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The primary objective was to develop a framework for
using exposure models in conjunction with two-dimensional
Monte Carlo methods for making exposure judgments in the
context of Bayesian decision analysis. The AIHA exposure
assessment strategy will be used for illustrative purposes, but
the method has broader applications beyond these specific
exposure assessment strategies. A two-dimensional Monte
Carlo scheme by which the exposure model output can be
represented in the form of a decision chart is presented.
The chart shows the probabilities of the 95th percentile of
the exposure distribution lying in one of the four exposure
categories relative to the occupational exposure limit (OEL):
(1) highly controlled (<10% of OEL), (2) well controlled (10–
50% of OEL), (3) controlled (50–100% of OEL), and (4) poorly
controlled (>100% of OEL). Such a decision chart can be used
as a “prior” in the Bayesian statistical framework, which can
be updated using monitoring data to arrive at a final decision
chart. Hypothetical examples using commonly used exposure
models are presented, along with a discussion of how this
framework can be used given a hierarchy of exposure models.
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EXPOSURE ASSESSMENT AND BAYESIAN
DECISION MAKING

M ost exposure assessment strategies rely on the clas-
sification of workers into similarly exposed groups

(SEGs), and several strategies for classification have been
proposed.(1−3) Most commonly, the occupational hygienist
(OH) uses a combination of professional judgment, personal
experience with a given type of operation, review of exposures
from similar operations, and/or exposure predictions devel-
oped using physical/chemical exposure modeling techniques
to assign a subjective initial “exposure rating” and prioritize
their SEGs. Similarly exposed groups that merit a high

initial exposure rating or involve high toxicity substances are
typically placed at the top of the priority list for quantitative
studies.

Next, a baseline monitoring campaign is carried out. The
measurement data collected are used to refine the initial rating
and determine if the distribution of exposures for each SEG
is well characterized and if the exposure distribution is ac-
ceptable. Acceptability is commonly evaluated by comparing
an upper percentile, such as the true group 95th percentile,
with the OEL. In the AIHA strategy, the 95th percentile of the
exposure profile is estimated along with its upper confidence
limit (UCL). Based on the magnitude of the group 95th
percentile and its UCL relative to the OEL, the exposure is
classified into one of four categories: (1) highly controlled,
(2) well controlled, (3) [nominally] controlled, or (4) poorly
controlled (Table I).

AIHA strategy suggests that 6 to 10 measurements be
collected for most SEGs that are to be evaluated using
exposure monitoring. In practice, since collecting even 6–
10 measurements per SEG can be a challenge, exposure
judgments are often made based on fewer measurements. In
many situations, exposure assessment may be required for
several chemical species simultaneously. Many plants have
several thousand process, task, and substance combinations,
making a complete quantitative exposure assessment for each
all but impossible to accomplish. Anecdotally, it is estimated
that greater than 90% of exposure ratings may be based on
professional judgments without any monitoring data. Thus,
there is a heavy reliance on the accuracy of professional
judgments and the ability of occupational hygienists to
correctly integrate them with monitoring data to reach an
accurate exposure determination.

A recent strategy proposed a decision-making framework
using Bayesian statistical analysis,(4) where a key conceptual
advance was to determine the probability of the 95th percentile
of the exposure distribution located in each of the four AIHA
exposure categories. The framework is designed to explicitly
take into account both monitoring data and professional
judgment and other sources of information. The procedure

Journal of Occupational and Environmental Hygiene June 2009 353



TABLE I. Exposure Category Rating Scheme

AIHA Exposure Proposed Control AIHA Recommended
Rating Zone Description Qualitative Description Statistical Interpretation

