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Abstract 

The high cost of laboratory-based analysis has 
driven the development of rapid screening 
methods for hazardous chemicals in unknown 
wastes. Screening methods permit the "triage" 
of samples into those that (a) contain no 
regulated wastes, (b) definitely contain 
regulated chemicals, or (c) are ambiguous. 
Only the last category requires detailed 
analysis. 

The requirements of portability and ease of use 
place extraordinary demands on the designers of 
analytical instruments. In this paper, we will 
discuss several approaches to obtaining 
qualitative analytical data from multiple 
sensors or highly-selective sensors. These 
are: (a) a sensor with a selectivity 1000-
10000 times greater for chlorinated or 
brominated compounds than for unsubstituted 
ones; and (b) pyrolysis-EC, which uses 
catalytic pyrolysis, arrays of electrochemical 
sensors, and pattern recognition methods to 
identify pure chemicals and mixtures. Two 
applications of the latter are described, the 
rapid identification of chemical vapors, and 
the grading of grain according to "odor". 

Introduction 

The high cost of laboratory-based analysis has 
driven the development of rapid screening 
methods for hazardous chemicals in unknown 
wastes. A screening method is one that can be 
done on-site, by non-chemists, inexpensively 
and safely. On the other hand, a screening 
method is less likely to provide the definitive 
data that a full laboratory analysis, perhaps 
requiring GC/MS or ICP, might give. In the 
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case where no information is available, however, 
even limited information can be of value, 
especially if it is used to supplement data 
gathered from other sources. For example, a 
suite of simple screening methods may be used for 
the "triage" of unknown samples into positive, 
negative, and ambiguous groups. Often, the 
nature of the chlorinated compounds may be known 
from purchase or production records, so that only 
the ambiguous category may require detailed 
analysis. Screening methods may also be useful 
for confirming conclusions that have already been 
drawn from independent data, for example, that a 
collection of similar barrels do indeed contain 
the same materials. 

The willingness to accept reduced certainty for 
the sake of economy and practicality opens the 
door to a wide variety of useful techniques that 
can be used in the field. In this paper, we will 
describe two such methods. 

A unique semiconductor sensor has been found that 
is very sensitive to chlorinated and brominated 
organic compounds (1-3). It shows no detectable 
response to hydrocarbons, oxygen- or nitrogen­
containing organic compounds, or fluorocarbons. 

A second method that has given us promising 
results has been catalytic pyrolysis of chemical 
vapors combined with electrochemical detection. 
Compounds that are not normally thought of as 
electrochemical analytes, such as chloroform or 
cyclohexane, can be partially oxidized on a hot 
platinum surface (4). The volatile products 
always include some that give a response on a 
porous-electrode electrochemical sensor. We have 
confirmed over several years that the products of 
the pyrolysis are reproducible for most organic 
and some inorganic compounds when the conditions 
are kept reasonably constant (5). We have al so 



confirmed the critical requirement that the 
products are independent of analyte 
concentration, at least at concentrations of 
below 200 ppm. We call this method pyrolysis­
EC. 

The present embodiment of pyrolysis-EC is an 
instrument we call the CPS-100. This device 
uses an array of electrochemical gas sensors 
with different, but overlapping, selectivities. 
The incoming gases are pyrolyzed over noble 
metal catalysts heated at controlled 
temperatures. The operation of the instrument 
is orchestrated by a fairly powerful computer 
which can perform pattern analysis on the 
resulting data. In this paper, we report the 
results of a study on pattern recognition of 
odors in spoiled grain. The unique properties 
of neural networks have been shown to have 
significant potential for handling low-quality 
information. On reflection, this unique 
application is not so different from the 
problems encountered in classifying and 
handling hazardous wastes. 

A simplified implementation of pyrolysis-EC has 
also been tested that uses a single sensor and 
a single catalytic filament. This drastically 
simplified system was still capable of 
distinguishing many organic chemicals. With 
fewer parts and lower power consumption, this 
simplified configuration may be suitable for 
selective hand-held vapor monitors. 

Experimental Methods 

Organochlorine sensor. The sensor was made by 
mounting a coil of platinum wire on a threaded 
base. A separate platinum wire is also mounted 
on the base and located axially within the 
coil. A mixture of lanthanum oxide, lanthanum 
fluoride, and a binder was applied to the coil. 
The coil was slowly heated with an electric 
current until a reaction occurred, forming the 
active material. The sensor is used by heating 
it to 550 °C with an electric current; 
conductivity is measured between the heating 
coil and the separate platinum electrode. When 
the sensor contacts the vapor of a chlorinated 
organic compound, the conductivity increases. 
A simple circuit can be used to provide a 
voltage output which is proportional to the 
concentration. 

