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Abstract

The high cost of laboratory-based analysis has
driven the development of rapid screening
methods for hazardous chemicals in unknown

wastes. Screening methods permit the "triage"
of samples into those that (a) contain no
regulated wastes, (b) definitely contain
requlated chemicals, or (c)} are ambiguous.
Only the 1last category requires detailed
analysis.

The requirements of portability and ease of use
place extraordinary demands on the designers of
analytical instruments. In this paper, we will
discuss several approaches to obtaining
qualitative analytical data from multiple
sensors or highly-selective sensors. These
are: (a) a sensor with a selectivity 1000-
10000 times greater for chlorinated or
brominated compounds than for unsubstituted
ones; and (b) pyrolysis-EC, which uses
catalytic pyrolysis, arrays of electrochemical
sensors, and pattern recognition methods to
identify pure chemicals and mixtures. Two
applications of the latter are described, the
rapid identification of chemical vapors, and
the grading of grain according to "odor".

Introduction

The high cost of laboratory-based analysis has
driven the development of rapid screening
methods for hazardous chemicals in unknown
wastes. A screening method is one that can be
done on-site, by non-chemists, inexpensively
and safely. On the other hand, a screening
method is less 1ikely to provide the definitive
data that a full laboratory analysis, perhaps
requiring GC/MS or ICP, might give. In the
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case where no information is available, however,
even limited information can be of value,
especially if it is used to supplement data
gathered from other sources. For example, a
suite of simple screening methods may be used for
the "triage" of unknown samples into positive,
negative, and ambiguous groups. Often, the
nature of the chlorinated compounds may be known
from purchase or production records, so that only
the ambiguous category may require detailed
analysis. Screening methods may also be useful
for confirming conclusions that have already been
drawn from independent data, for example, that a
collection of similar barrels do indeed contain
the same materials.

The willingness to accept reduced certainty for
the sake of economy and practicality opens the
door to a wide variety of useful techniques that
can be used in the field. In this paper, we will
describe two such methods.

A unique semiconductor sensor has been found that
is very sensitive to chlorinated and brominated
organic compounds (1-3). It shows no detectable
response to hydrocarbons, oxygen- or nitrogen-
containing organic compounds, or fluorocarbons.

A second method that has given us promising
results has been catalytic pyrolysis of chemical
vapors combined with electrochemical detection.
Compounds that are not normally thought of as
electrochemical analytes, such as chloroform or
cyclohexane, can be partially oxidized on a hot
platinum surface (4). The volatile products
always include some that give a response on a
porous-electrode electrochemical sensor. We have
confirmed over several years that the products of
the pyrolysis are reproducible for most organic
and some inorganic compounds when the conditions
are kept reasonably constant (5). We have also



confirmed the critical requirement that the
products are independent of analyte
concentration, at Teast at concentrations of
below 200 ppm. We call this method pyrolysis-
EC.

The present embodiment of pyrolysis-EC is an
instrument we call the CPS-100. This device
uses an array of electrochemical gas sensors
with different, but overlapping, selectivities,
The incoming gases are pyrolyzed over noble
metal catalysts heated at controlled
temperatures. The operation of the instrument
is orchestrated by a fairly powerful computer
which can perform pattern analysis on the
resulting data. In this paper, we report the
results of a study on pattern recognition of
odors in spoiled grain. The unique properties
of neural networks have been shown to have
significant potential for handling low-quality

information. On reflection, this unigque
application is not so different from the
problems encountered in classifying and

handling hazardous wastes.

A simplified implementation of pyrolysis-EC has
also been tested that uses a single sensor and
a single catalytic filament. This drastically
simplified system was still capable of
distinguishing many organic chemicals. With
fewer parts and lower power consumption, this
simplified configuration may be suitable for
selective hand-held vapor monitors.

Experimental Methods

Organochlorine sensor. The sensor was made by
mounting a coil of platinum wire on a threaded
base. A separate platinum wire is also mounted
on the base and located axially within the
coil. A mixture of lanthanum oxide, lanthanum
fluoride, and a binder was applied to the coil.
The coil was slowly heated with an electric
current until a reaction occurred, forming the
active material. The sensor is used by heating
it to 550 °C with an electric current;
conductivity is measured between the heating
coil and the separate platinum electrode. When
the sensor contacts the vapor of a chlorinated
organic compound, the conductivity increases.
A simple circuit can be used to provide a
voltage output which is proportional to the
concentration.

