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Abstract Purpose: It is a critical challenge to determine the riskof recurrence in early stage non ^ small cell
lung cancer (NSCLC) patients. Accurate gene expression signatures are needed to classify
patients into high- and low-risk groups to improve the selection of patients for adjuvant therapy.
Experimental Design: Multiple published microarray data sets were used to evaluate our
previously identified lung cancer prognostic gene signature. Expression of the signature genes
was further validated with real-time reverse transcription-PCR and Western blot assays of
snap-frozen lung cancer tumor tissues.
Results: Our previously identified 35-gene signature stratified 264 patients with NSCLC into
high- and low-risk groups with distinct overall survival rates (P < 0.05, Kaplan-Meier analysis,
log-rank tests). The 35-gene signature further stratified patients with clinical stage 1A diseases
into poor prognostic and good prognostic subgroups (P = 0.0007, Kaplan-Meier analysis,
log-rank tests). This signature is independent of other prognostic factors for NSCLC, including
age, sex, tumor differentiation, tumor grade, and tumor stage. The expression of the signature
genes was validated with real-time reverse transcription-PCR analysis of lung cancer tumor
specimens. Protein expression of two signature genes,TAL2 and ILF3, was confirmed in lung
adenocarcinoma tumors by usingWesternblot analysis.These twobiomarkers showed correlated
mRNA and protein overexpression in lung cancer development and progression.
Conclusions:The results indicate that the identified 35-gene signature is an accurate predictor
of survival in NSCLC. It provides independent prognostic information in addition to traditional
clinicopathologic criteria.

Lung cancer is the leading cause of cancer-related deaths, and
non–small cell lung cancer (NSCLC) accounts for almost 80%
of deaths (1, 2). Currently, surgery is the major treatment
option for patients with stage I NSCLC. However, 35% to 50%
of stage I NSCLC patients will relapse within 5 years (3),
indicating that a subgroup of these patients might benefit from

adjuvant chemotherapy (4). On the other hand, patients with
clinical stage IB, IIA, IIB, or IIIA NSCLC receive adjuvant
chemotherapy, and some may unnecessarily receive potentially
toxic chemotherapeutic treatment (5). It is a critical and
unsolved challenge for clinicians to precisely estimate the risk
of recurrence in individual patients for appropriate personal-
ized therapy.

The emerging use of biomarkers may enable clinicians to
make treatment decisions based on the specific characteristics
of individual patients and their tumors (6). There have been
significant advances in refining the prognosis of NSCLC by
gene expression signatures (3, 7–14), most notably the 5-gene
signature from Chen et al. (4) and the 133-gene signature from
Potti et al. (5). Gene expression-based diagnosis of lung
adenocarcinomas (15) has already been incorporated in clinical
settings to treat this deadly disease.

The major histologic types of NSCLC include adenocarcino-
ma and squamous cell carcinoma. Our previous analysis
identified a prognostic 35-gene signature from microarray
profiles of 170 lung adenocarcinomas (16). The present study
further validates that the 35-gene signature quantifies overall
survival in 264 patients with lung adenocarcinoma and
squamous cell lung cancer. These microarray profiles and
associated clinical information were obtained from three
previously published patient cohorts (8, 9, 11). The association
between the expression-defined risk groups and lung cancer
prognostic factors, including patient age, sex, tumor grade,
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clinical stage, and tumor differentiation was assessed. The
expression of the signature genes was further confirmed by real-
time reverse transcription-PCR (RT-PCR) and Western blot
analysis of lung cancer tumor specimens.

Materials andMethods

Patient samples and microarray profiles. The microarray profiles of
the patients analyzed in this study included a training set from Beer
et al. (n = 86; ref. 3), and three validation sets from Bild et al. (n = 111;
ref. 8), Garber et al. (n = 24; ref. 9), and Raponi et al. (n = 129; ref. 11).
The histologic groups of the studied patient cohorts include lung
adenocarcinoma and squamous cell lung cancer. The clinical character-
istics of these patient cohorts are described in Supplementary Table S3.
Genes screened on different microarray platforms were matched by
their Unigene Cluster IDs or gene names with the interactive
MatchMiner (17) Web site interface.5

