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Abstract Model averaging (MA) has been proposed as a method of accommodating
model uncertainty when estimating risk. Although the use of MA is inherently appeal-
ing, little is known about its performance using general modeling conditions. We
investigate the use of MA for estimating excess risk using a Monte Carlo simulation.
Dichotomous response data are simulated under various assumed underlying dose—
response curves, and nine dose-response models (from the USEPA Benchmark dose
model suite) are fit to obtain both model specific and MA risk estimates. The bench-
mark dose estimates (BMDs) from the MA method, as well as estimates from other
commonly selected models, e.g., best fitting model or the model resulting in the small-
est BMD, are compared to the true benchmark dose value to better understand both
bias and coverage behavior in the estimation procedure. The MA method has a small
bias when estimating the BMD that is similar to the bias of BMD estimates derived
from the assumed model. Further, when a broader range of models are included in the
family of models considered in the MA process, the lower bound estimate provided
coverage close to the nominal level, which is superior to the other strategies considered.
This approach provides an alternative method for risk managers to estimate risk while
incorporating model uncertainty.
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1 Introduction

Risk assessors are frequently interested in estimating the excess risk for popula-
tions exposed at some specified level of an occupational or environmental hazard.
Alternatively, they may be interested in the dose associated with a specified excess
risk. These endpoints, which are often estimated through regression modeling, are
dependent on the model form used. As an example, risk-related endpoints are often
estimated using animal toxicity studies where some dichotomous outcome (death,
tumor response, etc.) is modeled as a function of the dose considered, and excess
risk is determined from this dose-response model. In this setting there often ex-
ist multiple dose-response models that describe the data well, and the risk asses-
sor has no a priori reason, biological or otherwise, to prefer a given model to all
other models considered. The problem is further compounded by the observation that
the risk estimates, specifically the lower bound estimates, derived from compara-
bly-fitting models may significantly differ. Since the true model is unknown, model
uncertainty exists in the risk estimation process. As there have been few techniques
developed to address this uncertainty, risk assessors frequently ignore model uncer-
tainty resulting in risk estimates that are based on the chosen model. In effect, this
ignores all other risk estimates. We contend that this model uncertainty accounts for
an important portion of the uncertainty in risk estimation and should be taken into
account.

One method that can be used to account for this uncertainty in risk estimation is
model averaging (MA) (Buckland et al. 1997). This technique, which estimates risk
from a weighted average of all models considered, was used by Kang et al. (2000)
to estimate risk across different microbiological dose response models. Bailer et al.
(2005a), Bailer et al. (2005b) applied a similar technique, Bayesian model averag-
ing (BMA), to animal toxicity studies where no a priori model was assumed. Both
averaging methods calculate excess risk from a weighted average of risk estimated
from each model considered. This central estimate, which incorporates model uncer-
tainty, can then be used as an alternative to estimates derived from one specific
model.

Although the idea of averaging risk across all models is inherently appealing, little
is known about the general performance of MA in comparison to other model selec-
tion heuristics commonly employed in risk estimation. These heuristics, which include
picking the “best” model or selecting the model that gives the greatest risk estimate
or lowest benchmark dose estimate, can be compared to MA through a simulation
experiment. We investigate the properties of a MA benchmark dose (BMD) estimate
in comparison to the other BMD estimation strategies mentioned above by applying
these methods to an animal toxicity experiment in which a dichotomous response is
measured through a computer simulation experiment. Bias as well as the coverage is
investigated to determine the characteristics of MA estimators.
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2 Methods
2.1 Dose-response models

A number of dose-response models exist that can be used to fit dichotomous
experimental data; however, for the purpose of this study we chose nine models which
are available through the USEPA Benchmark Dose software (USEPA 2001). The
models, as well as their parameter bounds, are described as follows:
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where mr; represents the probability of tumor response in the ith group given the dose
d;, I' (@) = gamma function evaluated at o, @ (x) is the cumulative distribution function

@ Springer



40 Environ Ecol Stat (2009) 16:37-51

of the standard normal density at x (i.e., the integral of a N (0, 1) density from —oo
to x), and m;=y when d;=0 for models (2) and (6). Further all bounds, which are
described above, reflect the default specified bounds used by the USEPA software.