Permeation device. The permeation sampler 
consisted of a bundle of 0.025n o.d. 
dimethyl silicone tubing (Sil ast ic, Dow-Corning) 
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(Figure I). The bundle could be placed in an 
aqueous sample containing dissolved organic or 
organoch1orine compounds. A continuous flow of 
air was circulated through the lumen of the 
tubing, and organic material diffusing inward 
through the silicone membrane entered the gas 
phase. In a typical experiment, two permeators 
were used to provide separate reference and 
sample signals (Figure 2). 

Pyrolysis-EC. The CPS-100 Toxic Gas Monitor has 
been described in several earlier publications 
(5-11); its configuration is diagranmed in Figure 
3. The four sensors had platinum or gold working 
e 1 ectrodes. For the grain odor experiments, the 
sensors were biased at differing oxidizing 
potentials, since reducing potentials gave very 
low or poor signals. A single rhodium pyrolysis 
filament was operated at 2 5, 450, 750, and 850 °C. 
The combination of four sensors and four 
temperatures gave an array of sixteen data points 
per analysis. 

The apparatus for simplified pyrolysis-EC 
consisted of a single platinum filament and a 
single platinum-electrode gas sensor. A control 
circuit maintained the catalyst at any one of 
four preselected temperatures. The fi 1 ament was 
enclosed in a Teflon-lined chamber of small 
vo 1 ume through which the ana 1 yte gas was pumped 
at about 50 cc/min. The gas then passed through 
a short tube to the sensor. The experiments were 
controlled, and data gathered, by a commercial 
datalogger (Onset Computer Corp., N. Falmouth, 
MAJ. 

Gas samples, Accurate samples of test compounds 
in vapor form were made by injecting measured 
volumes of the 1 iquids into 40-1 iter Tedl ar gas 
bags and fi 1J i ng with air pumped through a 
charcoal/Purafil filter. A flowmeter together 
with a stopwatch was used to determine the volume 
of air being pumped into the bag. Samples of 
pennanent gases were made from standard mixtures 
obtained from commercial sources. Volumes of the 
standard mixtures and air were calculated and 
pumped into a sample bag, using the flowrneter and 
stopwatch to determine the volumes. 

Samples from grain odors were generated by 
heating a sample of grain to 60 •c and flushing 
with a measured volume of air. The effluent air 
was passed through an ice trap to collect a "non­
volatile" fraction and a liquid nitrogen trap to 
co 11 ect the "vo 1 at il es". The two fractions were 
run separately and in duplicate. Grain samples 
were obtained from Ors. L. Seit~ and 0. Sallr of 
the USDA Grain Marketing Research Laboratory. 



Results and Discussion 

Organochlorine sensor. Typical responses of 
the sensor to different vapors in air are shown 
in Figure 4. The sensor was exposed to 100 ppm 
concentrations of chlorobenzene, benzene, and 
n-hexane. On 1 y ch 1 orobenzene caused a 
response. Of a series of compounds 
investigated, only HCl, and compounds 
containing carbon-chlorine and carbon-bromine 
bonds, gave a response (Table I). The response 
to concentration is essentially linear over at 
least four orders of magnitude. 

Combined with the permeator device, the highly­
selective organochlorine sensor was shown to 
respond rapidly to dissolved material. Figure 
5 shows the response to chloroform in water at 
concentrations that dip below the part-per­
million level. This sensor can be used to 
measure an organochlorine in groundwater, for 
example, without any sample preparation. Many 
sites, especially military bases, and areas 
such as Roe kford, I 11 i noi s, where there is a 
large concentration of machine shops, have 
serious problems with chlorinated C2 compounds 
in the groundwater. In these cases, the nature 
of the compounds is generally known, and 
selectivity is not a concern. Neve rt he 1 ess, 
the sampling procedure, sample preparation, and 
gas chromatography to determine these compounds 
is involved and expensive. The availability of 
a simple probe that can just be inserted into 
a groundwater sample will greatly reduce the 
number of laboratory analyses that need to be 
done. The s i 1 i cone materi a 1 is chemically 
resistant, and can be left in place for years. 
Particulates cannot enter the system. Lastly, 
and import ant l y, the permea tor is very 
inexpensive. 

