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Abstract—Compulsive drug abuse has been conceptualized
as a behavioral state where behavioral stimuli override nor-
mal decision making. Clinical studies of methamphetamine
users have detailed decision making changes and imaging
studies have found altered metabolism and activation in the
parietal cortex. To examine the molecular effects of amphet-
amine (AMPH) on the parietal cortex, gene expression re-
sponses to amphetamine challenge (7.5 mg/kg) were exam-
ined in the parietal cortex of rats pretreated for nine days with
either saline, non-neurotoxic amphetamine, or neurotoxic
AMPH dosing regimens. The neurotoxic AMPH exposure
[three doses of 7.5 mg/kg/day AMPH (6 h between doses), for
nine days] produced histological signs of neurotoxicity in the
parietal cortex while a non-neurotoxic dosing regimen
(2.0 mg/kg/dayx3) did not. Neurotoxic AMPH pretreatment
resulted in significantly diminished AMPH challenge-induced
mRNA increases of activity-regulated cytoskeletal protein
(ARC), nerve growth-factor inducible protein A (NGFI-A), and
nerve growth-factor inducible protein B (NGFI-B) in the pari-
etal cortex while neither saline pretreatment nor non-neuro-
toxic AMPH pretreatment did. This effect was specific to
these genes as tissue plasminogen activator (t-PA), neu-
ropeptide Y (NPY) and c-jun expression in response to AMPH
challenge was unaltered or enhanced by amphetamine pre-
treatments. In the striatum, there were no differences be-
tween saline, neurotoxic AMPH, and non-neurotoxic AMPH
pretreatments on ARC, NGFI-A or NGFI-B expression elicited
by the AMPH challenge. These data indicate that the respon-
siveness of synaptic plasticity-related genes is sensitive to
disruption specifically in the parietal cortex by threshold
neurotoxic AMPH exposures. © 2006 IBRO. Published by
Elsevier Ltd. All rights reserved.
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The effects of amphetamine (AMPH) and methamphet-
amine (METH) in laboratory animals range from cata-
strophic neurodegeneration to neuroplastic changes such
as psychomotor sensitization, that have been extensively
used to model human addictive behaviors (Robinson and
Berridge, 1993; Nestler and Aghajanian, 1997; White and
Kalivas, 1998). The “classic” neurotoxicities produced by
AMPH and METH include extensive neurodegeneration
within the basal ganglia, thalamus, sensory cortex and
limbic system (Commins and Seiden, 1986; Schmued et
al., 2005; Bowyer et al., 1998b; Eisch et al., 1998; David-
son et al., 2001; Jayanthi et al., 2002), or dopamine termi-
nal damage (Seiden and Sabol, 1995). The magnitude and
regional specificity of either AMPH or METH neurotoxicity
are dependent on dose and environmental conditions dur-
ing exposure (such as environmental temperature), as well
as the physiological effects that are produced during ex-
posure (such as body temperature, stress and seizures)
(Bowyer et al., 1992, 1994, 1998a; Miller and O’Callaghan,
1994; O’Callaghan and Miller, 1994).

These findings in laboratory animals are commensu-
rate with the neurotoxicities seen in clinical studies of
METH abusers that have described deficits in striatal and
cortical function (McCann et al.,, 1998; Volkow et al,
2001a,b). Specifically, decreased activation of the parietal
cortex has been described in human METH users during
decision making tasks (Paulus et al., 2002, 2003). As well,
increased parietal cortex metabolism has been observed
in METH users (Volkow et al., 2001a).

Gene expression studies have identified commonali-
ties and differences between METH- and AMPH-induced
neurotoxicity with different exposure paradigms and within
the various brain regions where they produce damage
(Jayanthi et al., 2002; Xie et al., 2002; Bowyer et al., 2004).
We have previously demonstrated gene expression
changes (nerve growth factor inducible protein A (NGFI-A),
nerve growth factor inducible protein B (NGFI-B), and neu-
ropeptide Y (NPY)) that are specifically observed in pari-
etal cortex, and not in the limbic cortex or striatum, 16 h
following a 2-day AMPH exposure regimen (Bowyer et al.,
2004). This 2-day exposure paradigm, which did not pro-
duce hyperthermia, resulted in significant neurotoxicity
within layer IV of the parietal cortex.
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The present study was undertaken to compare AMPH
challenge responsive gene expression changes in the pa-
rietal cortex after neurotoxic AMPH, non-neurotoxic AMPH,
or saline pretreatment. It was anticipated that neurotoxic
AMPH pretreatment would either alter the gene expression
response to AMPH challenge and to a greater extent than
the non-neurotoxic dosing. A greater knowledge of the
molecular effects of neurotoxic and non-neurotoxic AMPH
administration in the parietal cortex may provide insight
into the persistent changes in parietal cortex function and
human behavior observed in clinical studies.