2.2 Excess risk definition

From these models, excess risk can be characterized through the use of the benchmark
dose (Crump 1984). The BMD is defined as the dose that increases risk over the back-
ground response by some specified level relative to the control response. This level is
known as the benchmark response (BMR) and is commonly set at values of 1%, 5%
and 10%. Given the BMR and a dose-response model, the benchmark dose is the dose
that satisfies the following equation

BMR = M, (10)
1 —7(0)

where 7 (d) represents the probability of response, given the dose d, described by the
models (1-9). Though other formulations exist for excess risk characterization, includ-
ing the added risk = 7 (BMD) — 7 (0), we use the extra risk formula (2.10) exclusively
for the remainder of the paper. The BMD is typically estimated using maximum like-
lihood methods, and the corresponding 100(1 — o) % lower bound on the benchmark
dose (BMDL) can be estimated using likelihood profiling.

As mentioned previously, estimates of the BMD and the BMDL derived from
solving equation (10) are model specific and different models often yield different
estimates. Since there is often no reason to prefer one model over another, the BMD,
in practice, is estimated using all reasonable models and the reported dose estimate is
selected from this collection of estimates.

2.3 “Best” and smallest dose estimates

One such criterion a researcher may use is to pick the “best” fitting model. Where
“best” can be described by any number of metrics including, but not limited to, penal-
ized likelihood based summaries, or results of a goodness of fit test, such as the Pearson
X2 goodness-of-fit test. Given a specific metric the researcher then chooses the model
and corresponding risk estimates that coincides with the “best” model for that specific
parameter. We define “best” based upon the Pearson X > goodness-of-fit test, where the
“best” model is chosen to have the largest P-value derived from this test. For example,
consider a set of competing models that include the logistic and quantal linear forms,
having goodness-of-fit P-values of 0.23 and 0.40, respectively, under this heuristic
one would use the BMD/BMDL derived from the quantal linear model.

While the best fit provides a model that gives the closest match between the observed
experimental data and the predicted responses, other model selection methods may
be more desirable to the risk assessor. One might seek a risk estimate that attempts
to guarantee the true BMD is larger than the selected BMD estimate. Given models
which fit the data, one could choose the model that provides exposure estimates which
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yield the lowest estimated benchmark dose (or highest estimated risk) amongst all
competing models. For the purposes of this study, we pick the smallest BMD and its
associated lower limit from all models considered.

2.4 Model averaging

The BMD/BMDL from “best” fit as well as the lowest-dose-model-selection strategy
yield excess risk estimates; however, they still ignore the model uncertainty. Model
averaging seeks to take into account this uncertainty by incorporating all models from
some specified family of models into the estimation process through a weighted aver-
age of the models considered. This technique has been applied in a general modeling
context by Raftery (1995), who suggested the use of the posterior model probabilities
as weights; these weights were derived from a Bayesian analysis of all models con-
sidered. As a full Bayesian analysis is often difficult, Buckland etal. (1997) proposed
simpler methods, where weights are based upon the penalized likelihood functions
formed from the AIC (Akaike 1978) and BIC (Schwartz 1978). These criteria are
defined as —2 log L + 2p for the AIC, and —2 log (L) + p log (n) for the BIC. Here
p represents the number of parameters in the model, L is the value of the likelihood
atits’ maximum, and n represents the sample size. Using Buckland et al.’s procedure,
when the BIC is used, the procedure is identical to the BMA employed by Bailer et al.
(2005a) to estimate excess risk, and if the AIC is used the procedure is identical to
Kang et al.’s approach. We thus describe the Buckland et al. MA procedure in appli-
cation to risk analysis, using both the AIC and the BIC. For a description of BMA in
which priors are fully specified we refer the reader to the description by Hoeting et al.
(1999).

