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Abstract

Background: The cellular pathology of astrocytes in brain
ageing and their role in modulating the brain’s response to
neurodegenerative pathology remain incompletely under-
stood. Methods: Using quantitative ELISA, we have investi-
gated glial fibrillary acidic protein (GFAP) expression in the
population-based neuropathology cohort of the Medical
Research Council Cognitive Function and Ageing Study to
determine: (1) the population variation in the astroglial hy-
pertrophic response, (2) its relationship to the presence of
Alzheimer-type pathology, and (3) its association with cogni-
tion. Results: Increasing GFAP was found with increasing
Braak stage, levels increasing even at early stages. Within
Braak stages, GFAP did not differ between demented and
non-demented individuals, but there was greater variance
in GFAP in the demented. Possession of ApoE ¢4 was associ-
ated with slightly increased GFAP levels (not significant) for
given amyloid 3 protein loads. Conclusion: In a population-
based sample, increasing gliosis precedes development of

Alzheimer lesions. Population variation in GFAP with varying
Alzheimer lesion burdens suggests that they are not the only
driver for astrogliosis. GFAP was not independently predic-
tive of dementia, but the variation in astrocytic responses
may be a factor modulating brain responses to neurodegen-

erative pathology. Copyright © 2009 S. Karger AG, Basel

Introduction

The most common cause of dementia in both clinic-
and population-based studies is Alzheimer’s disease (AD),
characterised by neurofibrillary tangles (NFT), plaques
and neuropil threads and at the molecular level by the de-
position of amyloid (3 protein (Af) and abnormally phos-
phorylated tau protein. The amyloid cascade hypothesis
posits that AR deposition is an upstream event, initiating
cascades resulting in tau phosphorylation and cellular in-
jury [1]. However, factors regulating progression of mo-
lecular and cellular pathology between individuals re-
main to be defined. Whilst NFT and neuritic plaques cor-
relate with dementia and are the key diagnostic markers
for AD, population-based neuropathology approaches,
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such as the Medical Research Council (MRC) Cognitive
Function and Ageing Study (CFAS), have shown consider-
able overlap in lesion burden between demented and non-
demented individuals [2], so that burdens of classical AD-
type pathology alone are incomplete predictors of cogni-
tive status. There is a need to identify factors that affect
lesion progression and the brain’s tolerance to loads of
Alzheimer-type pathology, or that have independent ef-
fects on cognitive function. Such factors may contribute
to interindividual variation in cognitive outcomes for giv-
en loads of Alzheimer-type pathology and associated
mixed pathologies, whilst the consideration of non-clas-
sical pathological markers may improve the explanatory
power of pathological models for dementia.

Astrocytes (and microglia) have potentially important
roles in brain ageing and age-related neurodegeneration
[3]. Astrocytes react to Alzheimer-type pathology [4], co-
localising to senile plaques, and may be important in
plaque progression [5] and clearance [6]. AP peptide, par-
ticularly in aggregated form, can activate glia [7] and is
toxic to astrocytes [8]. However, other factors may also
lead to changes in astrocyte phenotype, including age-
related oxidative stress and activation of inflammatory
mechanisms, so that glial activation may be an important
contributor to the development of Alzheimer-type pa-
thology, and by extension cognitive impairment, rather
than just a consequence [9]. Activated astrocytes may
modulate the effects of Alzheimer-type pathology on the
brain. Factors involved may include cytokine production
and clearance of AR peptide [10]. Astrocytes also contrib-
ute to maintenance of the extracellular milieu, metabolic
needs of neurons and neuronal communication through
active participation at the synapse [11]. So, loss of astro-
cytic function, through damage or altered phenotype,
may contribute to the effects of Alzheimer-type pathol-
ogy on cellular processes underlying cognition. There-
fore astrocytic responses may be a factor in the resilience
of individual brains to the effects of brain ageing and
Alzheimer-type pathology on cognition.

The nature and variation of the astrocyte response and
its cellular pathology remains to be fully defined in the
ageing brain. Astrogliosis is a hypertrophic response that
can be demonstrated in tissue sections by immunohisto-
chemistry for the intermediate filament protein glial fi-
brillary acidic protein (GFAP), but which also involves
upregulation of the other intermediate filament proteins
vimentin, nestin and synemin [12, 13]. In animal models,
GFAP expression increases with age and may be driven
by oxidative stress [14]. In case-control studies, GFAP is
elevated in AD, increasing with tangle burden and dis-
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ease duration [15]. GFAP expression also increases with
ageing in the human and there is evidence that it corre-
lates inversely with cognitive function, independently of
Alzheimer-type pathology [16].