The lung adenocarcinoma tumor specimens used in Western blot
analysis were obtained from the Cooperative Human Tissue Network
(Ohio State University Tissue Bank). Tumor tissues were collected in
surgical resections and were snap-frozen at -80jC until used for protein
extraction. Histologic preparations of tumor sections were examined by
pathologists. This study was approved with an Institutional Review
Board exemption from West Virginia University.
Nearest centroid classification method. The raw microarray data

from Bild et al. (8) were obtained from the Duke Web site.6 As these
microarray data were measured on different platforms, a two-step
normalization method was used to convert these data sets into
comparable scales. First, the raw microarray data were quantile-
normalized with dChip (18). Second, the signature genes were
sample-wise- normalized to have a mean value of 0 and a SD of 1.
Specifically, for each patient sample, the gene expression g(x) was
normalized to [g(x) - mean(x)]/sd(x), where mean(x) is the mean of
all the genes measured on this sample in the quantile-normalized

microarray data, and sd(x) is the SD of all the genes measured on this

sample. After the normalization, the signature genes in the validation
sets were identified. In the training set from Beer et al. (3), patients who

survived 5 y constitute the good prognosis group (centroid). The

average expression value for each signature gene in the good prognosis
centroid was computed. In the validation sets, Pearson’s correlation

coefficient was determined between each tumor sample and the good
prognosis centroid in the training set. The cutoff value for patient

stratification was determined from Garber’s cohort (n = 24; ref. 9). Each

tumor sample was classified into the good prognosis group if the
correlation coefficient was >0.32; otherwise, it was classified into the

poor prognosis group. The same prognostic categorization scheme was
applied to Bild’s cohort (n = 111; ref. 8).

The cohort from Raponi et al. (n = 129; ref. 11) was retrieved from

the Gene Expression Omnibus Web site (GDS2373). The data were
randomly partitioned into a training set (n = 65) and a test set (n = 64).

In the training set, each tumor sample was classified into the good
prognosis group if the correlation coefficient was >-0.15; otherwise, it

was classified into the poor prognosis group. The same cutoff was

applied to the test set in patient stratification.
Statistical methods. Kaplan-Meier analysis was used to assess the

probability of overall survival of two prognostic groups in the studied
patient cohorts. To evaluate the association between gene expression–
defined risk groups and clinicopathologic parameters in the studied
patient cohorts, m2 tests or Fisher’s exact tests (two-sided) were used.
Differential gene expression was assessed by using t tests. All statistical
testing was done with software R .
Evaluation of other NSCLC prognostic signatures. The DNA micro-

array data from Bild et al. (8), Garber et al. (9), and Raponi et al. (11)

were retrieved from the Gene Expression Omnibus Web site. The 5-gene
signature from Chen et al. (4) contains DUSP6, MMD, STAT1, ERBB3 ,

and LCK ; and the control gene is TBP . To make the levels of gene
expression from the microarrays and from RT-PCR comparable, the

microarray data were log-transformed to a base-2 scale after assigning

a value of 1.1 to intensity values of <1.1. After log transformation, the
levels of expression of the five genes were divided by the level of

expression of the control gene TBP to calculate the relative level of

expression. The decision-tree model was described in the Supplemen-
tary Fig. S1 from Chen et al. (4). The overall survival rates of the high-

and low-risk groups defined by the 5-gene signature were assessed by
Kaplan-Meier analysis.

The probe sets of the 133-gene signature (listed in Supplementary
Table S2) from Potti et al. (5) were identified from Bild et al. (8) and
Raponi et al. (11). A total of 123 signature genes were identified in each
of the validation sets. Garber’s cohort was not used in the validation
because the samples size (n = 24) is too small compared with the
number of signature genes. The mean value of multiple probes was
computed to obtain a unique expression value for each gene. There was
a convergence problem when fitting these genes in a Cox hazard
proportional model. The convergence problem could be caused by
overfitting and/or correlated covariates. To solve the problem, we
computed the correlation coefficient of all possible pairs of the
signature genes. Highly correlated genes were randomly removed from
the Cox model of overall survival. Specifically, genes with correlation
coefficients of >0.44 (P < 1E-6) were dropped from the Cox model
of Bild’s cohort; and genes with correlation coefficients of >0.46
(P < 1E-6) were dropped from the Cox model of Raponi’s cohort. The
Cox model could be fit with =71 genes for Bild’s cohort (8) and with
=88 genes for Raponi’s cohort (11).
RNA extraction. Total RNA was extracted from frozen lung tissue

using the RNeasy mini kit according the manufacturer’s protocol
(Qiagen). RNA was eluted in 30 AL of RNase-free water and stored at
-80jC. The quality and integrity of the total RNA was evaluated on the
2100 Bioanalyzer (Agilent Technologies).
Reverse transcription. From each sample, 1 Ag of RNA was used to

generate complementary DNA using the High Capacity cDNA kit
according to manufacturer’s protocol (Applied Biosystems).