Pyrolysis-EC: Grain Odors Only a few organic 
compounds wi 11 react directly with amperometric 
sensors under field conditions. On a typical, 
platinum-electrode sensor, we can detect 
alcohols, epoxides, and formaldehyde. We also 
detect many permanent gases, such as carbon 
monoxide and hydrogen sulfide. Among these 
gases that do react, there is no inherent 
selectivity. The use of different sensors and 
controlled pyrolysis, however, gives us extra 
degrees of freedom that can be used to achieve 
selectivity. 

The grain odor problem is very instructive, 
even to an audience that is concerned with 
identifying individual hazardous compounds. 
Sensor-array-based methods, including the 
pattern-analysis methodologies used, treat 
mixtures no differently than single compounds; 
both give characteristic patterns which can be 
identified against a pattern made from the same 
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mixture. The individual components of a mixture 
need not be identified. 

Grains are presently classified by odor by a 
panel of trained inspectors. The results are 
necessarily subjective. More importantly, the 
subjective opinion is the standard; there is no 
point in telling a customer that a sample of 
grain is acceptable because a machine says so. 
If it smells bad, it smells bad. On the other 
hand, trained inspectors frequently disagree to a 
greater or lesser extent on both the category and 
degree of an odor (Table II). Attempts to 
identify specific compounds associated with the 
odors, using GC or GC/MS, have produced masses of 
data, but limited results (12, 13). 

The data obtained on the CPS-100 was subjected to 
two different kinds of analysis. The first was 
an established method called k-nearest neighbor 
(KNN, ref. 5). The 16 data points acquired by 
the CPS-100 were treated as a vector in 16-
dimensional space. Each known sample of grain 
produced a vector which could be associated with 
a particular odor category. The vectors from the 
unknown samples were tested against this 1 i brary 
of known vectors by calculating the scalar 
distance between the unknown vector and each 
known vector in the library. All vectors were 
first normalized to constant length, to remove 
the concentration-dependent part of the 
information. The shortest distance is the 
identification (Figure 6). 

The second method is the neural network (for 
general references, see 14, 15). This is a 
recently-developed method that has received so 
much "hype" that we were at first suspicious of 
it. However, its performance has been 
outstanding in this application, the moreso 
because we used a COl!lllercially-available packaged 
method (NeuroShell, Ward Systems Group, 
Frederick, MD), without really understanding the 
internal mechanics of the method. This is a very 
important feature of a method which may be used 
in the field by operatives with differing 
technical backgrounds. 

Figure 7 shows the CPS-100 data, in histogram 
fonn, for "good" wheat samples. The patterns are 
very similar, in contrast with data showing some 
extreme samples (one "sour" (S3) and one "insect" 
( 13) odor) (Figure B). A experiment using the 
older KNN method was run using a dataset derived 
from three grades of wheat samp 1 es. A 1 i brary of 
vectors was prepared by averaging the signals for 
all runs on each sample of wheat. The scalar 
distances were calculated between all possible 
pairs of the original data set and each of the 
averaged vectors. A summary of the 
identifications is shown in Table III. We were 
very (pleasantly) surprised to find that those 
samp 1 es that are "misclassified" by the KNN 



algorithm are also those that the human 
inspectors did not agree on! Sample 42, for 
example, was voted "good" by two inspectors and 
"musty" and "COFO" by the other two. ( COFO 
means "commercially objectionable foreign 
odor".) 

Although KNN has shown good performance in past 
applications (5, 6, 8-11), it has some serious 
practical disadvantages. The greatest is that, 
when the sensors become aged or drift for other 
reasons, the complete training set must be 
remeasured. 

A 1 arger data set had been gathered by the time 
the work was begun with the neural nets. This 
data set had a peculiarity built into it: one 
of the sensors in the array went bad halfway 
through the measurements and was replaced. The 
data taken after that point gave noticeably 
different histograms. 

The data set was arbitrarily divided into two 
groups. One group was used to "train" the 
neural network, a process requiring up to 150 
hours on a 386-type computer. The actual 
classification process took seconds. Two tests 
were run on the optimized neural net. First 
was a test to confirm that the optimization 
process was complete. This was done by using 
the training set itself as unknowns. The rate 
of correct classification was 100%. Second, 
random, linearly-distributed errors were added 
to the data, followed by classification. The 
net tolerated 5% error without missing a 
correct class i fi cation. Added error of 10% and 
15% caused a small amount of degradation (Table 
IV). 