We, and others, have shown that gliosis is common in
the neocortex in brain ageing in a population-based sam-
ple derived from the MRC CFAS neuropathology study
[17]. As a population-based cohort, this allows unbiased
study of interindividual variation of pathology, its rela-
tionship to cognitive impairment and potential risk fac-
tors across the whole spectrum of ageing in a sufficiently
powered sample [2, 18]. Using conventional immunohis-
tochemistry in the temporal neocortex, we showed wide
population variation in gliosis, from very little, largely
confined to layer 1, through patchy to confluent patterns
of immunoreactivity. We also showed a relationship to
the burden of Alzheimer-type pathology, particularly the
presence of neuritic plaques. However, gliosis was also
common in those with very low burdens of Alzheimer-
type pathology, with wide overlaps between individuals
with different Braak stages of pathology [19], and poor
correlations with both local and global brain measures of
Alzheimer-type pathology.

Immunohistochemistry for GFAP is a well-established
method to assess gliosis. However, although the extent of
staining can be quantified, measures obtained cannot be
considered to truly represent concentrations of GFAP in
alinear fashion [20]. Thus, relationships of gliosis to Alz-
heimer-type pathology and to cognitive impairment may
be obscured. Therefore, in this paper, we have sought to
refine our estimates of the population variation in gliosis
in the ageing temporal cortex using an ELISA-based
method, which is more quantitative and provides com-
plementary information to immunohistochemistry. This
technique has previously demonstrated higher levels of
GFAP in AD cases than controls, with the most promi-
nent glial response in temporal lobe [21].

We therefore investigated the population variation in
GFAP expression using a quantitative ELISA method, its
relationship to progressively increasing burdens of Alz-
heimer-type pathology and whether GFAP levels may ex-
plain some of the variation in cognitive outcomes in age-
ing, independently of Alzheimer-type pathology. We hy-
pothesised that, for given loads of Alzheimer-type
pathology, levels of GFAP expression would be higher in
demented than in non-demented individuals. We also
hypothesised that APOE genotype affects the astrocyte
hypertrophic response, specifically that the €4 genotype
would be associated with a greater astrocyte response for
given loads of Alzheimer-type pathology.
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Methods

Tissue and Cohort

This study used all of the cases derived from one of the centres
(Cambridge) of the MRC CFAS neuropathology cohort. The use
of all cases from one centre was designed to maintain the unbi-
ased, population-based study design. The CFAS cohort has been
described in detail elsewhere [2, 17, 18]. Briefly, baseline preva-
lence screening of the cohort included sociodemographic, cogni-
tive, functional health and medication variables. Detailed assess-
ment waves in 20% included a standardised assessment for psy-
chiatric disorders in older people (GMS AGECAT). This 20%
sample was weighted towards impaired respondents but also in-
cluded non-demented respondents. All those who took part in
assessment interviews were approached to ask whether they and
their families were willing to consider brain donation after the
respondent’s death. Dementia status at death was based on review
of all information available from the respondent and informants
during the last years of life, an informant interview after death
and death certification. The cohort from the centre used in this
study included 96 cases. Multicentre research ethics committee
approval was obtained for this study.

Neuropathology had previously been assessed by neuropa-
thologists, blinded to all clinical data, using a modified CERAD
protocol (www.cfas.ac.uk), which semi-quantifies diffuse plaques,
neuritic plaques and NFT respectively as none, mild, moderate or
severe [22]. Cases were also staged with the Braak staging scheme
of NFT, detected by immunostaining with the AT8 antibody to
phosphorylated tau protein [23].

Immunohistochemistry for GFAP and A3

This study was carried out in the lateral temporal cortex. Im-
munohistochemistry and image analysis of GFAP and AP have
been described previously [17]. Briefly, immunohistochemistry
was performed on sections cut from paraffin-embedded forma-
lin-fixed blocks of temporal cortex. Immunohistochemistry for
GFAP was carried out using a standard ABC method with a rabbit
IgG antibody (Dako Cytomation, Ely, UK) at 1:1,000 dilution, in-
cubated for 1 h at room temperature. Antigen retrieval was car-
ried out using microwaving for 10 min in trisodium citrate buffer.
The antibody to AR (Dako Cytomation) was used at 1:100, incu-
bated overnight at4°C, following antigen retrieval. Image capture
for analysis of area staining was performed using CellR software
(Olympus Biosystems, Hamburg, Germany).