1 Highly controlled Exposures infrequently
exceed 10% of the limitA

X0.95 ≤ 0.10 OEL

2 Well controlled Exposures infrequently
exceed 50% of the limit and
rarely exceed the limitA,B,C

0.10 OEL < X0.95 ≤ 0.5 OEL

3 Controlled Exposures infrequently
exceed the limitA,C

0.5 OEL < X0.95 ≤ OEL

4 Poorly controlled Exposures frequently exceed
the limitA

OEL < X0.95

Notes: A similar exposure group is assigned an exposure rating by comparing the 95th percentile exposure (X0.95) of the exposure distribution with the full-shift,
TWA OEL.
A“Infrequently” refers to an event that occurs no more than 5% of the time.
B“Rarely” refers to an event that occurs no more than 1% of the time.
CHigh concentrations are defined as concentrations that exceed the TWA limit or STEL.

results in a distribution of probabilities that can be graphed
as a “decision chart” (Figure 1). The interpretation of such
a decision chart is straightforward. For example, Figure 1
shows that there is a 30% probability that the SEG is highly
controlled, 45% that it is well controlled, 20% that it is
controlled, and a 5% probability that it is poorly controlled. By
inspection of these decision probabilities, one can decide on
a course of action that is consistent with the exposure profile
most likely being well controlled (i.e., Category 2).

Bayesian decision making is an inductive approach
whereby a preliminary decision (the prior) arrived at by the OH
using his/her professional judgment is modified by an analysis
of current monitoring data (leading to a likelihood distribution)
to yield the final decision (the posterior). The prior distribution

represents the knowledge about the SEG possessed by the OH
(i.e., professional judgment) that may derive from previous
experience, training, historical or surrogate exposure data, or
(of most relevance to this article) exposure models. The prior,
likelihood, and posterior distributions take the form shown in
Figure 2.

In the Bayesian context, an informative prior is one
where different probabilities are assigned to different exposure
categories, whereas a noninformative prior is one where all
four categories are considered equally likely. It has been
suggested that given an accurate informative prior; fewer
monitoring data would be required to arrive at a decision
with a high degree of confidence.(4) This is the promise
of Bayesian decision making, i.e., strategies based on high

FIGURE 1. Example exposure judgment for a given task. The bar chart shows the probability that the 95th percentile of the exposure
distribution lies in each of the four categories.
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FIGURE 2. Schematic representation of the Bayesian model. The prior is the subjective judgment provided by the hygienist based on
experience and knowledge of task or, as proposed here, on the output of an exposure model; the likelihood is the decision based on monitoring
data alone and the posterior decision is the synthesis of prior and likelihood within the Bayesian framework.

quality priors will be highly effective and efficient. However,
the converse is also true: inaccurate and overconfident priors
will lead to incorrect decisions when monitoring data are
sparse.

This article deals with the process of arriving at priors
using modeling. We first argue that while industrial hygienists
can directly provide a prior decision chart based on their
professional judgment, the rationale behind it can be unclear,
and human judgments are subject to cognitive biases that may
affect such judgments. Therefore, the use of mathematical
exposure models may offer a step in the direction of reducing
such biases.

Mathematical models play an important role in any good
comprehensive exposure assessment strategy.(5,6) Here, a two-
dimensional Monte Carlo scheme by which the model output
can be represented in the form of a decision chart is presented.
Such a decision chart can be used as a prior in the Bayesian
framework. We present a few hypothetical examples using
commonly used exposure models. The article concludes with a
discussion of how this framework can be used given a hierarchy
of exposure models, i.e., how to choose between the decisions
suggested by different models for a given scenario.

QUALITY OF PROFESSIONAL JUDGMENTS:
RATIONALE FOR MODELING

I ndustrial hygienists have long relied on their expert profes-
sional judgments for efficient decision making. Although

the term “expert” is often not clearly defined, studies have
shown that working in a particular field over long periods
can qualify a person as an expert. It has been suggested that
the process of organizing knowledge in sophisticated patterns
enables people to become experts.(7–9) These studies focused
on understanding the performance differences between experts
in a field and relative novices in the same field. Experts
recognize larger patterns in problems when compared with
novices—a novice’s knowledge is much more fragmented
and less integrated. Experts also use their knowledge on the
subject to solve problems. It was also found that when faced
with incomplete information, experts could rely more on their
knowledge to make good decisions that could also be justified
reasonably.(10)