EXPERIMENTAL PROCEDURES
Animal housing conditions and experimental design

Male Sprague—Dawley rats (Crl:COBS CD [SD] BR), 4—5 months
of age, were obtained from the National Center for Toxicological
Research, U.S. Food and Drug Administration (NCTR/FDA, Jef-
ferson, AR, USA). Studies were carried out in accordance with the
declaration of Helsinki and the Guide for the Care and Use of
Laboratory Animals as adopted and promulgated by the National
Institutes of Health and was approved by the NCTR Institutional
Animal Care and Use Committee. This ensured that the minimal
numbers of animals were used with the least suffering to conduct
the studies. Rats were pair-housed in polycarbonate cages on
wood shaving bedding until the day before AMPH exposure, at
which time each rat was individually housed until kill. Rats were
dosed three times per day at 7:00 a.m., 1:00 p.m. and 7:00 p.m.
for 9-days with either 1 ml/kg normal saline, 2.0 mg/kg (free base)
AMPH or 7.5 mg/kg (free base) AMPH and then on the 10th day
with either 1 ml/kg normal saline or 7.5 mg/kg AMPH. The AMPH
(d-AMPH sulfate, Sigma Chemical Company, St. Louis, MO, USA)
was dissolved in normal saline, and injections were delivered s.c.

Twenty-four animals were histologically evaluated for neuro-
toxicity. AMPH-exposed rats (3X7.5 mg/kg/day AMPH) were eval-
uated after either 5 (n=7) or 9 (n=11) days of AMPH at 10:00 a.m.
on the day following their last dose. These were compared with
saline-exposed rats [(n=3), 5 days; (n=3), 9 days). Also, 10 rats
were given the non-neurotoxic (3X2 mg/kg/day) AMPH exposure
for either 5 (n=>5) or 9 (n=>5) days and histologically evaluated to
ensure that this lower AMPH exposure did not produce neurotox-
icity.

Two sets of animals were generated for gene expression
experiments as described in Tables 1 and 2. During dosing,
access to food was restricted for the animals receiving 3xX1 ml/kg
saline/day or 3xX2.0 mg/kg AMPH/day to 15 g of food per day for
the first 4 days and 25 g for the final 5 days to mimic the food
consumption of the animals receiving 3xX7.5 mg/kg AMPH/day.
While food-restriction can effect c-fos expression in the striatum
(Carr and Kutchukhidze, 2000), we did not observe any significant
effects on the AMPH-induced changes in gene expression pro-
duced by the moderate food restriction used in our study (see
Results). The body temperatures and behavior were monitored at
1 and 2 h after every dose for the entire 9-day exposure. The core

Table 1. Treatment groups for first set of gene expression experiments

Treatment Treatment Exposure n

group days 1-9 on day 10

Neurotoxic 3X7.5 mg/kg/day AMPH 7.5 mg/kg AMPH 5
AMPH+AMPH

Saline +saline 3X1 mi/kg/day Saline 1 ml/kg Saline 5

Naive+AMPH No treatment 7.5 mg/kg AMPH 5

Naive+saline No treatment 1 ml/kg Saline 5

Table 2. Treatment groups for second set of gene expression
experiments

Treatment Treatment Exposure n

group days 1-9 on day 10

Neurotoxic 3X7.5 mg/kg/day AMPH 7.5 mg/kg AMPH 8
AMPH+AMPH

Neurotoxic 3X7.5 mg/kg/day AMPH 1 ml/kg Saline 6
AMPH+saline

Saline+AMPH 3X1 mil/kg/day Saline 7.5 mg/kg AMPH 6

Saline+saline 3X1 mi/kg/day Saline 1 mi/kg Saline 6

Non-neurotoxic 3x2.0 mg/kg/day AMPH 7.5 mg/kg AMPH 7

AMPH+AMPH

body temperatures were determined using a rectal thermistor as
described by Bowyer et al. (1994). To avoid AMPH-induced hy-
perthermia the environmental temperature was kept between 17
and 18 °C. Animals having a body temperature above 39.6 °C at
any time point during the 9-day exposure were removed from the
studies. Behaviors and body temperatures were also monitored at
1, 2, and 3 h after either AMPH or saline challenge.