ELISA for GFAP

Frozen tissue from the contralateral lateral temporal cortex
was used for protein extraction for the ELISA analysis. ELISA
GFAP data were obtained from 76 cases. Brain slices from this
cohort of CFAS had been frozen using liquid nitrogen, then stored
at-80°C. A portion of temporal cortex was subdissected from the
relevant frozen brain slice. Samples were prepared for assay by
sonication in hot (approx. 90°C) 1% SDS. GFAP was assayed in
accordance with a previously described ELISA for which detailed
protocols have been provided [24, 25]. In brief, a rabbit polyclonal
antibody to GFAP was coated on the wells of Immulon-2 microti-
tre plates (Thermo Labsystems, Franklin, Mass., USA). The de-
tergent-denatured homogenates and standards were diluted in
phosphate-buffered saline (pH 7.4) containing 0.5% Triton-X 100
solution. Non-specific binding was blocked by the addition of 5%
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non-fat dry milk and aliquots of the homogenate and standards
were added to the wells and incubated at 37°C. Following washes,
a mouse monoclonal antibody to GFAP was added to ‘sandwich’
the GFAP between the two antibodies. An alkaline phosphatase-
conjugated antibody directed against mouse IgG was then added
and a coloured reaction product was obtained by subsequent ad-
dition of the enzyme substrate, p-nitrophenol. Quantification
was achieved by spectrophotometry of the coloured reaction
product at 405 nm in a microplate reader, Spectra Max Plus, and
analyzed with Soft Max Pro Plus software (Molecular Devices,
Sunnyvale, Calif., USA). GFAP concentration is expressed in mi-
crograms of GFAP/milligram total protein.

APOE Genotyping

APOE genotyping was performed as previously described [26],
but using samples of frozen brain tissue. Briefly, tissue samples
were digested with proteinase K and heated to 95°C followed by
PCR amplification of the polymorphic fragment of the gene using
established primers [27]. The PCR products were digested with
the restriction enzyme Hha I. The resulting fragments were sepa-
rated according to size by polyacrylamide gel electrophoresis, vi-
sualised and photographed.

Statistical Analysis

Statistical analysis was performed using SPSS version 14.0.
Trends across groups were tested using the Jonckheere-Terpstra
test. Correlations were performed using Spearman’s rank test
(two-tailed). The relationship between ApoE genotype, AP and
GFAP was tested using linear regression with log-transformed
GFAP and logistic-transformed A levels. Linear regression us-
ing log-transformed GFAP was used to test whether any observed
relationships between pathological lesions and GFAP were medi-
ated by age.

Results

Population Variation in GFAP

GFAP protein expression by ELISA showed wide pop-
ulation variation (mean = 8.4 pg GFAP/mg total protein,
standard deviation = 5.1; median = 7.3, interquartile
range = 5.8). There was only a weak positive relationship
between ELISA GFAP and GFAP area expression as mea-
sured by immunohistochemistry (p = 0.07, r; = 0.209)

(fig. 1).

Relationship of GFAP to Alzheimer-Type Pathology

We examined the relationship of ELISA GFAP to
Braak stage as a global brain measure of Alzheimer-type
pathology. ELISA GFAP increased with increasing Braak
group (p < 0.001). Notably, levels of GFAP varied in all
Braak groups and the levels were noted to rise even in as-
sociation with limbic stage NFT (Braak stages III-IV)
(table 1). We further examined whether ELISA GFAP ex-
pression increased in relation to local measures of Alz-
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Fig. 1. Scatter plot of percent area immunoreactivity of GFAP ver-
sus (contralateral) ELISA-measured GFAP.

heimer-type pathology in the (contralateral) temporal
cortex. Moderate and severe groups were amalgamated
because of low numbers in the severe group. ELISA GFAP
increased with increasing neuritic plaque score (p =
0.003). The difference was less marked for diffuse plaques
(p = 0.03). ELISA GFAP also showed a significant trend
to increase with NFT score (p = 0.003) (fig. 2). The rela-
tionships between GFAP and other pathological lesions
were attenuated by around 25%, but remained statisti-
cally significant, after adjusting for age (data available on
request).