Despite these advantages, a number of cognitive biases
may influence these judgments. These arise because hu-
man beings typically use a limited number of simplifying
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heuristics to efficiently arrive at a judgment using available
information.(11–13) These heuristics, or mental processes, do
not typically utilize all of the available information and data in
a formal algorithmic process but use “fast and frugal” rules of
thumb to arrive at a judgment. Some of the more well-known
heuristics such as anchoring and adjustment, availability, and
representativeness(11) continue to be studied in a variety of
fields. While they may be simple and efficient, they may, in
some cases, be a source of inherent cognitive bias that is usually
difficult to track or control.(14–16)

In the context of occupational hygiene, a few studies have
reported on the quality of direct, subjective assessments of
exposure, but their results often reach conflicting results.
Kromhout et al.(17) studied the qualitative estimation of
task exposures by occupational hygienists, supervisors, and
workers at a number of plants and found a significant
correlation between subjective ratings and the measured mean
exposures at a given plant.

Hawkins and Evans(18) and Walker et al.(19) reported that
experts were fairly adept at estimating upper percentiles. While
factors such as experience, education, certification, type of
available information, etc., were not evaluated systematically,
there are sufficient indications in some studies that these factors
might be significant determinants of rating decisions.(20,21)

Ramachandran and Vincent,(22) Ramachandran et al.(23) and
Wild et al.(24) used Bayesian methods and modeling to combine
expert judgments with exposure measurements. It was found
that experts tended to agree with each other and that the
Bayesian approach was an effective means for improving and
refining the exposure estimates. It was noted that more studies
were required to assess the correlation between the experts’
backgrounds and their subjective judgments.

The above discussion illustrates the variety of factors and
biases that can affect the accuracy of professional and expert
judgments. Direct elicitation of a judgment may hide the
rationale behind a decision and also be affected by subjective
biases in a potentially unquantifiable manner. However, a
disaggregation of the problem into several smaller parts (e.g.,
making a judgment about an input parameter to an exposure
model) may reduce the level of uncertainty.(25)

Exposure modeling makes the rationale behind the judg-
ment transparent and quantifiable. Models provide an explicit
description of the mechanism of generation and dispersal of
the contaminant and the subsequent exposures of the workers
through various routes. The input parameters to the exposure
models can be obtained through theoretical calculations,
measurements, or subjective assessments and can be described
in the form of a probability distribution. Even if the element of
subjectivity is not eliminated, the use of models may reduce
uncertainty and bias in exposure estimates.(26)

As shown in Figure 2, the decision charts are essentially
probability distributions of the location of the true 95th
percentile of the exposure distribution relative to the OEL.
If the exposure distribution were known precisely, there would
be only one true value of the 95th percentile. However, because
the parameters of the distribution can only be estimated

using limited measurements or using subjective professional
judgment, there is uncertainty in the estimate of the true 95th
percentile that can be represented as a probability distribution
of its likely value.

Since there is uncertainty and variability in the inputs of
any exposure model, there will be a corresponding uncertainty
in the model output. Our goal, therefore, is to arrive at a prior
decision chart (similar to that shown in Figure 2) based on the
output of an exposure model rather than on the direct subjective
judgment of an occupational hygienist.

Current Limitations in Treatment of Uncertainty in
Model Parameters

A hypothetical example similar to that originally used by
Jayjock(6) for a scenario using the steady-state solution of the
general ventilation model will be used to illustrate different
approaches to handling model uncertainty. A simple model
was chosen to keep the focus on explaining the Bayesian
construct, but this procedure can be applied to more complex
models as well. A very simplistic approach is to consider only
worst-case and best-case scenarios. A reasonable lowest and
highest estimate can be assigned to the generation rate, G, and
ventilation rate, Q. The steady state concentration, C, can be
calculated as:

C(mg/m3) = G(mg/hr)

Q(m3/hr)
(1)

