www.fasebj.org

April 2009

The FASEB Journal vol. 23 no. 1 Supplement 796.26

Lipopolysaccharide (LPS) increases transepithelial sodium absorption in the guinea-pig trachea by increasing Na⁺,K⁺-ATPase activity

Michael Dodrill and Jeffrey S. Fedan2-1

+ Author Affiliations

Abstract

Earlier, we reported that systemic LPS administration increases transepithelial potential difference (V_t) in the guinea-pig trachea. The increase in V_t was abolished by the epithelial sodium channel (ENaC) blocker, amiloride, and inhibited by the prostaglandin synthase inhibitor, indomethacin. Here, we hypothesized that LPS increases $\mathrm{Na}^{^{+}}$ absorption by increasing $\mathrm{Na}^{^{+}}$, $\mathrm{K}^{^{+}}\text{-}\mathrm{ATPase}$ activity. We investigated the effects of LPS on V_t using the isolated, perfused trachea preparation, which allows agents to be added to the luminal or the serosal surface. Eighteen hours after injection with LPS (4 mg/kg, ip), tracheas were removed, mounted on a holder, and perfused with Krebs solution. LPS increased basal V_t (-34.2 \pm 6.1 mV) compared to control (–5.5 \pm 1.8 mV, P < 0.05), consistent with increased cation absorption. Subsequently, apical amiloride (10 $\mu M)$ reduced V_t to $-4.5\,\pm\,2.2$ in controls and to -13.1 ± 2.9 in LPS-treated animals indicating increased flux of Na⁺ across the apical membrane. The cation pore-forming antifungal, amphotericin B (7.5 μM apically) then increased V_t to –18.9 \pm 2.7 in LPS-treated tracheas compared to -7.0 ± 2.1 in controls. V_t after apical permeabilization is the result of basolateral ion transport and represents the maximum capacity of Na+, K⁺-ATPase. We conclude that LPS increases Na⁺ absorption, at least in part, via ENaC by increasing the activity of the Na+, K+-ATPase. Funded by NIOSH.