Permeation device. The permeation sampler
consisted of a bundle of 0.,025" o.d.
dimethylsilicone tubing (Silastic, Dow-Corning)
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(Figure 1). The bundle could be placed in an
aqueous sample containing dissolved organic or
organochlorine compounds. A continuous flowof
air was circulated through the lTumen of the
tubing, and organic material diffusing inward
through the silicone membrane entered the gas
phase. In a typical experiment, two permeators
were used te provide separate reference and
sample signals (Figure 2).

Pyrolysis-EC. The CPS-100 Toxic Gas Monitor has
been described in several earlier publications
(5-11); its configuration is diagrammed in Figure
3. The four sensors had platinum or gold working
electrodes. For the grain odor experiments, the
sensors were biased at differing oxidizing
potentials, since reducing potentials gave very
low or pcor signals. A single rhodiumpyrolysis
filament was operated at 25, 450, 750, and 850 °C.
The combinration of four sensors and four
temperatures gave an array of sixteen data points
per analysis. :

The apparatus for simplified pyrolysis-EC
consisted of a single platinum filament and a
single platinum-electrode gas sensor. A contrel
circuit maintained the catalyst at any one of
four preselected temperatures. The filament was
enclosed in a Teflon-lined chamber of small
volume through which the analyte gas was pumped
at about 50 cc/min. The gas then passed through
a short tube to the sensor. The experiments were
controlled, and data gathered, by a commercial
datalogger (Onset Computer Corp., N. Falmouth,
MA).

Gas samples. Accurate samples of test compounds
in vapor form were made by injecting measured
volumes of the 1iquids into 40-1iter Tedlar gas
bags and filling with air pumped through a
charceal /Purafil filter. A flowmeter together
with a stopwatch was used to determine the volume
of air being pumped into the bag. Samples of
permanent gases were made from standard mixtures
obtained from commercial sources. Volumes of the
standard mixtures and air were calculated and
pumped into a sample bag, using the flowmeter and
stopwatch to determine the volumes.

Samples from grain odors were generated by
heating a sample of grain to 60 °C and flushing
with a measured volume of air. The effluent air
was passed through an ice trap to collect a "non-
volatile" fraction and a Tiquid nitrogen trap to
collect the "volatiles". The two fractions were
run separately and in duplicate. Grain samples
were obtained from Drs. L. Seitz and 0. Saur of
the USDA Grain Marketing Research Laboratory.



Results and Discussion

Organochlorine sensor. Typical responses of
the sensor to different vapors in air are shown
in Figure 4. The sensor was exposed to 100 ppm
concentrations of chlorobenzene, benzene, and

n-hexane. Only chlorobenzene caused a
response. Of a series of compounds
investigated, only  HC1, and  compounds

containing carbon-chlorine and carbon-bromine
bonds, gave a response (Table I). The response
to concentration is essentially linear over at
least four orders of magnitude.

Combined with the permeator device, the highly-
selective organochlorine sensor was shown to
respond rapidly to disselved material. Figure
5 shows the response to chloroform in water at
concentrations that dip below the part-per-
million level. This sensor can be used to
measure an organochlorine in groundwater, for
example, without any sample preparation. Many
sites, especially military bases, and areas
such as Rockford, Illinois, where there is a
large concentration of machine shops, have
serious problems with chlorinated C2 compounds
in the groundwater. In these cases, the nature
of the compounds 1is generally known, and
selectivity is not a concern. Nevertheless,
the sampling procedure, sample preparation, and
gas chromatography to determine these compounds
is involved and expensive. The availability of
a simple probe that can just be inserted into
a groundwater sample will greatly reduce the
number of laboratory analyses that need to be
done. The silicone material 1is chemically
resistant, and can be left in place for years.
Particulates cannot enter the system. Lastly,
and importantly, the permeator 1is very
inexpensive.

Pyrolysis-EC: Grain Odors Only a few organic
compounds will react directly with amperometric
sensors under field conditions. On a typical,
platinum-electrode sensor, we can detect
alcohols, epoxides, and formaldehyde. We also
detect many permanent gases, such as carbon
monoxide and hydrogen sulfide. Among these
gases that do react, there is no inherent
selectivity. The use of different sensors and
controlled pyrolysis, however, gives us extra
degrees of freedom that cam be used to achieve
selectivity.

The grain odor problem is very instructive,
even to an audience that 1is concerned with
identifying individual hazardous compounds.
Sensor-array-based methods, including the
pattern-analysis methodologies wused, treat
mixtures no differently than single compounds;
both give characteristic patterns which can be
identified against a pattern made from the same
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mixture. The individual components of a mixture
need not be identified.

Grains are presently classified by odor by a
panel of trained inspectors. The results are
necessarily subjective. More importantly, the
subjective opinion is the standard; there isno
point in telling a customer that a sample of
grain is acceptable because a machine says so0.
If it smells bad, it smells bad. On the other
hand, trained inspectors frequently disagree to a
greater or lesser extent on both the category and
degree of an odor (Table II). Attempts to
identify specific compounds associated with the
odors, using GC or GC/MS, have produced masses of
data, but limited results (12, 13).