Model averaging seeks to estimate the BMD using an average of model-specific
benchmark doses. This weighted average is based upon summing weighted model-
specific benchmark dose estimates, A i, over all models considered, and is represented
as A = Zle A,- w;, where A,- represents the estimated benchmark dose derived from
the ith model and w; represents the corresponding weight for the ith model. Equiva-
lent estimates on the lower bound can be constructed using the BMDL in the above
formula. Alternatives to this construction of BMDL would be a weighted average/mix-
ture of dose—response curves. Razzaghi and Kodell (2000) discuss this mixture in the
context of finite mixture modeling applied to risk estimation. Given the model M;
and a model space that includes £ models, the weight is calculated according to the
following formula

exp(—1;/2)

W= —
> exp(—1i/2)

where I; = AIC (used in Kang et al. 2000) or I; = BIC (used in Bailer et al. 2005a).
The BIC based weights have the added interpretation of posterior model probabilities,
or the probability the model is the true model, given the data; no such interpretation
exists for the AIC based weights.
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Though models (1-9) represent nominally different dose-response curves, some
of the models considered are nested within other models considered. Further it is fre-
quently the case that some of these nested model, due to the nature of the estimation
procedure, degenerate into their simpler counterparts in the model space. For example,
based upon the default behavior of the EPA software, the Weibull shape parameter
« is bounded to be greater than or equal to 1, and if this value hits the bound the
Weibull model degenerates into the quantal linear model. We address this problem
using the Occam’s razor, which was used by Raftery etal. (1997) to eliminate models
whose nested counterparts have a higher posterior probability relative to the weighted
average. Given the case of the Weibull model, the model would be removed from the
MA process if its shape parameter reached the lower estimated bound.

3 Computer simulation

For the simulation study, we consider two experimental designs, one allowing four
dose groups and the other allowing six dose groups. The dose levels were specified
as d =0, 0.25, 0.50, and 1.0 for the four group experiment, and d =0, 0.0625, 0.125,
0.25, 0.5 and 1.0 for the six group experiment. For both designs, 50 animals were
assigned to each dose group, implying a total sample of n = 200 for the four dose
group design and n = 300 for the six dose group design. Within each design, the mea-
sured dichotomous outcome (death, tumor response, etc.) is recorded for each animal,
and the probability of response 7 is estimated by the dose—response curves (1-9).

In order to represent the scope and variety of all possible dose-response curves data
were simulated under a variety of assumed truths. Data were generated in a two-step
process. First general response patterns were chosen to reflect the variety of dose—
response patterns frequently observed. Six dose—response patterns were chosen to
represent shallow, moderate and steep dose—response; as well as low and high back-
ground response rates (Table 1). These response patterns were then used as the basis
for determining the underlying true model, which was used in the simulation. This
was accomplished by estimating the models (1-9) parameters corresponding to these
response patterns. This estimation procedure is described graphically in Fig. 1 for the
case of the Weibull model. Given the six response patterns and nine dose—response
models, a total of 54 different truth conditions were used in the simulation.

Table 1 This describes the six

response patterns, for the doses Response pattern Response curvature
0, 0.5 and 1.0, respectively, that
were used to generate the true 1 (2%, 1%, 20%)
underlying curvature for the 2 (2%, 14%, 34%)
simulation 3 (2%, 25%, 50%)

4 (7%, 12%, 25%)
These dose—response curves 5 (1%, 21%, 41%)
exhibited curvature ranging from

6 (7%, 32%, 55%)

linear to quadratic responses
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Response Pattern 2 Weibull Fit True Weibull Model
Dose | 0 [ 05 [ 1 y | o [ B
Response | 2% | 14% | 34% ——] 002 | 160 | 040

Fig. 1 Graphical description of the true model generation technique that was used to determine all true
underlying curves used in the simulation

Given true dose-response curves (7;), defined by the procedure described above,
responses were assumed to be distributed binomially with response probability w4
related to the underlying true model at dose d. For each simulation condition, 2,000
samples were taken and the benchmark dose (BMD) and its lower limit (BMDL),
using the models (1-9), were estimated for BMRs of 1% and 10%. From these nine
fits a single risk estimate and its corresponding 95% lower bound were constructed
using the “best” method, the smallest-BMD method, and MA using both the BIC as
well as the AIC. To investigate the effect of the true model on risk estimation these
values were computed by both including and excluding the true model from the family
of models that served as the basis for the MA computation. The estimated values were
then compared against the true value allowing estimates of bias as well as coverage.

