

A NEW BIODYNAMIC APPROACH TO ASSESS THE EFFECTIVENESS OF ANTIVIBRATION GLOVES

Ren G. Dong, Daniel E. Welcome, Thomas W. McDowell, Christopher Warren, and John Z. Wu

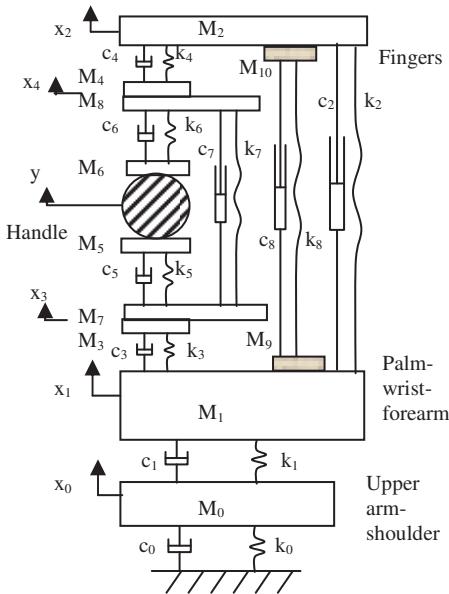
Engineering and Control Technology Branch, Health Effects Laboratory Division,
National Institute for Occupational Safety and Health, Morgantown, WV

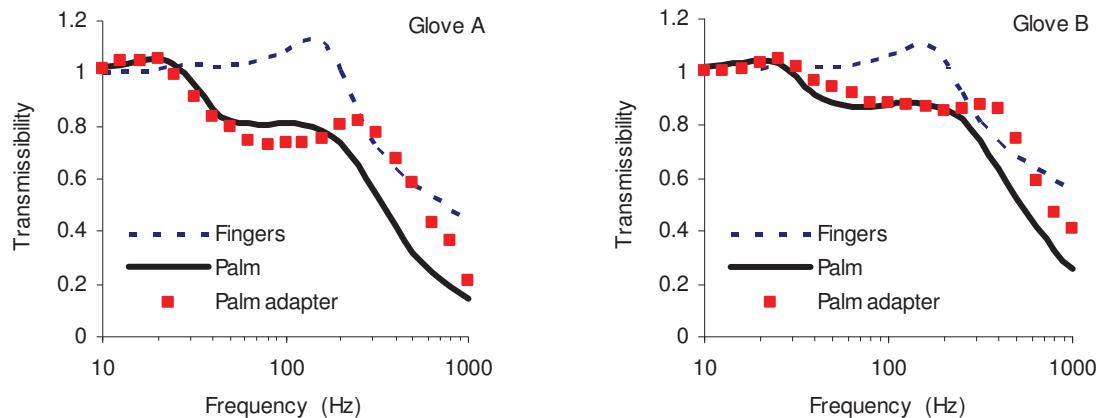
Introduction

Antivibration gloves have been increasingly used to help reduce hand-transmitted vibration exposure. A critical question is how much the gloves can help. Another important question is whether the effectiveness of the gloves can be further improved. The objectives of this study were to develop a new biodynamic approach to predict the vibration transmissibility of the glove at the palm and fingers of a human hand and to analyze the mechanisms of the gloves.

Method

The proposed method is based on the measurement and modeling of the driving-point biodynamic response of the hand-arm system. First, the mechanical impedances distributed at the fingers and the palm of the hand for a bare hand and a gloved hand were measured separately using a reported method [Dong et al. 2006]. The same postures and hand forces (30-N grip and 50-N push) as those specified in ISO 10819 (1996) and a broadband random vibration were used in the measurement. Six subjects participated in the experiments using two types of gloves (glove A: air bladder; glove B: gel-filled). Next, the experimental data measured with the bare hand were used to establish a five-degree-of-freedom mechanical-equivalent model of the hand-arm system (the part with nonfilled boxes and their connections in Figure 1) using a reported method [Dong et al. 2007]. Then, based on the assumption that the biodynamic properties of the hand-arm system remain unchanged when wearing a glove, we developed a mechanical equivalent model of using the experimental data measured with the gloved hands for the bare hand-arm system remain unchanged when simulating the glove (the part with filled boxes and the handle). Finally, the glove transmissibility at the fingers is determined by the finger skin motion (x_4) in the gloved hand model and the transmissibility at the palm is calculated by taking the palm motion (y) and the handle motion (y).




Figure 1.—A model of the gloved hand-arm system.

glove, we developed a mechanical equivalent model of the gloved hand-arm system (Figure 1) using the experimental data measured with the gloved hand. More specifically, the model parameters for the bare hand-arm system remain unchanged in the determinations of the elements for simulating the glove (the part with filled boxes and their connections in Figure 1) in the model. Finally, the glove transmissibility at the fingers is determined by taking the ratio (x_4/y) of the finger skin motion (x_4) in the gloved hand model and the handle motion (y). Similarly, the glove transmissibility at the palm is calculated by taking the ratio (x_3/y) of the palm skin motion (x_3) and the handle motion (y).

Results and Discussion

Figure 2 shows the predicted glove transmissibility values, together with those measured with the palm adapter method reported in our previous studies [Dong et al. 2003, 2004]. The basic trends of the measured and predicted transmissibility data at the palm are consistent, and

their values are comparable below 200 Hz for glove A and 300 Hz for glove B. The isolation effectiveness of glove A is better than that of glove B. These observations suggest that both the proposed and the adapter method are acceptable, at least for glove-screening tests. The results also show that the gloves can provide some vibration reduction at the palm at frequencies higher than 30 Hz, but are not effective for reducing finger exposure if the vibration frequency of concern is below 250 Hz. Therefore, it is inappropriate to use the transmissibility measured at the palm to estimate the overall vibration reduction for the hand-arm system. Whereas the palm transmissibility may be used to help assess palm-wrist-arm system vibration exposure, the finger transmissibility may be applied to help assess finger vibration exposure.