Having confirmed the robustness of the neural 
net, it was challenged using the reserved 
dataset. The net had not seen these numbers 
before; nevertheless the rate of correct 
classification was 65% (Table IV). This is 
low, although substantially better than random. 
Because the test conditions had changed during 
the measurements, we added another element to 
the data vectors to differentiate the 
measurements made before and after the sensor 
was changed. The numbers were arbitrary, 100 
for the old sensor and 200 for the new. Using 
these 17-element vectors, the neural net was 
retrained. Now, the rate of correct 
classification of the reserved dataset jumped 
to 83%. 

Pyrolysis-EC: Simplified Version This work is 
the result of a project to determine whether a 
greatly-simplified form of pyrolysis-EC would 
be useful for situations requiring limited 
selectivity. Figure 9 is a diagram of the 
patterns obtained for representative compounds 
in a typical experiment. The temperature of 
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the catalyst is programmed for two minutes at 
room temperature, two minutes each at 
temperatures of 500, 600, 700, and 800 °C, and 
finally two minutes at room temperature again. 
The patterns that are obtained are distinct for 
many compounds. If your field problem is simply 
confirming the identity of the contents of a 
number of similar barrels of an unknown chemical, 
the pyrolysis-EC approach may in itself be 
sufficient, although most practitioners would 
feel more comfortable if it supplemented other 
field screening methods. 

A table of distances for this limited 
configuration is shown in Table V. The smaller 
the number, the more similar the two compounds 
will appear for a given configuration of the 
experimental apparatus. This configuration gives 
very good identification of ethylene oxide in the 
presence of all but alcohols. 

The pyrolysis-EC method has several advantages 
that are especially conducive to field work. It 
is suitable for portable instrument use; the 
components are shock-resistant and will operate 
in any orientation. They compact and 
lightweight, and the power requirements are 
small. They are also inexpensive. 

Conclusions 

1. A sensor has been developed and 
characterized that can identify chlorinated or 
bromi nated compounds in the vapor phase or, with 
the use of a permeable membrane, in dissolved 
form. 

2. A combination of catalytic pyrolysis and 
electrochemical detection (pyrolysis-EC) can be 
used to distinguish unknown compounds with a 
modest degree of selectivity that may be adequate 
for many field applications. 

3. Pyrolysis-EC data, combined with k­
nearest neighbor and neural network 
classification methods, has been used effectively 
for such varied tasks as the classification of 
stored grains by odor, or the c 1 ass if icat ion of 
waste chemicals by functional group (11). 

4. The neural net can be made to adapt 
dynamically to instrument drift. In effect, it 
learns from experience. 

4. Errors made by the classification 
methods correspond in a general way to errors 
made by human experts faced with similar 
ambiguities in the data. 
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Table I. Sensitivities of the organochlorine 
sensor to several halogenated compounds. 

Yapora c::oncantntion ,_, t X :!lr.::~ ...... 1 

'"-H-"'1 125 0.02, 

"-H-llr 125 0.016 

C.H,I 125 0,003 

C-"-F U,5 0.005 

c.11..c:1 ti2,!I 0,029 

C"-Br 62.5 0.020 

c.11.r 125 0,003 

ccir. 12,5 0.022 

Table II. Subjective odor characterization of the 
grain samples used in our study. 

OMRL tKSPt:CTORS 
SI\MPLI!: FOIS AVE 

110. Dll LS kF Hit CONll!:IUSUS !Ntz:KSlTY 

rn C2 OKO OKO OKO OK o.~ 
ro ORO 01(0 Ml C2 OK 0.1 

P'67 OKO Ml OM ORO OK 0.2 

F78 ORO OICO H2 OKO OK o.s 
1'128 OKO OICO OKO OltO OK o.o 
P'30 I3 13 I3 n IKll!:CT J. 0 

rn 12 C3 12 Cl IIIIIECT 2.0 

F69 11 u 12 Hl IIIHCT 
'' 0 

F89 13 13 12 S3 IIISEC"T 2.7 

N53 12 S3 S2 SJ S3 2.s' 
11166 83 S3 S3 53 SJ 2. g' 

11168 S2 S3 52 82 53 2, 61 

Table III. KNN classification of the USDA grain 
samples. 