Translational Relevance

It remains a critical issue to reliably identify specificpatients
at high risk of recurrence and metastasis of lung cancer.
To date, there has been no clinically applied gene test for
predicting lung cancer recurrence. This study validated a
35-gene prognostic signature in various cell types of non ^
small cell lung cancer.The analysis showed that the 35-gene
signature could further stratify patients at stage 1A into
distinct prognostic subgroups. This lung cancer prognostic
signature is independent of traditional clinicopathologic
factors, including patient age, clinical stage, tumor differenti-
ation, and tumor grade.This signature had better prognostic
performance thanother lung cancer signatures, including the
5-gene signature and the 133-gene signature in the studied
cohorts. The gene expression and protein expression of the
identified biomarkers were validated in real-time reverse
transcription-PCR and Western blots analysis of clinical
specimens. This study indicates that the 35-gene signature
could be applied in clinics for patient stratification.

5 http://discover.nci.nih.gov/matchminer/MatchMinerInteractiveLookup.jsp
6 http://data.cgt.duke.edu/oncogene.php
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Real-time RT-PCR. An endogenous control gene TaqMan Low
Density Array card (Applied Biosystems) was run on the ABI PRISM
7900HT Sequence Detection System for eight clinical samples to choose
a gene that had the most relatively constant expression in the different
tissue samples. Three control genes, namely 18S, UBC , and POLR2A
had constant expression in the different tissue samples. Constant
expression of mRNA for the 18S and UBC genes was also confirmed for
all lung tissue samples using the individual TaqMan Gene Expression
Assays.

Expression of mRNA for 35 signature genes was measured in each
of the lung tissues by real-time PCR using TaqMan Gene Expression
Assays on ABI PRISM 7500 HT Sequence Detection System (Applied
Biosystems). On each plate, one no-template control was also run. Total
RNA samples ran on an Agilent 2100 Bioanalyzer RNA 6000 Nano
LabChip.

Protein expression validation using Western blot analysis. Anti-TAL2
antibodies were obtained from Santa Cruz Biotech and anti-ILF3
antibodies were obtained from Abcam.7 The protein extraction kit was
ordered from EMD. Western blot analysis was done according to the
methods described previously (19).

Results

Gene expression-based prediction of lung cancer overall
survival. In a previous DNA microarray study (16), we
identified a 37-gene prognostic signature from 86 lung
adenocarcinomas from Beer et al. (3), and validated the

Fig. 1. Validation of the 35-gene prognostic signature in two patient cohorts.
A, patients in Garber’s cohort (n = 24) were classified into high- and low-risk
groups based on the correlationwith the good prognostic centroid in Beer’s cohort.
Each tumor sample was classified as low-risk if the correlation coefficient was
>0.32; otherwise, it was classified as high-risk. B, the same cutoff was applied to
Bild’s cohort (n = 111) in patient stratification. Kaplan-Meier analysis was used to
assess the survival rates of different prognostic groups.

Fig. 2. Validation of the 35-gene prognostic signature in Raponi’s cohort (n = 129).
The data were randomly partitioned into a training set (n = 65) and a test set
(n = 64). A, In the training set, each tumor sample was classified as low-risk if the
correlation with the good prognostic group in Beer’s cohort was >-0.15; otherwise,
it was classified as high-risk.B, the same cutoff was applied to the test set in patient
stratification.

7 http://www.abcam.com
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signature in 84 adenocarcinomas from Bhattacharjee et al. (7).
Several previously unknown genes now have functional
annotations, and two unknown genes are removed from the
signature (Supplementary Table S1). In this study, we sought
to explore whether this gene signature could also predict
overall survival in other major cell types of NSCLC. Three
additional cohorts were obtained from Bild et al. (n = 111;
ref. 8), Garber et al. (n = 24; ref. 9), and Raponi et al. (n = 129;
ref. 11). These cohorts include lung adenocarcinomas and
squamous cell carcinomas. The clinical information provided
in the patient cohorts includes age, smoking status, tumor
stage, grade, differentiation, and overall survival. The signature
genes were identified from various microarray platforms with
MatchMiner (17).