For example, consider the highest estimate for G to be
75 mg/hr and the lowest estimate to be 25 mg/hr. Similarly
assume the highest and lowest estimates for Q to be 3.6 m3/hr
and 540 m3/hr, respectively. The lowest and highest estimate
for concentration can be calculated using the above formula
to be 0.05 mg/m3 and 20.8 mg/m3, respectively. Since the
estimates for both G and Q are extremes, the estimates for
C are extremely unlikely values. While such an approach
results in upper and lower bounds of concentration, it does
not provide a probability distribution of exposures. Best- and
worst-case estimates can be used as a quick guide by hygienists
to check for extreme exposures, i.e., Category 1 or Category
4 exposures. However, in most instances, such easy decisions
are not obtained and further analysis is required.

Monte Carlo (MC) methods overcome the limitations of
the above approach by being versatile enough to represent G
and Q as distributions. One-dimensional (1-D) Monte Carlo
methods have been applied earlier to study worker exposure
to halogen gases(27) and for retrospective exposure assessment
of nickel aerosol exposures.(23) Monte Carlo simulations allow
for distributions to be imposed on each of the model variables.

For the example previously discussed, instead of calculating
highest and lowest estimates, uniform distributions can be
imposed on G and C. Uniform distributions are being assumed
for illustrative purposes only. Consider the upper and lower
bounds for G and Q to be 25 mg/hr and 75 mg/hr and 3.6
m3/hr and 540 m3/hr, respectively. MC simulations can be
carried out using these distributions.
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In MC simulation, a single value of G and Q is se-
lected randomly from their respective distributions and the
corresponding concentration, C, calculated as C = G/Q.
This process is repeated a sufficient number of times to
yield a large number of values of C that approximates the
exposure distribution of C. This can then be used to determine
a point estimate of the 95th percentile for the exposure
distribution. In this example it happens to be 1.63 mg/m.3

This method has an advantage in that a distribution for C can
be obtained instead of point estimates of highest and lowest
values.

However, the limitation is that it provides only a point
estimate of the 95th percentile value (or any percentile). It does
not provide a probability distribution of the 95th percentile
value from which a decision chart can be constructed.

Two-Dimensional Monte Carlo—Uncertainty and
Variability

The two-dimensional (2-D) MC method can be considered
as a simple nesting of two one-dimensional MC simulations.
The inner simulation represents the variability in model
parameters and the outer simulation represents the uncertainty
(i.e., lack of knowledge) surrounding them. Two-dimensional
methods have been successfully used in the field of geophysics
to study mineral structures,(28) radiative transfers in sea
ice,(29) and, increasingly, in risk assessment and exposure
assessment.(30)

The variability of a model parameter occurs naturally
due to the underlying physical and chemical processes. For
the general ventilation model, these can be described by
distributional parameters for G and Q (e.g., the lower and
upper bounds in the case of a uniform distribution or the mean
and standard deviation for a normal distribution). Since there
will be variability in the generation and ventilation rates, these
can be represented in the inner loop of 1-D MC simulation,
but the distributional parameters are not known with certainty.
This is analogous to the uncertainty in the estimates of the
mean and standard deviation obtained from a finite number of
monitoring data.

However, since this uncertainty cannot be measured in
this case, the value of the uncertainty will be assumed. By
introducing the second layer of simulation, the uncertainty in
the distributional parameters of G and Q can be accounted for.
These are represented by the outer loop of 1-D MC simulation
imposed on the distributional parameters of G and Q.

Using the previous example, distributions can be imposed
on G and Q, for example, a uniform distribution with
upper and lower limits. We assume a uniform distribution
for illustrative purposes only. Any distributional form, e.g.,
lognormal, normal, triangular, beta, that is appropriate to the
variable can be selected.

