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DECAY OF ENVIRONMENTAL 137Cs

Dear Editors:
A recent paper by

Palms et al. (2007) showed environmental levels of 137Cs
in periphyton over time. Covering 25 years of monitoring
data, the slow decay of this nuclide was evident. Health
physicists have been detecting this nuclide since fission
products were injected into the atmosphere by weapons
testing. Many, including myself, have seen the levels
decline. The robust data set in the Palms article allowed
for a quantitative assessment of this decline.

I plotted the 25 years of 137Cs data and fitted an
exponential curve to them. This is shown in Fig. 1. The
decay constant obtained is 0.0753 y�1. This decay con-
stant represents an effective half-life of 9.2 y, much less
than the 30-y radioactive half-life of this nuclide. Al-
though there is a confidence interval around this value, I
did not attempt to estimate it.

A paper by Robison et al. (2003) specifically looked at
the effective half-life of this nuclide in Pacific island tree
leaves. Using concentration measurements spanning 36 y, they

obtained a value of 8.5 y (95% confidence interval: 8.0 to
9.8 y). Considering that this ecosystem, a coral atoll, is vastly
different than the temperate ecosystem studied by Palms, the
values agree remarkably well. I would be interested to see if
other data sets confirm this effective half-life.

Robison et al. attribute the loss of 137Cs (non-
radiological) to transport from soil to groundwater,
removing it from the root zone of the trees. Perhaps a
similar removal mechanism is at work in the Palms data.

JOEL I. CEHN

1036 Hubert Road
Oakland, CA 94610
cehn@aol.com
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Fig. 1. 137Cs in periphyton; data from Palms et al. (2007).
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HYPOTHESIS TESTING, STATISTICAL
POWER, AND CONFIDENCE LIMITS IN THE
PRESENCE OF EPISTEMIC UNCERTAINTY

Dear Editors:
We are writing in regard to an article published in

the March 2007 issue of Health Physics by Eduard Hofer
(Hofer 2007) on the interesting and important subject of
dealing with subjective uncertainty in radiation dosime-
try when dose estimates are applied to epidemiological
studies, especially when a sequence of alternative dose
estimates rather than a single “best estimate” of dose is
provided for the epidemiological application. We have
described several approaches to this problem (Stram and
Kopecky 2003; Kopecky et al. 2004), and while these
may not provide the last word on this problem we have
an important concern regarding the proposed analysis of
Hofer, namely the type I error (or “false positive” error)
properties of the proposed analysis.

Our approach (Stram and Kopecky 2003) and that
of Hofer are similar in that both start with an assump-
tion (often requiring a considerable leap of faith) that
the dosimetry system used to estimate dose for each
individual in the study can be regarded as providing
estimates from a distribution of true dose conditional
upon what is known about the determinants of the
actual exposure. Specifically, both Hofer and we
assume that the dosimetry system generates m inde-
pendent sequences (or “replications”) of dose esti-
mates {xi,j} (i � 1 , . . . , n, is the index for individuals
in the study and j � 1, . . . , m for the sequence
number) for the n subjects from the conditional distri-
bution of true dose given all that is known about the
parameters, source terms, individual data (excluding
outcome data), etc., determining the true exposures. In
our 2003 paper, we described some of the operating
characteristics of treating the sequences in a manner
analogous to what is done in the so called “Berkson
error” problem (Thomas et al. 1993). Specifically, we
described some statistical implications of using the
mean, {zi}, of true dose given “all that is known” about
true dose as the dose variable in a linear regression
analysis relating disease to exposure. (We may esti-
mate {zi} by averaging the m sequences, {xi,j}, over j,
assuming that m is large enough so that the estimation
of this mean is very accurate.) Thus, for example, we
reject the null hypothesis of “no exposure effect” in
this analysis only if standard statistical tests (ignoring
dosimetry error) concluded that there was an associa-
tion between the mean doses, zi, and the outcome of
interest, Yi, with the appropriate degree of confidence.

Hofer (2007) suggests a different test of the null
hypothesis (this is most clear from the simulation exper-
iment performed to compute power given in the Appen-
dix of that paper), namely to use each replication {xi,j},
j � 1 , . . . , m in turn in m separate regression analyses
(regressing Yi on each sequence separately) so that a total
of m tests are performed at a specific type I error rate
(denoted as �). Then Hofer suggests (point 2 on page
233–234) rejecting the null hypothesis if more than 100�
percent of these m separate regressions give a significant
p-value (p � �).