"C 
0 
0 

12 C!) 

~ ::> 
i "c: 

:: 
0 .E 
C: 

.:it: 
C: 

? 
:5 
0 
rn 

Average of Known Vectors 
Sour 

(53, 166, 168) 
Good Insect 

(128 42 67 41) (30 39, 89) 

128, 128. 42, 
42 42 

67, 67, 41, 41, 
41, 41 

89 30, 30. 30, 39, 30 
39,89,89,89 

168 168, 168 53, 166, 166. 
166,168,168 

90 

Table IV. Summary of the accuracy of the neural 
network algorithm for identifying vapors drawn 
from the wheat samples. 

Sorghum 
11.ili...fil 
1. Origlnt1 Data 
2. 51 Error added 
3. IOI Error Added 
4. 151 Error Added 

Accuracy of Whut S.,nples Accuracy of 
ld••Uf1'•Uoo ldentlf!c•U•• ~ 

101)1 
JODI 
981 
921 

!. Tota 1 Data IOOI 
2. Train on 551 of HI 

Data nt 
3. Add channt l for 831 

Test Condit Ions 

Table v. Distance matrices for a series of 
organic compounds. Table V-A is several 
concentrations of ethylene oxide; the 
concentrations are shown as the numbers in the 
symbols, e.g., ETOIOO • 100 ppm. Table V-8 shows 
the distances among the series of thirteen 
compounds. The Abbreviations are: 
CHX - cyclohexane ISO - tsopropanol ACE - acetone 
ETE - ether KER - kerosene XYL - xylene 
CLO - chloroform STY - styrene IJl - hi lothn! 
FORM - Formaldehyde ETG - ethylene glycol ETA - ethanol 
ETD - Ethylene Oxide 

TABLE V-A 
Distance for Ethylene Oxide 

rro100 rro,o ET020 ff05 ET()5 rl'01 
ffOlOO o.oo 0,31 0,21 0,22 0.2, 1. 02 
ff040 0,31 o.oo 0.07 0,21 0,11 o.ao 
ET020 0.21 0.01 o.oo 0.21 0.11 o.u 
ET05 0.22 0.21 0.21 o.oo o.o, o.u 
ETOS 0.25 0,11 0.16 o.o, o.oo 0,10 
ET01 1.02 0.10 0.12 0,H o.ao o.oo 

TABLE V•B 
CIIX ISO ACE rn: XYL ICEll CLO STY FORM 11A1, ffG ETO rtA 

CHX O 1,57 0.19 1,76 1,02 1,07 o.e, 1,U 1,74 2,0t 1,52 1.73 1,f! 
ISO 1,57 0 1,'2 0,44 0,76 0,'2 l." 0,46 0,31 0,72 0,4 0.62 o,ll 
ACE o.u 1.0 o 1.st o.n o.u o.s5 1.21 1.51 1.u 1.3' 1.55 1,77 
nt 1.16 o.u 1.St o o.n o.H 1.n o.u 0.2 o.u o.J o.as o,31 
XYL 1,02 0,71 O.H 0,12 0 0,34 O,H 0.'5 O.H 1,27 0.55 o.75 0,91 
Kt!! 1.01 o.u o.n o.74 o.34 o 1 o." 0.11 1.0, o.s, o.75 o,tl 
CLO o.n 1." o.55 1,53 0.11 1 o 1.21 1.u 1.tl 1.n 1.u 1.,2 
sn 1.u o.u 1.21 o.o o.u o.n 1,16 o o.u o.,, o.u o.37 o.,, 
FORM 1,74 0,31 1,H 0,2 0,15 0,76 1,55 0,'5 O 0,61 O,H 0,41 Q,56 
HAL 2,09 0, 72 1,13 0,51 1,27 1,01 1,13 O,H 0,61 0 O,U o. 79 0, 7' 
!:T3 1,52 o., 1.35 0,3 0.55 0.54 1,33 0,12 0,34 o.u Q 0,3 0,55 
!:TO 1,73 C.62 1,55 0,25 0,75 0,75 1," 0,37 0,41 0,79 0,3 o 0,27 
ETA l,U 0.11 1,77 0,31 0,H 0.15 1,U 0,63 0,56 0.73 0,55 0,27 0 
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Figure 1. Permeation apparatus used to extract 
organochlorines from water. 
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an~lys i s of aqueous chlorinated hydrocarbons 
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Figure 3. Configuration of the CPS-100 Toxic Gas 
Analyzer, fitted with four electrochemical 
sensors and two catalyst filaments. 
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Figure 4. Response of the organochlorine sensor 
to chlorobenzene, benzene, and hexane . 
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Figure 5. Response of the organochlorine sensor 
to decreasing concentrations of chloroform. 
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Figure 6. Schematic representation of the KNN 
pattern recognition method in 3-dimensional 
space. Pl and P2 are library patterns for 
known compounds, and Ul is the vector for an 
unknown. The distances from Ul to Pl and P2 
are calculated and compared . 
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Figure 7. Histogram of normalized responses of 
the CPS-100 to four samples of "good" grain. 
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Figure 8. Normalized responses of the CPS-100 to 
"good" (OK), sour (S3), and COFO grain. 
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Figure 9. Responses of the simplified 
pyrolysis-EC apparatus to six different 
chemicals. In this experiment, the catalyst 
filament was programmed in 2 minute steps at 
room temperature, 500, 600, 700, and 800 
degrees, and room temperature again. 