To substantiate the prognostic prediction of the 35-gene
signature, a nearest centroid classification method was used to
stratify patients into high- and low-risk groups. In the cohorts
from Bild et al. (n = 111; ref. 8) and Garber et al. (n = 24;
ref. 9), patients were stratified based on the correlation between
the gene expression signature in the tumor sample and the
good prognosis centroid in the training set from Beer et al. (3).
The cutoff value for patient stratification was determined from
Garber’s cohort (n = 24; ref. 9). Each tumor sample was
classified into the good prognosis group if the correlation
coefficient was >0.32; otherwise, it was classified into the poor
prognosis group. The same prognostic categorization scheme
was applied to Bild’s cohort (n = 111; ref. 8). In both validation
sets, the gene expression–defined high- and low-risk groups
had distinct overall survival (P < 0.05, log-rank tests) in Kaplan-
Meier analysis (Fig. 1A and B).

In this study, the validation sets were generated on
heterogeneous DNA microarray platforms and the RNA was
extracted according to different experimental protocols. The
same cutoff as described above did not generate significant
patient stratification in Raponi’s cohort (n = 129; ref. 11). To
avoid overfitting in the prognostic validation, Raponi’s cohort
was randomly partitioned into a training set (n = 65) and a test
set (n = 64). In the training set, each tumor sample was
classified into the good prognosis group if the correlation
coefficient was >-0.15; otherwise, it was classified into the poor
prognosis group. In the training set, the high- and low-risk
groups had distinct (log-rank P < 0.01) overall survival in
Kaplan-Meier analysis (Fig. 2A). The same cutoff was applied
to the test set in patient stratification. In the test set, the high-
and low-risk groups had distinct (log-rank P < 0.03) overall
survival in Kaplan-Meier analysis (Fig. 2B). These results
indicate that the 35-gene signature could stratify patients into
high- and low-risk groups in multiple independent cohorts.
The 35-gene signature identified poor and good prognostic

subgroups in stage 1A NSCLC. Clinical stage (20) is the most
important prognostic factor in lung cancer treatment. In the
current practice, surgery is the major treatment option for
patients with stage 1 lung cancer. A 5-year survival rate of stage
1 NSCLC was in the range of 40% to 67%, with better results in
patients in stage 1A (1). Refined prognostic models are needed
to select specific patients in this stage who are at high risk of
tumor recurrence for adjuvant chemotherapy.

We sought to explore whether the 35-gene signature could
further stratify stage 1A NSCLC into poor and good prognostic
groups. In three combined validation cohorts from Bild et al.
(8), Garber et al. (9), and Raponi et al. (11), all patients with

stage 1A were analyzed. Based on the gene expression–defined
prognostic classification as described above, the overall survival
rates of the high- and low-risk groups defined in the nearest
centroid classification were estimated using Kaplan-Meier
analysis. The 35-gene signature was able to further stratify
stage 1A NSCLC into high- and low-risk groups with distinct
overall survival (P = 0.0007, log-rank tests; Fig. 3). The results
indicate that the 35-gene signature provides additional prog-
nostic information for stage 1A NSCLC.
Association between expression-defined risk groups and clinico-

pathologic parameters. To test whether the 35-gene prognostic
signature is independent of traditional criteria, the association
of the expression-defined risk groups and clinicopathologic
parameters was assessed with m2 tests or Fisher’s exact tests
(Supplementary Table S7). Based on the available information,
there was no significant association between the prognostic
signature and patient age (>60 years), tumor differentiation,
tumor grade, tumor stage, or sex. These results indicate that
the 35-gene signature is independent of traditional clinico-
pathologic factors in lung cancer prognosis. It should be noted
that several clinical parameters are missing in these validation
cohorts.
Comparison with other lung cancer prognostic gene signatures.