The data obtained on the CPS-100 was subjected to
two different kinds of analysis. The first was
an established method called k-nearest neighbor
(KNN, ref. 5). The 16 data points acquired by
the CPS-100 were treated as a vector in 16-
dimensional space. Each known sample of grain
produced a vector which could be associated with
a particular odor category. The vectors from the
unknown samples were tested against this library
of known vectors by calculating the scalar
distance between the unknown vector and each
known vector in the library. All vectors were
first normalized to constant length, to remove
the concentration-dependent part of the
information. The shortest distance is the

identification (Figure 6). :

The second method is the neural network (for
general references, see 14, 15). This is a
recently-developed method that has received so
much "hype" that we were at first suspicious of
it. However, its performance has been
outstanding in this application, the moreso
because we used a commercially-available packaged
method (NeuroShell, Ward Systems Group,
Frederick, MD), without really understanding the
internal mechanics of the method. This is a very
important feature of a method which may be used
in the field by operatives with differing
technical backgrounds.

Figure 7 shows the CPS-100 data, in histogram
form, for "good" wheat samples. The patterns are
very similar, in contrast with data showing some
extreme samples (one "sour” (S3) and one "insect”
(I13) odor) (Figure B}. A experiment using the
older KNN method was run using a dataset derived
from three grades of wheat samples. A library of
vectors was prepared by averaging the signals for
all runs on each sampie of wheat. The scalar
distances were calculated between a1l possible
pairs of the original data set and each of the
averaged vectors. A summary of the
identifications is shown in Table I1I. We were
very (pleasantly) surprised to find that those
samples that are "misclassified" by the KNN



algorithm are also those that the human
inspectors did not agree on! Sample 42, for
example, was voted "good" by two inspectors and

"musty" and "COFO" by the other two. (COFO
means "commercially objectionable foreign
odor".)

ATthough KNN has shown good performance in past
applications (5, 6, 8-11), it has some serious
practical disadvantages. The greatest is that,
when the sensors become aged or drift for other
reasons, the complete training set must be
remeasured.

A Targer data set had been gathered by the time
the work was begun with the neural nets. This
data set had a peculiarity built into it: one
of the sensors in the array went bad halfway
through the measurements and was replaced. The
data taken after that point gave noticeably
different histograms.

The data set was arbitrarily divided into two
groups. One group was used to "train" the
neural network, a process requiring up to 150
hours on a 386-type computer. The actual
classification process took seconds. Two tests
were run on the optimized neural net. First
was a test to confirm that the optimization
process was complete. This was done by using
the training set itself as unknowns. The rate
of correct classification was 100%. Second,
random, linearly-distributed errors were added
to the data, followed by classification. The
net tolerated 5% error without missing a
correct classification. Added error of 10% and
15% caused a small amount of degradation (Table
V).

Having confirmed the robustness of the neural

net, it was challenged using the reserved
dataset. The net had not seen these numbers
before; nevertheless the rate of correct

classification was 65% (Table IV). This is
Tow, although substantially better than random.
Because the test conditions had changed during
the measurements, we added another element to
the data vectors to differentiate the
measurements made before and after the sensor
was changed. The numbers were arbitrary, 100
for the old sensor and 200 for the new. Using
these 17-element vectors, the neural net was
retrained. Now, the rate of correct
classification of the reserved dataset jumped
to 83%.

Pyrolysis-EC: Simplified Version This work is
the result of a project to determine whether a
greatly-simplified form of pyrolysis-EC would
be useful for situations requiring limited
selectivity. Figure 9 is a diagram of the
patterns obtained for representative compounds
in a typical experiment. The temperature of
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the catalyst is programmed for two minutes at
room temperature, two minutes each at
temperatures of 500, 600, 700, and 800 °C, and
finally two minutes at room temperature again.
The patterns that are obtained are distinct for
many compounds. If your field problemis simply
confirming the identity of the contents of a
number of similar barrels of an unknown chemical,
the pyrolysis-EC approach may in itself be
sufficient, although most practitioners would
feel more comfortable if it supplemented other
field screening methods.

A table of distances for this limited
configuration is shown in Table V. The smaller
the number, the more similar the two compounds
will appear for a given configuration of the
experimental apparatus. This configuration gives
very good identification of ethylene oxide in the
presence of all but alcohols.

The pyrolysis-EC method has several advantages
that are especially conducive to field work. It
is suitable for portable instrument use; the
components are shock-resistant and will operate
in any orientation. They compact and
lightweight, and the power requirements are
small. They are also inexpensive.