Kill and tissue harvest for cDNA array
data collection

Animals were killed at 3 h after either saline or AMPH challenge by
decapitation, and their brains were rapidly removed and chilled in
4 °C normal saline. The parietal cortex (50—65 mg per hemi-
sphere) and striatum (40-50 mg per hemisphere) were dissected
on ice, immediately frozen on dry ice, and then transferred to
—70 °C storage as previously described (Bowyer et al., 2004).
Parietal cortex was excised between —0.0 to —2.5 anterior—pos-
terior coordinates (Paxinos and Watson, 1995).

RNA isolation and cDNA array hybridization
and imaging

Methods similar to those described by previously (Freeman et al.,
2001a,b) as modified by Bowyer et al. (2004) were used to isolate
total RNA from brain tissue and P32-cDNA generated from this
total RNA to subsequently hybridize with cDNA macroarray
screens. Total cellular RNA was isolated using Tri Reagent (Mo-
lecular Research Center Inc., Cincinnati, OH, USA) (Chomczynski
and Mackey, 1995). RNA quantity and quality were checked using
the Agilent 2100 Bioanalyzer using the RNA 6000 Nano Assay
(Agilent, Palo Alto, CA, USA). Gene expression was evaluated
using the Atlas 1.2K rat array (Clontech, Palo Alto, CA, USA, cat #
7854) per the manufacturer's protocol with slight modifications
(Bowyer et al., 2004). As technical limitations limit array analysis
to four samples per batch, one from each of four treatments was
included in each batch of arrays. An analysis of variance for
treatment and batch effects was performed ‘by probe’ on log2-
transformed and normalized intensities. A median-within-subsets
normalization was used to normalize across regions of the array
(Delongchamp et al., 2004b). All genes were classified as ‘ex-
pressed’ or ‘unexpressed’ in the sample based on the magnitude
of average-over-arrays log2-intensities (Delongchamp et al.,
2005). Within the ‘expressed’ genes, the false discovery rates and
false non-discovery rates were computed to generate differentially
expressed gene lists (Allison et al., 2002; Delongchamp et al.,
2004a). Selection of a gene for QRT-PCR confirmation consid-
ered the false discovery rate from the array data as well as
biological relevance. In the analysis of the parietal cortex cDNA
array data (Fig. 3) significance among the four treatments is based
on Tukey’s Studentized range test applied to the least squares
means of the treatments adjusted for batch effects. These genes
were initially selected based on a low false discovery rate asso-
ciated with the overall F test for a treatment effect.
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QRT-PCR analysis of gene expression

cDNA synthesis was performed on total RNA using Superscript 11l
Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA); 1 ng
RNA, 500 ng Oligo (dT),,_4g, and 10 mM each dNTP, were
incubated for 5 min at 65 °C and then chilled on ice for 2 min. First
Strand Buffer (5%, 250 mM Tris—HCI (pH 8.3), 375 mM KCL, and
15 mM MgCl,), 0.1 M DTT, 40 U RNaseOut, and 200 U Super-
script Il RT were then added. The 20 ul reaction was incubated
for 60 min at 50 °C followed by a final incubation at 70 °C for 15
min for termination.

Quantitative PCR was carried out on a real-time detection
instrument (ABI 7900HT Sequence Detection System) in 384-
well optical plates using TagMan Universal PCR Master Mix
and Assay on Demand primers and probes (Applied Biosys-
tems, Foster City, CA, USA). Primer/probe sets used included:
NGFI-A (aka, egr1: Rn00561138_m1), NGFI-B (aka, Nr4a1:
Rn00561138_m1) and ARC (activity regulated cytoskeletal-asso-
ciated protein: Rn00571208_g1). Reaction components included:
2X TagMan Universal Master Mix with UNG, 450 nM unlabeled
PCR primers, 125 nM FAM dye-labeled TagMan MGB probe, and
1 nl cDNA reaction product in a 10 ul total reaction volume. PCR
conditions were 2 min at 50 °C, 10 min at 95 °C and 40 cycles of
15 s at 95 °C and 1 min at 60 °C. Relative quantities were
calculated using ABI SDS 2.0 RQ software and the 24 analysis
method (Livak and Schmittgen, 2001) with GAPDH (glyceralde-
hyde-3-phosphate dehydrogenase: Rn99999916_s1) as the en-
dogenous control. GAPDH levels had been determined in prelim-
inary absolute quantitation experiments to be unchanged with
AMPH treatment (data not shown). For the QRT-PCR data (Figs.
4 and 5) significance among the four treatments is based on
Ryan-Einot-Gabriel-Welsch multiple range test applied to the
means of the treatments. When applicable, it is more powerful
than Tukey’s Studentized range test, which was used in Fig. 3.