DISCUSSION 

GORMAN BAYKUT: My question is about the chemical analysis with these 
sensors. I'm nol talking right now about the wheal vapor. But in terms of real 
chemical analysis. you must know the compounds you are going to analyze, 
otherwise you can ·1 do the analysis because you need training. You can't analyze 
the unexpected compounds. am I right'? 

WILLIAM BUTTNER: The way the CPS IOO Program was originally 
envisioned. you had to install the Ii brary vectors of potential compounds. If you 
were going lo look at TCE. there had to be a library vector associated with the 
TCE. On the other hand, these arrays are not totally selective in response. The 
response to TCE was similar to PCE, that is, tetrachloroethane. You could 
therefore identify classes of compounds. But you are right. You have to have 
some idea of the type of vapors present. A totally unknown situation will still give 
some ambiguity in your analyses. 

GORMAN BAYKUT: But I think even though your software is powerful, you 
need a training period for every compound. How about the mixtures'! If you 
analyze the mixtures will there he a problem'? 

WILLIAM BUTTNER: Mixtures are a problem forth is type of system. Cenain 
types of mixtures are well behaved. Gasoline, for example; is a mixture of many 
types of compounds, but it behaves as a single class. 

GORMAN BAY KUT: I'm referring to the cracker. You have a thermal cracker 
in front of the electrochemical sensor areas. Sometimes you have a mixture of 
two or three compounds, or five. or seven and they react in the cracker. You gel 
different answers, and the correlation is not linear. 

WILLIAM BUTTNER: What you're referring to are the reaction products of 
the thermal catalysis that result from mixtures heing exposed to the sensors. Yes. 
you are right. There is frequently a nonlinear response. The reaction products 
frequently do react with each other. That's a comment relevant to many field 
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screening techniques. In some mixtures that factor is a little less significant. If 
you do generate very reactive compounds, for example from chlorinated com­
pounds TCE. you do gel a nonlinear response. That is a problem. This instrument 
was designed to look at single vapors, maybe not necessarily positively identi­
fied, but single vapors. 

STEVEN KARR: I wondered if you've given any thought to applying fuzzy 
logic algorithms to this problem as opposed to neural networks? 

WILLIAM BUTTNER: The neural network was a six-month program that we 
tried on the SBIR (we've just finished Phase I). To stay within the time 
constraints, we stuck to simple systems. We are investigating other neural 
network software packages and other identification algorithms. We will certainly 
consider fuzzy networks. 

EDWARD POZIOMEK: Have you tried any real-world environmental samples 
with the system. 

WILLIAM BUTTNER: I had a program through Savannah Rivertomonitor for 
TCE emissions out of their stripping tower, as part of their groundwater clean up. 
Initially the results were very encouraging. The analyses that I measured were 
compared back to groundwater samples as measured at an independent labora­
tory. They were comparable in value. The unfortunate thing is that these 
amperometric sensors did not hehave truly reversibly to chlorinated compounds, 
and that after a period of time their response factor, their sensitivity. would 
degrade and ultimately their response would die completely. For that reason it 
was determined that these types of sensor systems would not be applicable for 
lhe problems associated with Savannah River Laboratory. This was hefore this 
chlorine selective sensor was developed. It could polentially have application 
down there. 
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