Previous research has established two prognostic gene signa-
tures for lung cancer, namely, the 5-gene signature from Chen
et al. (4) and the 133-gene signature from Potti et al. (5). The
performance of these two signatures was compared with our
identified 35-gene signature in three validation sets. The 5-gene
signature was evaluated with the decision-tree model as
described in Chen et al. (details provided in Materials and
Methods; ref. 4;). In Kaplan-Meier analysis on Raponi’s cohort,
the difference between the overall survival of gene expression–
defined high- and low-risk groups reached borderline signifi-
cance (log-rank P = 0.06). Different prognostic groups stratified
by the 5-gene model did not have distinct overall survival rates
in Bild’s or Garber’s cohorts (Fig. 4).

Fig. 3. The 35-gene signature is independent of tumor stage in lung cancer
prognosis. Patientswith stage1ANSCLC from combined cohorts fromBild et al. (8),
Garber et al. (9), and Raponi et al. (11)were classified into high- and low-risk groups
based on the 35-gene signature in Kaplan-Meier analysis.
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There were insufficient details about the weighted classification-
tree model for the 133-gene signature from Potti et al. (5). In
addition, the survival information was not available in the
data provided in Potti et al. (5). A total of 123 signature genes
were identified from both validation sets in Bild et al. (8) and
Raponi et al. (11). To validate the prognostic power of Potti’s
gene signature, the signature genes were fitted in a Cox
proportional hazard ratio. There was a convergence problem
when fitting these genes into a Cox proportional hazard model.
This problem was solved after correlated genes were removed
from the Cox model, suggesting that the 133-gene signature
caused an overfitting problem due to correlated or redundant
biomarkers within the gene signature. Based on the fitted Cox
model, a survival risk score was generated for each patient.
The median of these risk scores was used as a cutoff in the
prognostic stratification. Patients with a risk score greater than
median were defined as high-risk, whereas those with a smaller
risk score were defined as low-risk. This stratification parti-
tioned patients into different prognostic groups with distinct

(P < 0.0001, log-rank tests; Fig. 5) overall survival in Kaplan-
Meier analysis. Due to the lack of details of the classification
model in Potti et al. (5), a strict separate training-validation
scheme on the 133-gene signature could not be done in this
study.
Validation of gene expression and protein expression in lung

adenocarcinoma. Having established the clinical relevance of
the identified prognostic signature in NSCLC using publicly
available DNA microarray data, we further confirmed the
expression of the signature genes using real-time RT-PCR assays
of eight snap-frozen lung cancer tissue samples (details
provided in Materials and Methods as well as Supplementary
Materials). We then sought to confirm the protein expression of
several signature genes of interest because protein products
ultimately play an essential role in cancer development and
progression. Tissue lysates of both lung cancer tissues and the
adjacent normal tissues were subjected to Western blot analysis,
which was used to measure the protein expression of the
identified 35 genes. Among the identified 35 genes, only 15

Fig. 4. The 5-gene model from Chen et al. (4) was evaluated in
three validation sets from (A) Raponi et al. (11), (B) Bild et al. (8),
and (C) Garber et al. (9).The 5-gene signature did not stratify
patients into distinct prognostic groups in the validation sets using
Kaplan-Meier analysis.
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genes have commercially available antibodies to detect their
protein products. We first examined the specificity of these
antibodies using the cell lysates from a normal lung epithelial
cell line (BEAS-2B) and a lung cancer cell line (A549), and
found that only six antibodies were able to detect their
corresponding protein products (CHD4, GHRHR, ILF3, TAL2,
CREB3, and MSX2) in the cell lysates (data not shown). In
further analysis with these six antibodies, we found that four of
six genes overexpressed their proteins in a lung cancer tumor
tissue sample (ILF3, TAL2, CREB3 , and MSX2). To validate the
specificities of these identified six proteins, each protein was
further probed with a different specific antibody that targets a
different epitope. The results confirmed that the TAL2 and ILF3
proteins were overexpressed in lung adenocarcinoma tumor
tissues compared with the adjacent normal tissues (Fig. 6). Both
TAL2 and ILF3 are oncogenic proteins.