Perfusion and histological processing

For histological evaluation of neurotoxicity, the rats were killed
with 150 mg/kg pentobarbital and perfused with 50 ml saline
followed by 250 ml of 4% formaldehyde in 0.1 M sodium phos-
phate buffer (pH 7.4). Brains were postfixed for at least 2 days,
and then coronal sections 40 um thick were cut and collected in
2% formaldehyde with 0.1 M phosphate (pH 7.4) and stored at

4 °C until processing. The Fluoro-Jade C (FJ-C) labeling proce-
dure was performed according to Schmued et al. (2005). The FJ-C
fluorescent labeling was examined under an epifluorescent micro-
scope with a filter system designed for visualizing fluorescein
(FITC). The isolectin B4-procedure was used to label microglia
and identify those that were activated and phagocytic (Streit,
1990). Sections were incubated overnight at 4 °C in a solution of
B4 isolectin from Griffonia simplicifolia (10 ug/ml; Sigma) coupled
to horseradish peroxidase and the binding sites were visualized
with 3,3’-diaminobenzidine and H,0..

RESULTS
Body temperature and weight

The body temperatures of animals exposed to either saline
or 3X7.5 mg/kg per day AMPH for 9-days (neurotoxic
exposure) and used for gene expression experiments are
shown in Fig. 1. Animals exposed to the neurotoxic doses
of AMPH that had a body temperature above 39.6 °C at
any time point (approximately 5% of all the neurotoxic
AMPH-treated animals) were removed from the study. A
repeated measures analysis of variance shows that the
average body temperatures over the time course did not
differ significantly between AMPH- and saline-treated groups
(P=0.77). Temperatures differed over time (P<<0.0001) and
there was a significant interaction with treatment (P<
0.0001), which appears to reflect a disruption of the circa-
dian temperature variation in AMPH-treated rats. The dose
of 3X2.0 mg/kg per day AMPH (non-neurotoxic exposure)
also did not cause hyperthermia over the 9-day period
(data not shown).

Due to food restriction in all groups other than the
neurotoxic AMPH, there were no differences in weights
prior to kill. A one-way ANOVA indicated there were no
statistical differences in the modest weight losses between
the three groups (F2, 37=2.58, P=0.13). A 14% weight
loss (511+15 g to 442+12 g, n=15) occurred from the
9-day neurotoxic AMPH exposure, an 11% loss in the
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Fig. 1. Effects of AMPH on body temperature over the 9-day dosing regimen. The profile of the temperatures of groups treated with either 31 ml/kg
normal saline (open circles, n=15) or 3X7.5 mg/kg AMPH (solid circles, n=15) is shown over the entire 9-day exposure. The highest temperature
obtained over the first two hours after each dose is shown. A two-way ANOVA indicated there was no overall significant effect of time or dose for the

two groups (see Results).
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9-day saline group (89.0+1.5% of starting weight), and a
13% loss (87.0+1.5% of starting weight) in the 9-day
non-neurotoxic exposure AMPH group.

Neurodegeneration immunohistochemistry

FJ-C* neurons and dendritic processes in the parietal
cortex were observed in 80% of the animals killed after
either 5 or 9-days of neurotoxic (3X7.5 mg/kg/day) AMPH
exposure. However, the FJ-C™ labeling (Fig. 2) was rela-
tively sparse and only a few (one to six) neurons per
section were observed in all the animals. The number of
isolectin-labeled phagocytic microglia was more prominent
(one to 12 per section) than the number of FJ-C-labeled
neurons in the animals killed after the 9-day neurotoxic
AMPH exposure, and occurred in the parietal cortex in all
the animals evaluated. No evidence of neurodegeneration
was seen in any of the animals given 3X2.0 mg/kg per day
AMPH after either 5 (n=5) or 9 days (n=5).

A

1st Gene expression experiment

In the initial experiment gene expression analysis was
conducted on four groups of animals (Table 1). Naive rats
challenged with 7.5 mg/kg AMPH were compared with
naive rats challenged with saline 3 h after injection. These
two naive groups had not been subjected to food restric-
tion nor injected with saline prior to challenge. Rats ex-
posed to neurotoxic AMPH for 9-days and challenged with
AMPH were compared with rats exposed to saline for 9
days and challenged with saline. Previously, we and others
have demonstrated ARC mRNA induction by psychomotor
stimulants (Tan et al., 2000; Freeman et al., 2002; Gonza-
lez-Nicolini and McGinty, 2002; Bowyer et al., 2004). To
establish a baseline expression difference with AMPH
challenge, ARC mRNA levels were measured in the pari-
etal cortex by QRT-PCR. Using this method, naive animals
challenged with AMPH showed an 8.0=1.8-fold (n=5/