Figure 2.—Vibration transmissibility functions of an air-bladder glove (glove A) and gel-filled glove (glove B) predicted using the proposed method and measured with an adapter method [Dong et al. 2003, 2004].

In addition to the transmissibility of the gloves, the glove influences on the vibration power absorption distributed in the major substructures of the system can also be predicted using the model. Whereas it is unavoidable to impose some interference to the glove-hand-arm system in the glove test using an adapter method or an on-the-hand method, this new approach does not impose any such interference. The proposed model can be further used to identify the major factors that influence glove effectiveness and to help develop better antivibration devices.

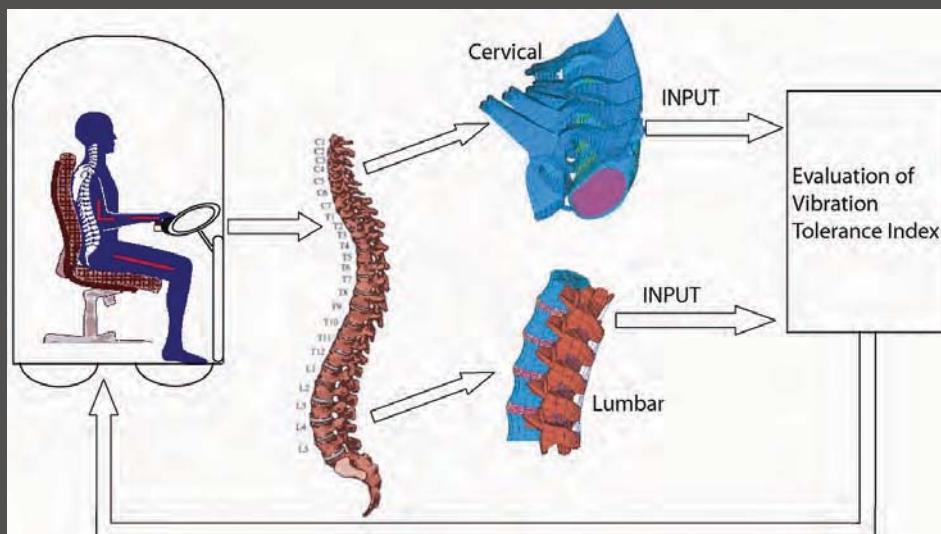
References

Dong RG, McDowell TW, Welcome DE, Smutz WP, Schopper AW, Warren C, Wu JZ, Rakheja S [2003]. On-the-hand measurement methods for assessing effectiveness of anti-vibration gloves. *Int J Ind Ergon* 32(4):283–298.

Dong RG, McDowell TW, Welcome DE, Barkley J, Warren C, Washington B [2004]. Effects of hand-tool coupling conditions on the isolation effectiveness of air bladder anti-vibration gloves. *J Low Freq Noise Vibration Active Control* 23(4):231–248.

Dong RG, Welcome DE, McDowell TW, Wu JZ [2006]. Measurement of biodynamic response of human hand-arm system. *J Sound Vibration* 294(4-5):807–827.

Dong RG, Dong JH, Wu JZ, Rakheja S [2007]. Modeling of biodynamic responses distributed at the fingers and the palm of the human hand-arm system. *J Biomech* 40(10):2335–2340.


ISO 10819 [1996]: Mechanical vibration and shock – Hand-arm vibration – Method for the measurement and evaluation of the vibration transmissibility of gloves at the palm of the hand. Geneva, Switzerland: International Organization for Standardization. ISO 10819:1996.

2nd

AMERICAN CONFERENCE ON HUMAN VIBRATION

June 4-6, 2008

Proceedings

Organized by:

UIC Department of Mechanical
UNIVERSITY OF ILLINOIS
AT CHICAGO and Industrial Engineering
COLLEGE OF ENGINEERING

National Institute for
Occupational Safety and Health
NIOSH

Information Circular 9513

**Proceedings of the Second American Conference
on Human Vibration**

**Chicago, IL
June 4–6, 2008**

Technical Editors: Farid Amirouche, Ph.D., and Alan G. Mayton, C.M.S.P., P.E.

Document Editor: Robert J. Tuchman

DEPARTMENT OF HEALTH AND HUMAN SERVICES
Centers for Disease Control and Prevention
National Institute for Occupational Safety and Health
Pittsburgh Research Laboratory
Pittsburgh, PA

June 2009

This document is in the public domain and may be freely copied or reprinted.

Disclaimer

Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to Web sites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these Web sites. All web addresses referenced in this document were accessible as of the publication date.

The views expressed by non-NIOSH authors in these proceedings are not necessarily those of NIOSH.

Ordering Information

To receive documents or other information about occupational safety and health topics, contact NIOSH at

Telephone: 1-800-CDC-INFO (1-800-232-4636)
TTY: 1-888-232-6348
e-mail: cdcinfo@cdc.gov

or visit the NIOSH Web site at www.cdc.gov/niosh.

For a monthly update on news at NIOSH, subscribe to NIOSH *eNews* by visiting www.cdc.gov/niosh/eNews.

DHHS (NIOSH) Publication No. 2009-145

June 2009

SAFER • HEALTHIER • PEOPLE™