An additional layer of distributions can then be imposed
on the lower and upper limits for both G and Q to reflect the
uncertainty in those limits. The distributions for the lower and
upper limits of G are called Gmin and Gmax, the corresponding
distributions for the lower and upper limits of Q are called

Qminand Qmax, respectively. Gmin and Gmax are represented as
uniform distributions with lower and upper limits with Gmin1 =
10 mg/hr and Gmin2 = 40 mg/hr, and Gmax1 = 60 mg/hr and
Gmax2 = 90 mg/hr, respectively. Similarly for Q, Qmin1 =
1 m3/hr, Qmin2 = 5 m3/hr, Qmax1 = 350 m3/hr, and Qmax2 = 650
m3/hr. A single value is picked randomly from the distributions
of Gmin and Gmax respectively, to define one distribution for
G. Similarly, a random pick from Qmin and Qmax defines one
Q distribution (outer loop). Using the G and Q distributions
thus obtained, the inner loop of the MC simulation is run to
produce a distribution of concentration C.

This entire process is simulated a sufficient number of
times (for this particular case 1000 simulations were run) to
obtain a large number of C distributions. Each concentration
distribution yields one point estimate of the 95th percentile
and, thus, a distribution of the 95th percentile is obtained that
can be displayed as a histogram. This 95th percentile histogram
can be expressed in terms of the AIHA exposure categories
as a decision chart, when compared with the OEL (Figure 3).
As before, the category with the highest probability would
most likely drive further actions. Decision categories arrived
at using different exposure models can be compared as part of
the data analysis.

Decision Making with Competing Models
Keil(31) discusses the various options and the importance

of selecting the most appropriate model. There is a wide
variety of deterministic models that differ in their level of
sophistication. Each level increases the cost of using the model
due to the amount of information needed as inputs to the
model. For example, the saturation vapor pressure model is
a rather simple model because it requires only knowledge
of the temperature and the saturation vapor pressure of the
chemical.

The near field-far field model requires knowledge of room
ventilation and contaminant generation rates in addition to a
parameter known as the inter-zonal ventilation rate requiring
a nontrivial investment in obtaining this information. An even
more sophisticated model such as an eddy diffusion model,
which takes into account concentration gradients that exist
around pollution sources, requires even greater investments
(Table II).

While costs increase as the level of sophistication increases,
more complex models could also yield more refined exposure
estimates. However, one has to be cautious about over-
refining the model, which may lead to spurious results. Also,
one may run into situations where different models provide
significantly different exposure estimates that may lead to
different decisions. In this section, we explore this idea with
three models with different levels of complexity and that lead
to different decisions. The three models used are:

Saturation vapor pressure model. This is a very simplistic
and conservative model that assumes a volatile liquid
contaminant is present in a closed room with no ventilation and
reaches its saturation vapor pressure concentration at a given
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FIGURE 3. Schematic representation of process for obtaining a prior decision chart from the output of a two-dimensional Monte Carlo
simulation. The large number of C distributions yields a distribution of the 95th percentile. By comparing this distribution with an OEL, a decision
chart in terms of the AIHA categories is constructed. For this example, the OEL is assumed to be 20 ppm. The chart indicates that modeling
predicts Category 1 to be the most likely exposure category.

temperature. The saturation concentration, Csat is calculated
as:

Csat (ppm) = VPsat

Patm
× 106 (2)

where VPsat is the saturation vapor pressure at some temper-
ature, and Patm is the atmospheric pressure. The values for
VPsat can be determined from standard tables, and there is
little uncertainty regarding them.

General ventilation model. This model assumes that a
source is generating an airborne pollutant at a rate G (mg/hr)
in a room with a ventilation rate Q (m3/hr). The air in the room
is assumed to be perfectly mixed, which creates a uniform
contaminant concentration throughout the room irrespective
of the distance from the source. The steady-state concentration
for this scenario is given as:

Csteadysstate(mg/m3) = G

Q
(3)

Therefore, the input parameters required for this model are
the generation and ventilation rates.

Near Field-Far Field (NF-FF) model: The NF-FF model
assumes that the entire workplace can be divided into two
compartments, one within the other. The inner compartment
encloses the generation source and is treated as the near field,
and the outer compartment representing the rest of the room
is treated as the far field. In addition to the parameters G and
Q, this model also accounts for the airflow between the two
compartments using a parameter for the inter-zonal ventilation
rate called β.