The effects of co-existing vascular pathology on lev-
els of GFAP were considered (data not shown). There
were no differences in levels of GFAP in those with no
brain vascular disease as compared to those with vascu-
lar disease as assessed by either the presence of a single
vascular lesion (infarct, haemorrhage or lacune), small-
vessel disease only, or multiple vascular pathologies.
Haematoxylin-and-eosin-stained sections from the
paraffin blocks of the temporal cortex were also as-
sessed for local vascular pathology. These sections were
from the same blocks as were used for GFAP immuno-
staining and contralateral to the temporal cortex used
for GFAP ELISA. Only 6 cases showed either infarcts af-
fecting part of the tissue, or microinfarcts. These cases
did not show elevated GFAP, either by area immuno-
staining or ELISA, compared to those without infarcts.
Vascular pathology did therefore not account for cases
with elevated GFAP.
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Variation in GFAP Protein Levels by Dementia Status

and Braak Stage

We investigated whether GFAP levels varied between
demented and non-demented individuals for given loads
of Alzheimer-type pathology. Braak stage for NFT was
used as a global brain assessment of Alzheimer-type pa-
thology. This defines 6 anatomical stages of tangle pro-
gression and shows a correlation with cognitive status
[19]. We combined stages 0-II, III-IV and V-V to repre-
sent entorhinal, limbic and isocortical stages of spread.
Isocortical NFT are characteristic of this latter stage. In
both entorhinal (stages 0-II) and limbic (III-IV) stages,
the mean GFAP level did not differ significantly between
the demented and non-demented. However, in both cas-
es the variance in GFAP expression was higher in the de-
mented group (entorhinal stage p = 0.031, limbic stage
p = 0.026), including cases with both lower and higher
levels of GFAP than in the non-demented group. There
was only one individual without dementia in the isocorti-
cal stage (fig. 3; table 1). Similar results were obtained
when other measures of Alzheimer-type pathology
(plaque and tangle scores) were used. GFAP increased
with age, but there was no evidence that GFAP affects
dementia at any age.

Variation in the Relationship between A and GFAP

by APOE Genotype

We investigated whether GFAP expression by ELISA
was higher for given levels of AR (as determined by im-
munohistochemistry) in individuals possessing 1 or 2 €4
alleles. The relationship between GFAP and A3 was not
strong compared with the variation in GFAP levels, but
there was a small non-significant (p = 0.12) increase in
GFAP levels by APOE status after adjusting for A (fig. 4).
APOE did not affect levels of GFAP after adjusting for
Braak stage (p = 0.4) or AT8 immunostaining (p = 0.36).

Discussion

GFAP is a well-characterised marker for assessment of
astrocyte reactivity, its expression induced by a variety of
processes relevant to neurodegeneration [28, 29]. It in-
creases with age [30] and some studies have shown an
increase in association with dementia [16]. We have re-
cently shown variation in the pattern of GFAP expression
in the temporal cortex in a population-based sample and
we now report wide variation in population expression of
GFAP using a quantitative ELISA-based method. Other
studies of astrocytes in ageing brain have used S100B as

Wharton et al.
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Table 1. ELISA GFAP levels according to Braak stage and dementia status
Entorhinal Limbic Isocortical Total
n mean SD n mean SD n mean SD n mean SD
No dementia 17 6.3 2.8 9 8.0 2.1 1 10.7 - 27 7.0 2.7
Dementia 7 5.6 5.0 26 9.3 5.6 13 11.5 6.3 47 9.3 5.9
Total? 25 5.9 35 36 8.9 4.9 14 11.5 6.0 76 8.4 5.1
n med IQR n med IQR n med IQR n med IQR
No dementia 17 5.7 2.4 9 7.9 2.3 1 10.7 - 27 6.7 4.4
Dementia 7 3.5 10.2 26 7.5 5.7 13 10.4 3.9 47 7.8 6.1
Total? 25 5.0 2.8 36 7.7 4.3 14 10.5 3.9 76 7.3 5.8
F-test for difference F(6, 16) = 3.79 F(25,8) =4.85 F(46, 26) = 2.70
in variance p=0.031 p=0.026 p =0.008

The mean, standard deviation (SD), median (med) and interquartile range (IQR) of GFAP levels by dementia status and Braak
tangle stage. Braak stages area combined into the following groups: entorhinal (Braak 0-II), limbic (III-IV) and neocortical (V-VI)
stages. Tests for difference in variance were calculated using log-transformed values of GFAP.