Data were simulated using the R statistical programming language (R Development
Core Team 2005), and the dose-response models were fit using a modified version
of the USEPA benchmark dose software. Since the USEPA benchmark dose soft-
ware will not estimate BMDs for flat and negative dose—response curves, a Cochran—
Armitage trend test was performed before models (1-9) were fit; if this test detected
a significant trend, corresponding to a test with « set to 0.2, all models were fit to the
data, otherwise the condition was noted and risk was not estimated, which resulted
in <2,000 simulation conditions for some of the response patterns. While this does
introduce some bias into the simulation, it reflects standard experimental practice; risk
is seldom estimated from extremely shallow or negative dose—response curves (since
a BMD estimate is infinite if no dose—response is present). Of the true dose-response
curves investigated, those generated from response pattern four were the most affected
having approximately 2.5% or about 50 of the simulations removed for each condition.

4 Results

All model-averaging results reported describe a dose estimate computed excluding
the true model from the family of models considered in the averaging process; this
reflects an assumption that the true model is typically not included in any risk estima-
tion experiment. Figures 2 and 3 display the estimated bias of BMA in comparison to
the “best” model risk estimate for the 4 dose group experimental condition at BMRs of
both 1% and 10%. Results from the 6 dose group condition give similar results and are
not shown. Each point represents the estimated absolute bias of the BMA risk estimate
(plotted on the x-axis), compared to the “best” model’s estimated bias (plotted on the
y-axis). Further, points which lie above the line y = x imply the “best” estimate is
more biased for that simulation condition, and points below the line imply the BMA
estimate is more biased for that simulation condition. Figures 2 and 3 suggest that the
two methods are similar in their bias when estimating extra risk for BMRs of 1% and
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Fig. 2 Estimated absolute bias of the BMA is graphed in comparison to the estimated absolute bias of the
“best” model. Each point represents estimated bias for one of the 54 simulation conditions fora BMR = 10%.
The line represents equal bias between the two methods. Here points below the line imply the BMA is more
biased and points above the line imply more bias for the “best” model estimate

10%, with most points lying at or around the line y = x. The notable exception occurs
when the true underlying model is quantal linear in these six cases the MA procedure
is noticeably more biased than the “best” estimate. When one compares the bias of MA
to that of the conservative model strategy (figure not shown), MA consistently exhibits
lower bias relative to conservative strategy for all underlying true model forms, except
that of the quantal linear case; as with the “best” estimate, the conservative strategy
provides less overall bias in comparison to MA. If one were to look at the bias of
MA with weights derived from the BIC and the AIC the estimated bias is virtually
identical. Finally, the bias of BMD estimates from the true model are comparable to
the bias from the MA BMD estimates.

Coverage of the estimates, that is Pr(true BMD > estimated BMDL), was also
investigated. The BMA estimate and the “best” model estimate, for the 95% lower
bounds, is compared in Figs. 4 and 5 for BMRs of 10% and 1%, respectively. These
figures suggest that under many conditions MA provides coverage closer to the nomi-
nal value, and in some circumstances provide coverage at the nominal level. Further in
situations where the “best” model does provide coverage closer to that of the nominal
95% level it never reaches the expected level, often exhibiting coverage probabilities
of 85% or lower.

One can also compare MA to the smallest-BMD estimation method. In this
situation, the smallest-BMD estimates coverage (figure not shown) provides near
100% coverage regardless of the underlying true model form. Figure 6 illustrates
the differences between MA using the AIC and BIC. As with bias, the two methods
perform similarly under most circumstances, The differences are most pronounced
when both MA techniques show poor coverage. In this case, the AIC based weight-
ing procedure consistently outperforms BMA. Finally Fig. 7 illustrates the difference
between MA when the true model is included in the computation and when it is not. In
most cases there is no real difference between coverage, and, as with the case of AIC