C

Fig. 2. Histological changes observed in the parietal cortex after exposure to a 9-day neurotoxic exposure to AMPH. FJ-C labeling did not detect any
evidence of neurodegeneration in the parietal cortex of any animals given 3x2.0 mg/kg AMPH for either 5 or 9 days, an example of which is seen in
panel A. Also, there was no evidence of the presence of either phagocytic or activated microglia in the parietal cortex any of these animals (see panel
C). In contrast, FJ-C labeling was seen at low levels in the parietal cortex of animals given 3x7.5 mg/kg AMPH for both 5 and 9 days, as exemplified
in panel B (white arrows show the location of FJ-C-labeled neurons). The numerous smaller FJ-C-labeled puncta indicate the location of degenerating
dendrites, axons and terminals in the region. Phagocytic (larger red arrow) and activated microglia (smaller red arrow) labeled by isolectin B4 were
also present in all the animals receiving the higher dose of AMPH (panel D). The solid bar shown in the lower left-hand corner of panel A indicates

100 um. Magnification was the same in all four panels.
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Fig. 3. cDNA array analysis of changes in ARC, NGFI-A and B in the parietal cortex of the treatment groups after AMPH challenge. Phosphor image
levels of *2P-labeling of targets hybridizing to array probes were determined by Atlasimage 2.0 software (units arbitrary) and were normalized to
polyubiquitin. The bars represent the means and the error bars the S.E.M. of ARC, NGFI-A and NGFI-B. Significant differences (* P<0.05) among
the four groups were determined using Tukey’s Studentized range test applied to the least squares means of the treatments adjusted for batch effects.

For details of statistical analysis see Experimental Procedures.

group) increase in ARC mRNA relative to their saline chal-
lenged naive controls. Only a 3.2+0.7-fold (n=>5/group)
increase in ARC mRNA was observed with the AMPH
challenge in the neurotoxic AMPH exposure group relative
to their saline-challenged saline-treated controls.

2nd Gene expression experiment

A second set of gene expression experiments was con-
ducted on the parietal cortex and striatum from five groups
of animals. In these experiments, the changes in gene
expression after either a saline or a 7.5 mg/kg AMPH
challenge on the 10th day were determined in animals
pretreated with a 9-day exposure to saline, 9-day non-
neurotoxic AMPH exposure, or 9-day neurotoxic AMPH
exposure (see Table 2 for specifics on the dosing para-
digms and numbers of animals). The second set of gene
expression experiments was conducted with saline-
treated animals rather than the naive animals in the first
experiment to obviate any effects of handling and injec-
tion. cDNA array analysis was conducted on the parietal
cortex and QRT-PCR was performed on the parietal
cortex and striatum.

cDNA array analysis was conducted to examine a large
number of genes simultaneously. Array analysis was per-
formed on the saline+AMPH, neurotoxic AMPH+saline,
neurotoxic AMPH+AMPH, and non-neurotoxic AMPH+
AMPH groups. Genes were considered to be ‘expressed’ if
their average log2-expression exceeded 5. This criterion
partitioned the genes into 582 ‘expressed’ genes and 594
‘not expressed’ genes. The P-value distribution of the 594
not expressed genes did not differ significantly from a
uniform distribution (P=0.26), which indicates little evi-
dence of treatment effects. The P-value distribution of the
582 expressed genes differed from a uniform distribution
(P<0.0001) indicating the presence of treatment effects.

To determine statistically relevant changes in gene expres-
sion resulting from cDNA array analysis, P-values for treat-
ment effects were computed in ‘by gene’ analyses of co-
variance. A set of six genes [NGFI-A, NGFI-B, ARC, NPY,
DNA binding protein inhibitor I, and tissue-type plasmino-
gen activator protein (t-PA)] had P-values less than
0.0005, and an estimated false discovery rate less than
0.028.

AMPH challenge did not produce significant differ-
ences in parietal cortex expression levels of ARC, NGFI-A,
or NGFI-B in the neurotoxic AMPH pretreatment group
(Fig. 3). However, in the non-neurotoxic AMPH- and sa-
line-pretreated groups, AMPH challenge induced signifi-
cant increases in gene expression of ARC, NGFI-A and
NGFI-B. The cDNA array expression levels of t-PA and
four other genes [c-jun, Igfr2, GAP-43, and NPY] mRNA
species proposed to be involved in either synaptic plastic-
ity or learning are shown in Table 3. The expressions of
these genes have been reported to be important in the
processes of either synaptogenesis or learning.