Includes 1 case with unknown Braak stage.

2 Includes 2 cases with unknown dementia at death.

a marker, a neurotrophic cytokine that shows age-related
increases and which may be important in the pathogen-
esisof AD [9, 31]. Itis not astrocyte-specific, however, and
may behave differently to GFAP. In a mouse senescence
model, GFAP but not S100B increased with ageing [32].

GFAP in Brain Ageing

These markers therefore provide different, complemen-
tary insights into changes in astroglial phenotype. In our
recent study, immunohistochemistry for S100 on the
temporal cortex did not show the same degree of popula-
tion variation as GFAP, although the quantitative limits
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AB immunoreactivity

of our approach should be noted [17]. We therefore se-
lected GFAP for this study in the lateral temporal cortex.
This is a cortical area commonly involved in Alzheimer-
type pathology and previous work has suggested that the
glial response is most prominent in the temporal region
[21]. The measures reported in this study are of total
GFAP, but splice variants of GFAP are described, which
may show differences in localisation and function [17,
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33-35]. GFAP may also undergo caspase cleavage. This
appears to be localised particularly to regions rich in
Alzheimer-type pathology and to be associated with as-
trocyte damage [36]. The effects of variations in isoform
expression on astrocyte phenotype and function in brain
ageing are currently known.

The causes of the wide variation in the astroglial re-
sponse in brain ageing, its functional consequences and

Wharton et al.



its interactions with AD and other ageing pathologies are
key questions. In our study, and others, astroglial reactiv-
ity was associated with Alzheimer-type pathology, which
may be an important, but not exclusive, driver of the gli-
al reaction. GFAP expression increased with Braak stage
and local (temporal cortex) measures of Alzheimer-type
pathology. These relationships were attenuated, but re-
mained significant after adjusting for age, which does not
account for this relationship. It should be noted that im-
munohistochemical assessments were performed on lat-
eral temporal cortex contralateral to the frozen samples
used for the ELISA. The development of plaques and tan-
gles, at least in AD, tends to be symmetrical in the tem-
poral cortex [37], but this is a limitation of this study. The
possibility of anatomical variation of GFAP levels within
an individual, both within and across hemispheres, has
not been formally addressed either; in future studies, it
may be valuable to take measurements from more than
one area. In addition, immunohistochemistry is not as
quantitative as an ELISA [20].

Astrocytes respond to Alzheimer-type lesions, which
are one driver of astrogliosis. They are a target of A3 tox-
icity; this may have secondary effects on neurons through
loss of support, free radical and cytokine production [7,
8]. Activated glia also sensitise neurons to injurious stim-
uli [38]. Astrocytes are recruited to plaques, involved in
plaque clearance and may be injured in this process [5,
39]. Increased GFAP expression [17] shows a stronger re-
lation to compact than to diffuse plaques. Reactive astro-
cytes also appear to associate with compact plaques, but
not with diffuse amyloid deposits. This may represent a
response to the more fibrillar forms of A, to plaque-as-
sociated inflammatory mechanisms or to processes as-
sociated with neuritic damage.

In this study, we show population variation in the as-
trocytic response in those with significant burdens of
Alzheimer-type pathology, which may mediate a varying
effect on the brain, but also considerable variation in
GFAP in individuals with little Alzheimer-type pathol-
ogy, even those who are not demented. It has been sug-
gested that astrogliosis is a late response, compared to the
microglial response [4]. In this population-based sample,
however, elevation of GFAP was seen in association with
earlier stages of Alzheimer-type pathology, rising in the
limbic stages (at a stage before tangle appearance) and
increasing further in the isocortical stages. Astrogliosis
may therefore commence as an early event in AD, and
also occurs early in individuals with Down’s syndrome,
in whom development of Alzheimer-type pathology is
observed [9]. This raises the question of the causes of as-
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troglial pathology in ageing, suggesting that established
AD lesions, recognisable by classical neuropathology
methods, are not the only drivers, especially in early dis-
ease or ‘normal ageing’. Astrocytes may respond to pre-
clinical AD molecular pathology, and the potential role
of oligomeric aggregates is of interest. In model systems,
subtle nerve terminal damage can trigger a gliotic re-
sponse [40]. This may suggest that in some individuals an
astrocyte response may occur to more subtle neuronal or
synaptic pathology. Other candidate drivers might in-
clude age-related oxidative stress and DNA damage,
which can occur ‘before’ the development of significant
Alzheimer-type pathology [41]. Microglial activity is also
upregulated in brain ageing [9, 42] and can activate astro-
cytes. Additionally, senescence, which can be related to
DNA damage [43], is an unexplored factor in glial age-
ing.

