive
recommendations as to how the analyses should be
used in a clinical setting may need to follow confir-
mation in other studies, the count of syndrome
components may serve as an additional tool in that
early intervention could be recommended for
patients with 0, 1, or 2 syndrome components to
potentially reduce the risk of the full metabolic syn-
drome. More importantly, using the count of meta-
bolic syndrome components, future prospective
studies could develop models that estimate the
change in number of syndrome components associ-
ated with changes in lifestyle, psychosocial and

physiological characteristics, or combination of
these factors. In addition, the count of syndrome
components could also be used as a predictor in
models that estimate the risk of future cardiovascu-
lar disease associated with a one unit increase in
the number of syndrome components.

A situation that often arises when using the Pois-
son regression model for count data is over-disper-
sion which occurs when the observed variance is
larger than the nominal variance for the distribution
and leads to inflation of type I error. Besides lack of
fit, over-dispersion could be a symptom of other
problems such as an incorrectly specified model or
outliers in the data.16,19 Therefore, over-dispersion
occurs when the model is under-specified, and the
variability between subjects is not being adequately
accounted for. Because there is no random error term
in a Poisson regression model, there is no way to
account for the extra variability caused by the omit-
ted important predictor.25 Correcting these potential
problems (missing predictors or quadratic terms or
outliers) could eliminate the need for a multiplicative
over-dispersion factor.33 When there is a need to
account for over-dispersion, fitting a negative bino-
mial regression model is a better way to account for
over-dispersion compared to the multiplicative over-
dispersion factors because the regression parameter
estimates are more efficient.25,34 The Poisson regres-
sion model that corrects for over-dispersion with the
multiplicative over-dispersion factor usually has inef-
ficient parameter estimates, meaning that they have
more sampling variability than necessary.34 In the
empirical dataset used in this paper over-dispersion
was mild, consequently the measure of association
and inference from the Poisson regression, where
over-dispersion was accounted for by using the mul-
tiplicative over-dispersion factor, and the negative
binomial regression are similar but this may not be
the case with other datasets.

Depending on the prevalence of metabolic syn-
drome in the specific study population, analysis of
metabolic syndrome as a binary outcome should pro-
ceed as follows: the analyst should consider first fit-
ting the logistic regression model followed by the
more preferred log-binomial regression for common
outcomes; the log-binomial model tends to have con-
vergence problems and is less numerically stable than
the logistic model.32 In this situation, the modified
Poisson regression with robust variance31 should be
used as an alternative. Finally, the count of syndrome
components should be modeled using models for
count data (the Poisson and the negative binomial
regression models) and inferences ⁄conclusions from
the two approaches should be compared. We believe
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that the latter approach is more sensitive and should
be favored especially when there is conflicting con-
clusions between the two approaches. In a study
where the objective is to identify factors related to
metabolic syndrome, we recommend that the analy-
sis should certainly consider the discrete nature of
the response variable in addition to the commonly
used binary form.

From a theoretical stand point, the alternative
method proposed for analysis of metabolic syn-
drome is justifiable regardless of the population
under study, provided that the count of syndrome
components approximately follows a Poisson prob-
ability distribution. In the current study, the ana-
lytic method is tested using sample data from a
highly stressed occupational group which may not
be representative of the general population. Confir-
mation of the utility of this analytic approach in
other populations is warranted.
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