@ Springer



Environ Ecol Stat (2009) 16:37-51 45

©
2
g2
E o
@
[0
D,
@ |
3
=
e T T T T
0.0 0.05 0.10 0.15
BMA

Fig. 3 Estimated absolute bias of the BMA is graphed in comparison to the estimated absolute bias of the
“best” model. Each point represents estimated bias for one of the 54 simulation conditions fora BMR = 1%.
The line represents equal bias between the two methods. Here points below the line imply the BMA is more
biased and points above the line imply more bias for the “best” model estimate
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Fig.4 Observed coverage for BMA as well as the “Best” model under all assumed truths with BMR = 10%
and a 95% confidence level. Given the true underlying dose—response model, represented by the header,
the points display each method’s estimated coverage of the BMD for response patterns 1-6 from Table 1
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Fig.5 Observed coverage for BMA as well as the “Best” model under all assumed truths with BMR =1%
and a 95% confidence level. Given the true underlying dose-response model, represented by the header,
the points display each method’s estimated coverage of the BMD for response patterns 1-6 from Table 1

weighting and BIC weighting, the largest difference occurs when the MA procedure
poorly describes the true underlying risk.

5 Model averaging performance

The above results, in terms of bias and coverage, imply that MA gives mixed results
for BMD risk estimation. There are certain situations where the bias is minimal and the
lower bound estimate provides coverage very near the nominal 95% level. For other
cases, however, specifically the quantal linear model, MA performs poorly. Analyz-
ing the model fits give insight into why this pattern is observed, and further provides
direction on how the conditions of low coverage may be avoided.

Figure 8 describes one such situation where MA calculates accurate dose estimates
for BMRs of 1% and 10%. In this situation, one where the true underlying Gamma
parameterization was used under response pattern 1, risk was adequately described
with minimal bias using the MA procedure; further estimated coverage was 97.2%
and 95.0% for BMRs of 1% and 10%, respectively. This figure graphically depicts the
true underlying gamma model in relation to the average fit across all 2,000 simulations
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Fig.6 Observed coverage for BMA as well as MA using the AIC under all assumed truths with BMR = 10%
and a 95% confidence level. Given the true underlying dose-response models, represented by the header,
the points display each method’s estimated coverage of the BMD for response patterns 1-6 from Table 1

for models (1-9). In this case, the gamma model is reasonably well described by the
other models, and the true dose-response model is bounded both above and below
the by the models considered. This is in contrast to Fig.9 which describes the same
information for the sixth response pattern of the quantal linear model. In this situation
the true dose—response is well described by some models in the model space; however,
other models describe the dose—response relationship poorly. The models that describe
the dose—response relationship poorly also consistently underestimate the true risk by
providing BMD estimates that are greater than the true value. This effects MA by
shifting BMD estimates away from the true value.

We also note that the simulations did not check the adequacy of fit of the models to
the data. Many of the fits, which were used in the average, described the data poorly.
Thus situations, like those described by Fig.9, can be further exacerbated as all mod-
els, regardless of their ability to adequately describe the data, and are included in the
weighted average. Though one may argue such models receive small weights, and thus
affect the average minimally, it is important to note that small weights applied to risk
estimates that are drastically different from truth can substantially affect the averaged
values. This effect can be more substantial if all models, which poorly describe the
data, provide risk estimates in the same direction.
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Fig. 7 Observed coverage for BMA, where truth was removed from the estimation, in comparison to the
BMA, where the true model is used in the estimation, under all assumed truths with BMR = 10% and a 95%
confidence level. Given the true underlying dose-response models, represented by the header, the points

display each method’s estimated coverage of the BMD for response patterns 1-6 from Table 1

Response Proportion

Quantal Linear

Gamma

Quantal Quadratic

Logistic

Dose

0.6

Fig. 8 True underlying gamma model in comparison to the average model fits of the other eight models
considered. The figure represents a situation where the true model is well described by the other models
considered. In this situation model averaging performs well, providing accurate BMD estimates in terms

of bias as well as coverage
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Fig. 9 True underlying quantal linear model in comparison to the average model fits of the other eight
models considered. The figure represents a typical situation where the true model is not well described
by the other models considered. In this situation model averaging performs poorly, providing poor BMD
estimates in terms of bias as well as coverage