To confirm the changes observed by array analysis,
quantitative RT-PCR analysis of the parietal cortex was
performed (Fig. 4). An additional control group of saline-
treated and challenged animals (saline+saline) was in-
cluded in the gqPCR analysis. The saline+saline group
could not be included in array analysis for technical rea-
sons but was added to the gPCR confirmation to determine
the relative transcript levels of non-AMPH-exposed ani-
mals. ARC, NGFI-A, and NGFI-B were evaluated by QRT-
PCR based on their statistical significance and relationship
to synaptic formation and learning processes. QRT-PCR
analysis identified significantly lower levels of ARC, NGFI-A,
and NGFI-B in the neurotoxic AMPH+AMPH group than the
non-neurotoxic AMPH+AMPH and saline+AMPH groups.
No significant differences were observed after saline chal-
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Table 3. Other genes related to synaptic formation or learning with altered expression in the parietal cortex
Treatment group Gene expression in the parietal cortex
t-PA c-JUN Insulin-like growth GAP-43 NPY
factor receptor 2
cDNA QRT-PCR  cDNA QRT-PCR  cDNA QRT-PCR  cDNA QRT-PCR  cDNA QRT-PCR
array array array array array
Saline+saline NM 1.0+0.2 NM 1.0+0.13 NM 1.0+0.1 NM 1.0+0.1 NM 1.0+0.2
challenge
Saline+AMPH 82+14 1.7+0.5**  66+17 1.3+0.3 88+17  0.8+0.1 491+75 1.0+0.2 159+16  0.9+0.1
challenge
Neurotoxic 28+4 0.8+0.1 403 0.8+0.2 46+9 0.8+0.1 402+61 1.0+0.1 1717 1.3+0.12¢
AMPH+saline
challenge
Neurotoxic 54+5 1.4+0.6° 44+5 0.6+0.2° 57+5 0.8+0.1 38738  0.9%0.1 207+22 1.4+0.3*°
AMPH+AMPH
challenge
Non-neurotoxic 69+10 1.4+0.2° 54+4 1.2+0.6 61+6 1.0+0.1 434+48  0.9+0.1 197+19 1.4+0.2%°
AMPH+AMPH
challenge

Phosphor image levels of hybridization to array probes were determined by Atlasimage 2.0 software (arbitrary units) and normalized to polyubiquitin.
Values shown are mean=SEM. Mean QRT-PCR values are normalized to a value of 1 for the Saline+Saline Challenge+SEM, with GAPDH used as

the endogenous control.
2 Significant difference from saline+saline.
b Significant difference from neurotoxic AMPH+saline.

¢ Significant difference from saline+AMPH (P<0.05, one-way ANOVA, Student-Newman-Keuls pairwise post hoc test). NM, not measured.

lenge between the neurotoxic AMPH+saline and saline+
saline groups. The induction of ARC between saline+AMPH
and saline+saline groups was similar to that observed
between the naive+saline and naive+AMPH groups in the
1st gene expression experiment. This suggests that nei-
ther the moderate food restriction, nor daily saline injec-
tions significantly altered gene expression changes.

Several additional genes were also examined post hoc
in the parietal cortex by QRT-PCR (Table 3). These genes
demonstrated potential differences in expression with ar-
ray analysis. c-jun Expression was significantly higher in
the saline+AMPH as compared with the neurotoxic
AMPH+AMPH. t-PA mRNA levels were significantly in-
creased by AMPH challenge regardless of the 9-day pre-
treatment. For t-PA, there was no effect of neurotoxic
AMPH exposure on responsiveness. NPY demonstrated a
different response profile with AMPH pretreatment (non-
neurotoxic and neurotoxic) resulting in significantly higher
mMRNA levels than with saline pretreatment regardless of
the challenge. c-jun AMPH challenge responsiveness was
blunted in the neurotoxic AMPH+AMPH group as com-
pared with the saline+AMPH group. No significant differ-
ences in the levels of GAP-43 and Igfr2 were observed by
QRT-PCR. mRNA levels of glial fibrillary acidic protein
(GFAP) were unchanged between neurotoxic AMPH+
AMPH and saline+saline groups (relative quantities,
1.19+0.13, n=8 versus 1.00=0.15, n=6).

The mRNA levels of ARC, NGFI-A and B were also
determined by QRT-PCR in the striatum to determine an-
atomical specificity of the observed changes (Fig. 5). Un-
like the parietal cortex, the increased expression of all
three genes produced by the AMPH challenge was equiv-
alent regardless of the pretreatment. NPY mRNA levels

were not significantly different among the treatment groups
in the striatum (data not shown).