The steady-state far field concentration is calculated as:

Cf ar−f ield (mg/m3) = G

Q
(4)

and the steady-state near field concentration is calculated
as:

Cnear−f ield (mg/m3) = G

Q
+ G

β
(5)
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TABLE II. Comparison of Different Exposure Models

Input Parameters Required for Ease of Obtaining Parameter
Exposure Models Model Information CostA

Saturation vapor pressure Saturation vapor pressure of chemical * Easy (can be obtained from
standard tables)

* Very Low

Temperature of chemical * Easy
General ventilation Generation rate of chemical ** Moderate (can be measured) ** Low

Average ventilation rate through room ** Moderate (can be measured or
obtained from room design
specifications)

Near field-Far field Generation rate of chemical ** Moderate (can be measured) *** Medium
Average ventilation rate through room ** Moderate (can be measured or

obtained from room design
specifications)

Average inter-zonal ventilation rate *** Difficult (could be difficult to
measure accurately if the zones
are not well defined)

Eddy diffusion Generation rate of chemical ** Moderate (can be measured) **** Medium-High
Eddy diffusion coefficient *** Difficult because it depends on

a several other parameters that are
not known precisely

Average distance from source to
worker

* Easy

Note: Only the first three models are discussed in this article.
ARelative cost for obtaining the required input parameter information.

Model choice has an important effect on the final decision
and hence the required action regarding control measures. As
the number of variables in the models increase, their behavior
becomes increasingly complex, and decisions recommended
by the model output may or may not be consistent with our
expectations. With several competing models recommending
different decisions, the choice of the prediction on which to
base one’s final decision and action becomes important.

Let us consider a very simple exposure scenario. Suppose
there is 500 mL of a volatile chemical in an open container kept
in a room at 20◦C, evaporating at a constant mass rate into its
immediate environment. The vapor pressure of the chemical at
20◦C is 80 mm of Hg. Let us also assume that the ventilation
rate for the room is described by a uniform distribution. The
lower limit of the distribution is between 1 and 5 m3/hr, and
the upper limit of the uniform distribution is between 350 and
650 m3/hr. Chemical vapors are generated at a rate that is
also described by a uniform distribution. The lower limit of
the distribution lies between 10 and 40 mg/hr, and the upper
limit of the distribution lies between 60 and 90 mg/hr. The
occupation exposure limit for this chemical is 20 ppm.

For this scenario let us consider three different models.
Model 1: The saturation vapor pressure model assumes that
the chemical is in a room with no ventilation and steady-
state concentration is calculated when the room reaches
saturation. Model 2: The general ventilation model assumes

that the chemical is placed in a well-ventilated room with
distributions of ventilation and generation rates as described
above. Model 3: Near field-far field model, where in addition
to the conditions in Model 2, a near field is assumed to be
present around the pollutant generation source. This inner
compartment has its own ventilation rate denoted as β, which
will be assumed to have a triangular distribution(32) with
min, mode, and max values that, in turn, assume uniform
distributions. Min lies between 1 and 5 m3/hr, mode lies
between 6 and 11 m3/hr, and max has a distribution between
12 and 17 m3/hr.

Results comparing the three priors based on the three
exposure models are presented in Figure 4. As expected, the
highly conservative saturation vapor pressure model yields a
Category 4 decision. The general ventilation model predicts
that the highest exposure category is Category 1. The NF-FF
model predicts near field and far field exposure concentrations.
The far field concentration is consistent with a Category 1
exposure. Since this is the same as the general ventilation
model, it is entirely expected.

The near field concentration, however, is more consistent
with a Category 3 exposure. The near field exposure is the
predicted exposure of the worker in the immediate vicinity of
the source. Thus, we have three, model-based prior judgments
that could potentially lead to three substantially different
decisions regarding control.
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FIGURE 4. Comparison of the final prior exposure category obtained when using three different ventilation models. The saturation vapor
pressure model is conservative and shows the exposure category is 4. The general ventilation model predicts the exposure category as 1 and
this is consistent with the prediction of the far field model. The near field model shows the category as 3.