To illustrate, consider augmenting the model space with supra-linear dose—response
models, e.g., models of the form 77 (d;) = ¥ + (1 — y) [1 — exp(—Bd®)] (i.e., model
9) where the shape parameter « is fixed at the values 0.5, 0.6, 0.7, 0.8, and 0.9. Further
consider an estimate based upon averaging model-specific estimates over this new
model space. Finally, restrict the models averaged to those with a Pearson X2 good-
ness-of-fit statistic with a P-value of 0.1 or greater, which is a common experimental
practice. Table 2 reports the coverage for such a MA procedure in comparison to the
coverage of the original simulation experiment for the underlying true quantal linear
model. If these specific models are included in the model average, as well as models
that fit the data poorly excluded (i.e., the observed statistic had a P-value <0.1), the
coverage for the risk estimates reaches the nominal level. This is in stark contrast to
the original simulation experiment where coverage rates of approximately 35.4% were
observed for a nominally specified level of 95%.

Table 2 Table compares

observed coverage for Bayesian Response pattern Coverage of Bayesian model averaging
model averaging to the true Original simulation Supra-linear models
underlying risk, when model
averaging is performed using 1 0.864 0.961
two different model spaces

2 0.557 0.967

3 0.439 0.959

4 0.873 0.979

5 0.411 0.939

6 0.354 0.944
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6 Discussion

Model averaging provides the risk assessor a method for incorporating uncertainty
into the analysis, but it does so with results dependent on the chosen model space. If
the true dose—response model lies within the underlying model space, MA provides
levels of bias and coverage superior to other approaches that are commonly used. It
however does fail to perform adequately when the model space is chosen in a way
that does not properly describe the true dose-response relationship. Consequently the
inclusion of a wide variety of model curvature becomes extremely important. It also
suggests that the USEPA Benchmark dose software, as it is currently implemented,
is in itself inadequate to perform risk estimation using MA. This is primarily due to
the default curvature available to the modeler. Further, as was demonstrated, MA does
not supersede the proper use of model fit diagnostics. Residual plots, as well as other
fit information, should be used to diagnose the reliability of an individual model to
describe the data.

Also, in cases where the models adequately describe the data, neither the AIC or
BIC based weights appeared to be superior when compared to the other. However in
cases where the averaging procedure failed, the AIC based weights provided closer
to nominal coverage. As there is no clear answer as to which weighting procedure is
superior, we feel that dose estimates using either criterion for MA could be used.

Although this study investigated MA in application to animal toxicity studies, there
is no reason to suggest that the results are not applicable to a wider range of risk esti-
mation methods. It is important to note that model uncertainty is not overcome through
the use of MA. In fact the uncertainty is shifted from the model chosen to the model
space chosen. If the selected model space does not adequately describe the true dose—
response relationship, then the MA procedure will exhibit poor behavior. The choice
of adequate model space becomes paramount, and thus the use of supra-linear as well
as sub-linear models, in effort to fully describe the underlying true model, is recom-
mended for producing reliable risk estimates. We also note that the use of MA does
not preclude the expert knowledge of the practitioner to use biologically based mech-
anistic models for estimating risk. Models which are based upon some mechanistic
understanding of the underlying system should be preferred when such knowledge
is available. Thus, content and biological understanding can be the first filter applied
when selecting the model space.

Finally, the MA procedure described herein averaged excess risk estimates derived
from each model’s functional form, and were not based upon the average of the indi-
vidual models themselves, which would correspond to an averaged dose—response
model of the form 7 (d) = Zle w; ;i (d), where w; represents the weight for the ith
model and 7; (d) is functional form of that model. This was primarily done based upon
the computational complexity of estimating risk from this model; however, calculat-
ing the corresponding BMD and BMDL from the average dose—response model may
more appropriate, and may provide less bias and better coverage properties than were
observed in this study. Research is being conducted to investigate the benefits of such
a procedure over the current MA procedure (Wheeler and Bailer, 2007).
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