This suggests a potentially complex interaction model
for astrocyte involvement in brain ageing, whereby (1) the
astrocyte cellular pathology or response, due to ageing
brain processes or early AD molecular pathology, leads
to altered function, (2) altered astrocyte function inter-
acts with developing Alzheimer molecular pathology to
affect lesion progression, (3) altered astrocyte function
affects the outcome for Alzheimer-type pathology on
cognitive function and (4) astrocyte function is in turn
altered by Alzheimer-type pathology. Each of these phas-
es may be affected by variation in how astrocytes respond
within the population. The wide variation in GFAP ex-
pression in both demented and non-demented individu-
als, and at all stages of disease, supports a role for chang-
es in astrocyte phenotype as a contributory factor to the
population variation in ageing brain outcomes.

This suggests that astroglial reactions may be an early
marker of neurodegenerative processes and a potential
predictor of progression. Variation in astrocyte response
could also be a factor in determining the likelihood of
becoming demented for given loads of Alzheimer-type
pathology. We did not, however, demonstrate that GFAP
expression was higher in demented compared to non-de-
mented individuals at given Braak stages. This is in con-
trast to findings in the Honolulu-Asia Aging Study [16].
That study examined 4 cortical brain areas in a larger
number of cases (n = 204) and the relationship was found
in 3 areas (including temporal), whereas we have exam-
ined a single area. However, the reason for the difference
in findings between these two studies in different popu-
lations is currently unclear. Other factors need to be con-
sidered in further addressing this hypothesis. The ELISA
method does not take into account variations in relative
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contributions of different cortical layers to the upregula-
tion (e.g. subpial vs. other cortical layers) nor in different
iso- or cleaved forms of GFAP. GFAP also reflects only
the hypertrophy aspect of astrocytic pathology. The reg-
ulation and functional roles of gliosis have yet to be de-
fined, although transgenic approaches are beginning to
address these questions [44-46]. Other markers may bet-
ter reflect other aspects of an altered astrocyte pheno-
type, e.g. DNA damage, loss of function. We have recent-
ly shown variation in loss of the glutamate transporter
EAAT?2 [17], and there is evidence of diversity in astro-
cytic phenotype [47], the influence of which in the ageing
response has yet to be addressed.

Of note, we showed significantly wider variance in
GFAP levels in demented compared to non-demented in-
dividuals overall and at entorhinal and limbic stages.
This was not solely due to higher extremes of GFAP in
some cases due to Alzheimer-type pathology, but was
also seen in demented cases with lower levels of GFAP
compared to the non-demented. Within the entorhinal
stage there were limited numbers (n = 7) in the demented
group, and there was only one case without dementia at
the isocortical stage. Even so, this result reached signifi-
cance and was a consistent pattern. The basis of this find-
ing is unclear at present.

Astrocytes can clear deposited A3 [10] in an apoE-de-
pendent manner [48], so APOE genotype may contribute
to the variation in astrocyte response. We have found a
non-significant trend to greater GFAP expression in rela-
tion to AP in those bearing an €4 allele, but the difference
was small compared to the variation in GFAP expression.

References
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cal and contralateral to the tissue used for ELISA mea-
surement of GFAP. This question would be worth further
investigation using more sensitive and quantitative mea-
sures of A3 species.

In conclusion, the variation in GFAP expression indi-
cates a wide population variation in astrogliosis in age-
ing. This elevation precedes frank AD and is not entirely
accounted for by Alzheimer-type pathology. Astrocyte
responses and cellular pathology are important questions
in brain ageing as, not only may changes in astrocytes
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portant in AD development and there is interest in their
therapeutic modulation [49]. Non-steroidal anti-inflam-
matory agents, which some studies suggest may have a
therapeutic effect, appear to lower astrocyte counts in
AD [50]. Interindividual variation in astroglial responses
are worth characterising as determinants of cognitive
outcomes in ageing and of responses to therapeutic inter-
ventions in dementia.
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