The choice of the “correct” model is obviously of great
importance. There are at least two ways to make this choice.
The first is to defer to professional judgment at this stage.
Knowledge of the workplace environment would be the
deciding factor for model choice. One could argue that the
saturation vapor pressure model is excessively conservative
and its assumptions do not reflect the exposure conditions;
likewise, the general ventilation model is too lenient, since it
does not account for proximity of the worker to the source.
The near field model best represents the exposure scenario
and therefore the most appropriate prior is a Category 3
decision.

The second approach to choosing the most appropriate
model is to see which of the model predictions is most
consistent with available monitoring data. This model would
then be used in future assessments. This method for model
selection can also be used as a feedback loop, where
monitoring data for a particular task can be used to generate

the likelihood, and this can be compared with the prior from
each model. The model that best suits the likelihood can
be picked as the most appropriate model for future use.
Bayesian model comparison is a sophisticated version of this
technique.(33)

For the above example with an OEL of 20 ppm, let us
assume that we have five monitoring data points: 9.1 ppm, 7.9
ppm, 8.7 ppm, 10 ppm, and 8.6 ppm. These data can be used
to construct a likelihood function that can be used to update
the prior.(4) The likelihood decisions and the posteriors for
each of the three ventilation models are shown in Figure 5. As
can be seen, the likelihood decision (obtained based only on
monitoring data) lies in Category 3 and is most consistent with
the prior for the near field model. Thus, in future assessments of
this hypothetical process, this model would be the best choice
for generating the prior. Of course, for the current assessment
this approach cannot be used, since we cannot select a prior
based on its match to the likelihood function.
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FIGURE 5. Likelihood function and posterior obtained from the Bayesian Decision Analysis software.(4) The data predicts that the exposure
category is Category 3. The prior predicted from the 2D MC simulations predicted exposure Category 3 for the near field model.

CONCLUSION

T he primary objective of this study was to demonstrate
the applicability of exposure models in conjunction with

two-dimensional Monte Carlo methods for making exposure
judgments in the context of Bayesian decision analysis.
One of the challenges that exposure modelers have faced
is to show how the outputs of models can be used for
occupational hygiene decision making. This is of particular
benefit under the new REACH regulations in the European
Union where producers and importers of chemicals have
to demonstrate the safety of the use of chemicals under a
range of exposure scenarios. The decision-chart format of
output of the two-dimensional Monte Carlo method described
here can be used as one of the approaches for this purpose.
We chose several simple models for illustrative purposes
and used steady-state solutions for the models for the sake
of simplicity. However, the methodology is general and
can be applied to more complex models and non-steady-
state conditions. These model-based exposure judgments may
improve upon direct, subjective judgments regarding exposure

provided by the occupational hygienist, since they explicitly
incorporate information about determinants of exposure in
the form of model input parameters. Model input parameters
may be obtained through theoretical calculations, actual
measurements, or professional judgments. Thus, subjective
professional judgments of exposure are not completely elimi-
nated but replaced with professional judgments about exposure
determinants.

Representing parameters as probability distributions allows
a level of interaction between the hygienist and the model and
also enables a better understanding of the overall system.(34)

This allows for a detailed description of the system and, in the
case of exposure judgments, may help provide focus on the
actual workplace parameters that influence exposures. As with
any modeling exercise, there is a certain level of uncertainty
associated with model selection, selecting the model parameter
values as well as Monte Carlo-imposed uncertainty. These may
not always be tractable. Indeed, these are inherent limitations
in using any model, and use of the two-dimensional Monte
Carlo methodology does not remove these limitations. Users
need to be cautious regarding these issues and to account for
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these inherent uncertainties where possible, as they should any
time models are used.

The output in the form of decision charts makes it amenable
for use as priors in Bayesian decision-making frameworks.
The model-based priors can then be used in combination
with exposure measurements to arrive at a more refined final
decision category. The 2D MC method can be used to develop
a multilevel screening or tiered model approach for these
chemicals.
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