Gene expression levels may not be necessarily correlated with
protein expression levels. We further investigated the differen-
tial gene expression and qualitative correlation with protein
expression for the identified lung cancer signature genes. Our
previous study (16) analyzed differential expression patterns of
the identified signature genes by using two bioinformatics
tools, ONCOMINE (21) and SAGE (22). Specifically, the
expression level of ILF3 was significantly higher in lung cancer
tissues compared with normal tissues (7, 9, 23), higher in
metastasis than in primary lung cancer (P < 0.002; ref. 7), and
higher in poorly differentiated lung cancer tumors than in well
differentiated tumors (P < 0.002; ref. 3). In this study, we
further analyzed the differential expression patterns of the
signature genes in high-risk versus low-risk groups in the
studied lung cancer cohorts (details provided in Supplementary
Materials). TAL2 had consistent overexpression in high-risk
groups in Beer et al. (P < 0.005; ref. 3), Bild et al. (8), and
Larsen et al. (Supplementary Table S10; ref. 14). These results
show that several members of our identified gene signature are
correlated to the protein expression profiles in lung cancer.

Discussion

Lung cancer is a dynamic and diverse disease associated with
numerous somatic mutations, deletion, and amplification
events. Patients with the same stage of disease can have
markedly different clinical outcomes. Traditional diagnostic
and prognostic factors may stratify patients with molecularly
distinct diseases into the same group based on morphologic
assessments. It is a critical issue to reliably identify specific
patients at high risk of recurrence and metastasis of lung cancer.
Molecular prediction is a necessary step in the future direction
of personalized cancer care. The Food and Drug Administration
has recently approved the first cancer gene test, MammaPrint
(24), for treating early stage breast cancer patients with negative
lymph node status. Oncotype is another clinically applied gene
test for predicting recurrence of tamoxifen-treated, node-
negative, and estrogen receptor–positive breast cancer (25).
To date, there has been no clinically applied gene test for
predicting lung cancer recurrence.

Research in transforming molecular diagnostic and prognos-
tic models into predictive and preventive medicine has become
increasingly important and needs to meet important recom-
mendations. According to an alternative REMARK (REporting
recommendations for tumor MARKer) system (26, 27), cancer
prognostic studies must show whether tumor markers provide
information independent of traditional criteria or provide
prognostic information within subgroups defined by tradition-
al criteria. In this study, we used previously published DNA
microarray data to validate a 35-gene prognostic signature for
NSCLC. A nearest centroid classification method based on the
correlation of gene expression patterns was used in patient
stratification. The overall survival rates of the classified high-
and low-risk groups were assessed with Kaplan-Meier analysis
and log-rank tests. The patient stratification scheme determined
on Garber’s cohort (n = 24; ref. 9) also classified patients into
distinct (log-rank P < 0.05, Kaplan-Meier analysis) prognostic
groups on Bild’s cohort (n = 111; ref. 8). Because the validated
DNA microarray data were generated using heterogeneous
experimental protocols and platforms, a different cutoff
value was used in patient stratification on Raponi’s cohort

Fig. 5. The133-gene model from Potti et al. (5) was evaluated in two validation
sets from Bild et al. (8) and Raponi et al. (11). After correlated genes were removed,
this signature could fit a Cox proportional hazard model. A survival risk score was
generated for each patient.The median of the risk scores was used as a cutoff to
stratify each patient cohort into high- and low-risk groups.
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(11). To avoid overfitting in the validation, Raponi’s cohort was
randomly partitioned into a training set (n = 65) and a test
set (n = 64). The cutoff value identified in the training set
generated significant patient stratification in both training
(log-rank P < 0.01, Kaplan-Meier analysis) and test (log-rank
P < 0.03, Kaplan-Meier analysis) sets. The results indicate that
the 35-gene signature provides useful information for patient
stratification in clinical decision-making. The analysis showed
that this gene signature could further stratify patients in stage
1A NSCLC into subgroups with distinct overall survival
(log-rank P < 0.0007, Kaplan-Meier analysis). The relation of
the gene signature to standard prognostic values was investi-
gated. There was no significant association between the 35-gene
prognostic signature and patient age, sex, tumor differentiation,
tumor grade, or tumor stage. It should be noted that many
clinical parameters were not available in the studied cohorts.
This is acknowledged as a limitation of the current study.