The problem with the proposed procedure is that it
doesn’t properly control the false positive rate, i.e., the
type I error, �, of the test. That is, the new procedure will
reject a true null hypothesis more often than 100�
percent of the time. To see this, consider the special case
when both the null hypothesis is true, i.e., that disease, Yi,
and true dose are independent of each other, and when xi,j

and xi�j are also independent over the replications j. (The
second assumption would hold when there is no infor-
mation at all about true individual dose in the output from
the dosimetry system.) In this case, a count of the number
of times that the p-value is less than � (Rm, say) will be
distributed as a binomial random variable with rate
parameter � and m as the number of trials (since each
sequence of x is independent and related only by chance
to disease). As m increases to infinity the false positive
rate of the procedure will therefore approach 1⁄2. (To see
this, note that a false positive result from Hofer’s
proposed test corresponds to Rm � � � m, and that for
sufficiently large m, Rm is approximately normally dis-
tributed with mean � � m.) For smaller m the actual false
positive rate will still be considerably greater than the
desired rate �. (For example, with � � 0.05 and m � 100
the expected false positive rate is 38.4 percent.)

Dropping the assumption that xi,j and xi�j are
independent over the replications j decreases the type
I error of the proposed procedure, but it will remain
inflated so long as these variables are not perfectly
correlated (i.e., when there is no dosimetry error).
Indeed, in the simulation experiment presented in the
Appendix of Hofer (2007) we see that the false positive
rate using � � 0.05, while not 38.4%, was 13%, far
greater than the 5% required for a test to be valid, while
the error using the Kopecky (2004) approach was 3%
(not statistically different than the desired 5% given the
number of simulations performed). The conclusion made
at the end of the Appendix, that the proposed procedure
is more powerful than that of Kopecky et al., cannot be
trusted because it ignores the overwhelming evidence
that the proposed procedure is anti-conservative under
the null.
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In Stram and Kopecky (2003) we described several
other candidate approaches to dealing with dose uncer-
tainty, specifically when (as with the Hanford dosimetry)
there are errors that are “shared” over many subjects. The
method that is nearest in spirit to Hofer’s proposal is
Monte Carlo maximum likelihood (MCML). In this
method the likelihood function itself is averaged over a
large number of replications, m, and then maximized
(with respect to its parameters) to find estimates and
confidence intervals for the dose-response parameters of
interest. This procedure, while computationally inten-
sive, does show promise in dealing with errors in
dosimetry systems that include both shared and unshared
components. Further statistical work on this interesting
and challenging problem is encouraged.
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RESPONSE TO STRAM ET AL.

Dear Editors:
The concerns voiced by Stram, Kopecky, and

Thomas in their letter to the Editors of Health Physics do
not invalidate the procedure suggested in my paper.

When faced with epistemic uncertainties of dose
reconstruction:

● averaging over a sample of dose vectors,* where every
single one could be the true vector, does not make
sense;

● one can only obtain a subjective probability distribu-
tion for the statistical power of hypothesis tests; and

● the test result cannot be as precise as “reject the null
hypothesis (H0)” or “do not reject H0” but can only be
in the form of a subjective probability for rejection.

At the end of the day, of course, one needs to either
reject or not reject H0. An estimate of the subjective
probability for rejection is obtained as the fraction of the
m alternative dose vectors, produced by the uncertainty

analysis of the dose reconstruction, that lead to rejection
of H0. If this fraction is larger than a prescribed value �
then it makes sense to conclude that H0 should be
rejected at the present state of knowledge of the dose
values. Which value to use for � may be a matter of
debate. I chose � � 0.05, which happens to be the same
value as for the significance level � of the hypothesis test
with each single dose vector.

Stram, Kopecky, and Thomas criticize that in my
example H0 was rejected for 13 out of m � 100 disease
vectors generated under the null hypothesis although the
significance level (or type I error probability) of the test
with each single dose vector was � � 0.05. Given H0 is
true, then on average 5% of the disease vectors generated
under H0 will lead to rejection of H0 for a given dose
vector. If the m dose vectors are not very different, then
H0 will be rejected for mostly the same disease vectors
irrespective of which dose vector is used in the test. But
in my example (and in the Hanford Thyroid Disease
Study), the m dose vectors are quite different from each
other (i.e., dose uncertainty is large, see Fig. A1 of my
paper). Consequently, the disease vectors leading to
rejection of H0 for a given dose vector will not be the

* A dose vector is an array of dose values assigning one dose
value each to the individuals in the cohort.
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same for each of the m dose vectors. Therefore it is not
surprising that there are more than 5% of the disease
vectors leading to rejection of H0 for a fraction larger
than � � 0.05 of the dose vectors.

It is quite easy to see that one can choose a value of
� larger than � such that the probability of rejection of a
true null hypothesis does not exceed �. This will lower
the subjective probability for the power of the test to be
at least as high as required. Since it is often not possible
to increase this subjective probability sufficiently by

increasing the number of individuals in the cohort, there
is no way out of this dilemma other than a systematic
uncertainty reduction. Sensitivity analysis of the dose
reconstruction tells where to improve the state of knowl-
edge so as to reduce dose uncertainty most effectively.

EDUARD HOFER

St. Sebastian Str. 5
84405 Dorfen, Germany
elhofer@t-online.de
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