DISCUSSION

The results of these studies demonstrate that administra-
tion of 3x7.5 mg/kg AMPH per day for 9-days is at or just
above the threshold for neurodegeneration in the parietal
cortex while 3%X2.0 mg/kg AMPH administration for 9-days
does not produce signs of neurotoxicity. The neurotoxic
AMPH exposure but not the non-neurotoxic AMPH expo-
sure results in a significantly diminished AMPH challenge
induced upregulation of the early-immediate genes ARC,
NGFI-A, and NGFI-B in the parietal cortex. This diminished
response was not observed in the striatum. t-PA AMPH
challenge induction was unaltered in the parietal cortex
and NPY increases with AMPH challenge were augmented
by AMPH pretreatment. The inhibited upregulation of
NGFI-A, NGFI-B, and ARC may indicate that a lessened
capacity for new synaptic formation occurs within the pa-
rietal cortex but not the striatum after the neurotoxic expo-
sure to AMPH. As well, this diminished responsiveness in
the parietal cortex could serve a neuroprotective effect for
further damage due to AMPH exposure or other neurotoxic
insults.

The 9-day AMPH neurotoxic regimen employed pro-
duced neurodegeneration with respect to histological end-
points. The number of degenerating neurons (FJ-C la-
beled) and phagocytic microglia detected at the end of the
9-day neurotoxic AMPH exposure were only 1/4 of that
observed in previous studies with higher doses of AMPH
(Jakab and Bowyer, 2002; Bowyer et al., 2004). Approxi-
mately 30% of the animals evaluated given the 3X
7.5 mg/kg AMPH dose had evidence of only one or two
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neurons degenerating per hemisphere. The lower dose of
3%2.0 mg/kg AMPH produced no histological signs of
neurodegeneration. Therefore, it is likely that the
3X7.5 mg/kg AMPH is near the minimal dose (less than
twofold) necessary to produce neurotoxicity in the 9-day
time frame.

GFAP is used as a classical molecular marker for
detecting the neurotoxicity produced by amphetamines in
the presence or absence of hyperthermia (O’Callaghan
and Miller, 1994; Jakab and Bowyer, 2002; Bowyer et al.,
2004). In the present study, GFAP increases in the parietal
cortex and striatum were not sufficient to reach statistical
significance. However, this may also in part be due to the
timing of kill and the fact that mRNA levels were deter-
mined and not actual GFAP protein levels within regions of
the parietal cortex.

ARC, NGFI-A, and NGFI-B are known to be signifi-
cantly upregulated in the striatum, and to a lesser extent in
the cortex after AMPH exposure (Nguyen et al., 1992;
Wang et al., 1994; Kodama et al., 1998). In our previous
work (Bowyer et al., 2004), we proposed that the de-
creases in the levels of NGFI-A and NGFI-B 16 h after a
2-day neurotoxic AMPH insult are a homeostatic-type re-
sponse involved in returning expression levels back to a
pre-AMPH exposure stature. While array analysis was
performed in this study to discover novel changes in gene
expression in response to AMPH challenge the most sa-
lient responses found by array analysis were ARC,
NGFI-A, and NGFI-B, which have been previously de-
scribed by us and others. The present primary finding of
this study is that neurotoxic AMPH exposure inhibits ARC,
NGFI-A, and NGFI-B induction by AMPH challenge. One
commonality to the gene expression changes found in the
present study is their relation to synaptic plasticity. ARC
induction, in particular, has been implicated in the forma-
tion and strengthening of synaptic formation after N-methyl-
p-aspartate (NMDA) receptor stimulation and learned be-
havior (Lyford et al., 1995; Guzowski et al., 2001; Steward
and Worley, 2001; Ramirez-Amaya et al., 2005). In addi-
tion, NGFI-A (egr1, zif/268; (Cole et al., 1989; Wisden et
al., 1990)) has been implicated in synaptic formation and
learning (Wang et al., 1994, 1995), although it may not be
as closely linked as ARC (Guzowski et al., 2001).

NGFI-B (Nrd4a1, nurr77) upregulation by the AMPH
challenge was also diminished by the 9-day neurotoxic
AMPH exposure. However, the 9-day non-neurotoxic
AMPH exposure did diminish NGFI-B upregulation by
the AMPH challenge as compared with saline-pretreated
animals challenged with AMPH. Thus, the relationship of
NGFI-B to histological neurotoxicity is not as clear as ARC
and NGFI-A, but NGFI-B alterations remain important con-
sidering the role of NGFI-B in memory consolidation (von
Hertzen and Giese, 2005). The reduced ability to upregu-
late these three genes after a neurotoxic AMPH exposure
may indicate that the parietal cortex, and not the striatum,
has a reduced capability of forming new synapses and
strengthening existing synapses. Further experiments will
be required to determine if protein levels are altered in a
similar manner.