The 35-gene signature was compared with two other most
notable lung cancer gene signatures, namely, the 5-gene
signature from Chen et al. (4) and the 133-gene signature
from Potti et al. (5). The 5-gene signature was validated based
on the decision-tree model reported in Supplementary Fig. S1
in Chen et al. (4). The 5-gene model did not stratify patients
into distinct prognostic groups in any of the three validation
cohorts. In comparison, the 35-gene signature generated
significant (log-rank P < 0.05, Kaplan-Meier analysis) patient
stratification on the same data sets, indicating that the 35-gene
signature outdid the 5-gene signature from Chen et al. (4). The
133-gene signature (as listed in Supplementary Table S2) from
Potti et al. (5) could not be validated because insufficient
details were provided for their prognostic model, including
patient survival time and the weighted decision-tree algorithm.

When fitted in a Cox regression hazard function, the 133-gene
signature caused a nonconvergence problem. This problem was
solved after the removal of significantly correlated signature
genes, suggesting that Potti’s gene signature contains correlated
and/or redundant biomarkers. In this study, the 133-gene
signature from Potti et al. (5) could not be evaluated with other
lung cancer signatures because the details of the prognostic
model were not provided either through the publication (5) or
personal communication.

After we validated the clinical prognostic value of the lung
cancer gene signature using public DNA microarray data, we
validated the expression of the signature genes using real-time
RT-PCR analysis of snap-frozen lung cancer tissue samples.
Furthermore, we sought to determine the relevance of our
identified signature genes at the protein level. Because the
commercially available antibodies to the identified 35 genes are
very limited, we have thus far only validated the protein
expression for TAL2 and ILF3 . Western blot results show that
both TAL2 and ILF3 are overexpressed in lung cancer tumor
tissues compared with adjacent normal lung tissues. To prove
the specificity of the identified proteins, each protein was
probed with two different antibodies that recognize different
epitopes of the same protein. Both TAL2 and ILF3 are
oncogenes, and their protein products are likely involved in
the cancer process. Our results indicated that some signature
genes have correlated protein expression in lung cancer.

Microarray technologies promise the discovery of novel
biomarkers in genome-scale association analysis. Nevertheless,
there are several disadvantages that have limited their applica-
tion into routine clinical tests: (a) microarray tests are labor
intensive, time consuming, and expensive; (b) they require a
specific system to do the assays, which is not available in many

Fig. 6. Protein expression in lung
adenocarcinoma tumor tissues.
A, histologic specimen of a human lung
tissue sample stained with H&E. Both
sections are well differentiated
adenocarcinoma of the lung, mostly of
bronchoalveolar pattern and with mucin
formation. B and C, both lung cancer tumor
tissues (T) and the adjacent normal tissues
(N) tissue lysates were resolved by
SDS-PAGE, followed by transferring to
polyvinylidene fluoride byWestern transfer.
The transferred proteins on polyvinylidene
fluoride were probed with the specific
antibodiesTAL2 (B) and ILF3 (C),
respectively.To confirm the specificity of the
identified proteins, each protein was
sequentially probed with two different
antibodies (1 and 2) targeting different
epitopes.The transferred polyvinylidene
fluoride was probed with the first round of
antibodies (1), treated with stripping buffer,
followed by probing with the second round
of antibodies (2).
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clinical centers; (c) the results can be influenced by each step of
the complex assay, ranging from array manufacturing to sample
preparation (extraction, labeling, hybridization) and image
analysis, which raises the issue of reproducibility; and (d) they
usually include a high number of genes and their predictive
value needs to be substantially improved before being accepted
for routine clinical tests (28–31). Compared with microarrays,
real-time RT-PCR is more efficient and consistent. It requires
only a small amount of samples and can quantify gene
expression in paraffin-embedded tissues. The combined use of
real-time RT-PCR with microarray analysis can overcome the
inherent biases of the microarray technique and is emerging as
the optimal method of choice for genome-scale gene expression
analysis (32).

In this study, the 35-gene signature is validated as an
independent prognostic factor for NSCLC. The transcriptional
profiles analyzed in this study were generated on DNA
microarrays, and the gene expression of the identified
biomarkers was further confirmed using real-time RT-PCR
assays of snap-frozen lung cancer tumor tissues. Several protein

products in the signature were also validated in both lung
cancer cell lines and lung adenocarcinoma tumor tissues. Our
future research will use quantitative RT-PCR techniques to
validate the gene expression profiles on a separate patient
cohort. A clinical protocol will be developed based on RT-PCR
assays for the management of NSCLC patients. Further, more
signature genes will be validated in proteomic assays to explore
whether this signature is associated with clinical outcome or
contributive to tumor development and progression.
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