Conclusjons

1. A sensor has been developed and
characterized that can identify chlorinated or
brominated compounds in the vapor phase or, with
Fhe use of a permeable membrane, in dissolved

orm.

2. A combination of catalytic pyrolysis and
electrochemical detection (pyrolysis-EC) can be
used to distinguish unknown compounds with a
modest degree of selectivity that may be adequate
for many field applications.

3. Pyrolysis-EC data, combined with k-
nearest neighbor and neural network
classification methods, has been used effectively
for such varied tasks as the classification of
stored grains by odor, or the classification of
waste chemicals by functional group (11).

4. The neural net can be made to adapt
dynamically to instrument drift. In effect, it
learns from experience.

4. Errors made by the classification
methods correspond in a general way to errors
made by human experts faced with similar
ambiguities in the data.
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Table I. Sensitivities of the organochlorine

Table IV. Summary of the accuracy of the neural
sensor to several halogenated compounds.

network algorithm for identifying vapors drawn

Table II. Subjective odor characterization of the
grain samples used in our study.
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from the wheat samples.
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Table V. Distance matrices for a series of
organic compounds. Table V-A is several
concentrations of ethylene oxide; the
concentrations are shown as the numbers in the
symbols, e.g., ET0100 = 100 ppm. Table V-B shows
the distances among the series of thirteen
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In this experiment, the catalyst

filament was programmed in 2 minute steps at

room temperature,

500,

600, 700, and 800

degrees, and room temperature again.

DISCUSSION

GORMAN BAYKUT: My question is about the chemical analysis with these
sensors. I'm not talking right now about the wheat vapor. But in terms of real
chemical analysis, you must know the compounds you are going to analyze,
otherwise you can’t do the analysis because youneed training. You can'tanalyze
the unexpected compounds, am | right?

WILLIAM BUTTNER: The way the CPS 100 Program was originally
envisioned, you had to install the library vectors of potential compounds. If you
were going to look at TCE, therc had to be a library vector associated with the
TCE. On the other hand, these arrays are not totally selective in response. The
response to TCE was similar 1o PCE, that is, tetrachloroethane. You could
therefore identify classes of compounds. But you are right. You have to have
some ideaof the type of vapors present. Atotally unknown situation will still give
some ambiguity in your analyses.

GORMAN BAYKUT: But I think even though your software is powerful, you
need a training period for every compound. How about the mixtures? If you
analyze the mixtures will there be a problem?

WILLIAM BUTTNER: Mixtures are a problem for this type of system, Certain
types of mixtures are well behaved. Gasoline, for example, is a mixture of many
types of compounds, but it behaves as a single class.

GORMAN BAYKUT: I'm referring to the cracker. You have a thermal cracker
in front of the electrochemical sensor areas. Sometimes you have a mixture of
two or three compounds, or five, or seven and they react in the cracker. You get
different answers, and the correlation is not linear.

WILLIAM BUTTNER: What you're referring to are the reaction products of
the thermal catalysis that result from mixtures being exposed 1o the sensors. Yes,
you are right. There is frequently & nonlinear response. The reaction products
frequently do react with each other. That’s a comment relevant o many field
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screening techniques. In some mixtures that factor is a little less significant. If
you do generate very reactive compounds, for example from chlorinated com-
pounds TCE, you do get a nonlinear response. That is a problem. This instrument
was designed to look at single vapors, maybe not necessarily positively identi-
fied, but single vapors,

STEVEN KARR: I wondered if you've given any thought 10 applying fuzzy
logic algorithms to this problem as opposed to neural networks?

WILLIAM BUTTNER: The neural network was a six-month program that we
tried on the SBIR (we’ve just finished Phase I). To stay within the time
constraints, we stuck to simple systems. We are investigating other neural
network software packages and other identification algorithms. We will certainly
consider fuzzy networks.

EDWARD POZIOMEK: Have you tried any real-worldenvironmental samples
with the system.

WILLIAMBUTTNER: I hadaprogram through Savannah River to monitor for
TCE emissions out of their stripping tower, as part of their groundwater clean up.
Initially the results were very encouraging. The analyses that | measured were
compared back to groundwater samples as measured at an independent labora-
tory. They were comparable in value. The unfortunate thing is that these
amperometric sensors did not behave truly reversibly to chlorinated compounds,
and that after a period of time their response factor, their sensitivity, would
degrade and ultimately their response would die completely. For that reason it
was determined that these types of sensor systerns would not be applicable for
the problems associated with Savannah River Laboratory. This was before this
chiorine selective sensor was developed. It could potentially have application
down there.
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