Several other genes examined demonstrated alterna-
tions with the different pretreatments. t-PA induction with
AMPH challenge was unaffected by pretreatment, while
NPY induction was only observed with AMPH pretreat-
ment. Increased c-jun expression with AMPH challenge
was inhibited by neurotoxic AMPH pretreatment. These
changes are of interest as c-jun (Tischmeyer and Grimm,
1999) and t-PA expression (Madani et al., 1999), have
been implicated in learning. In cortical regions, NPY has
been postulated to play a protective role against neurode-
generation (Cheung and Cechetto, 1995; Kopp et al,
1999).

Unlike NPY, it is not known whether these decreases in
AMPH-induced upregulation of ARC, NGFI-A, and NGFI-B
expression after the threshold neurotoxic exposure subse-
quently serve a neuroprotective effect. Decreased neuro-
nal NMDA receptor density due to ARC decreases would
be expected to be protective against NMDA-mediated neu-
rotoxicity. The loss of gene induction responsiveness may
also be a desensitization phenomenon resulting from the
continual and excessive vibrissae/barrel field and somato-
sensory forelimb region stimulation occurring with the
AMPH-induced stereotypic grooming (O’Dell and Marshall,
2002). This may limit the output from this area of the cortex
to the striatum and thalamus (Tracey and Waite, 1995)
which are also damaged by AMPH and METH (Commins
and Seiden, 1986; Stephans and Yamamoto, 1994; Sei-
den and Sabol, 1995; Bowyer et al., 1998a; Eisch et al.,
1998).

The decreased AMPH-induced upregulation of ARC,
NGFI-A, and NGFI-B expression might be considered to
be a tolerance effect (Kuczenski and Segal, 1997; Shilling
et al., 2000). While this is possible, rats challenged with
7.5 mg/kg AMPH after twice daily injections of 7.5 mg/kg
AMPH do not exhibit locomotor behavioral tolerance (Per-
sico et al., 1993). As well, the diminished responsiveness
to AMPH challenge is specific to ARC, NGFI-A, and
NGFI-B as t-PA and NPY did not exhibit this profile in the
parietal cortex. Furthermore, the loss of gene induction
was not associated with the non-neurotoxic AMPH expo-
sure. This effect is also anatomically specific, as none of
the pretreatments (including neurotoxic AMPH exposure)
affected the increases in ARC, NGFI-A, and NGFI-B ex-
pression with AMPH challenge in the striatum. Together,
these observations appear to rule out a role of tolerance in
the data obtained in our study.

Further studies will be necessary to determine whether
these changes relate to learning and decision making def-
icits seen in humans abusing amphetamines (Paulus et al.,
2002, 2003; Volkow et al., 2001a,b). Deficits in learning
related to object recognition and object placement memory
have been reported after METH neurotoxicity (Bisagno et
al., 2002; Schroder et al., 2003). While such learning def-
icits are most commonly ascribed to altered hippocampal
and limbic function (Steckler et al., 1998), tactile function’s
interaction with memory may serve a role in the behavioral
tests involving object recognition that are disrupted by
METH (Bisagno et al., 2002; Schroder et al., 2003). Deci-
sion making in the face of uncertainty has been found to be
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altered in METH users and to correlate to parietal cortex
activation levels (Paulus et al., 2002, 2003). As the parietal
cortex has been shown to be critical, in addition to a
number of other brain areas, for decision making gene
expression changes related to synaptic plasticity may re-
late to these behavioral outcomes (Paulus et al., 2001).
Future studies localizing these changes to specific neu-
rons characterized for their specific inputs and projections
are needed to conclusively determine their role in
behavior.

CONCLUSION

In summary, our data indicate that the upregulation of
ARC, NGFI-A, and NGFI-B response to AMPH challenge
is diminished in the parietal cortex by a 9-day threshold
neurotoxic exposure to AMPH. This effect is not produced
by a 9-day non-neurotoxic exposure to AMPH that does
not produce histological evidence of neurodegeneration. In
the striatum, ARC and NGFI-A and B induction with AMPH
challenge was unaffected by neurotoxic or non-neurotoxic
AMPH exposure. The loss of responsiveness of ARC and
NGFI-A, NGFI-B induction may indicate a diminished ca-
pability of this region to form new synaptic connections and
subsequently may have a protective effect on parietal cor-
tex neurons against either AMPH- or NMDA-mediated
neurotoxicity.
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