

## MICROBIAL CONTAMINANTS OF STORED TIMBER AS POTENTIAL RESPIRATORY HAZARDS FOR SAWMILL WORKERS

JACEK DUTKIEWICZ, Ph.D. • W. G. Sorenson, Ph.D.  
• D. M. Lewis, Ph.D. • S. A. Olenchock, Ph.D.

Immunology Section, Division of Respiratory Disease Studies, NIOSH  
Morgantown, West Virginia 26505, USA

### INTRODUCTION

Occupational exposure to wood dust may be a cause of respiratory diseases such as hypersensitivity pneumonitis (allergic alveolitis),<sup>7,12,23,26</sup> asthma<sup>8</sup> and chronic obstructive lung disease (COLD).<sup>2</sup> The etiology of these diseases is not fully known and both the allergenic and/or toxic constituents of wood tissue itself and the substances produced by microorganisms developing in wood have been suggested as potential agents.<sup>8,10,22,27</sup> Many species of allergenic and/or toxic molds developing on wood (*Alternaria tenuis*, *Aspergillus fumigatus*, *Cryptostroma corticale*, *Mucor spp.*, *Paecilomyces spp.*, *Penicillium spp.*, *Rhizopus spp.*) have been described as causative agents of pulmonary diseases in woodworkers.<sup>6,7,8,12,23,24,25,26</sup> The role of bacterial factors in wood-associated diseases was studied to a lesser extent.<sup>10,22</sup> It has been reported that woodworkers may be exposed to notable amounts of gram-negative bacteria and endotoxin.<sup>1,4,25</sup>

The aim of this study was to extend the knowledge of the potential respiratory risk of woodworkers to wood-inhabiting microorganisms by quantitative and qualitative determination of the microflora of stored timber logs scheduled for processing in a sawmill.

### MATERIAL AND METHODS

Two series of microbiological wood samples were taken in August and October of the year 1987 from timber logs stored on the lumber yard at a sawmill in Kingwood, West Virginia. The logs had been stored for a period of 4-6 weeks and did not show any apparent signs of decay. At each sampling time, samples were taken from a log of each of the following species: American basswood (*Tilia americana L.*), black cherry (*Prunus serotina Ehrh.*), black locust (*Robinia pseudoacacia L.*), red oak (*Quercus coccinea Muenchh.*), soft maple (*Acer saccharinum L.*) and white poplar (*Populus alba L.*). From each log, one sample was taken from the heartwood (by boring from the transverse section), one from the sapwood (by boring from the transverse section) and one from the bark (by centripetal boring).

The wood samples were collected with a novel "drill and collect" device (model #2) for quantification of microorganisms in wood.<sup>5</sup> This is a manually operated drilling device in which a combined action of a twist boring bit and a spring-containing mobile ring collects the pulverized

wood into a sterile flask attached beneath the bit in a one-step sterile process. The wood surface to be sampled was first sterilized by wiping with 70% propanol and "Clorox" (a commercial 5.25% sodium hypochlorite solution) and then an average sample was taken by multiple boring (5-7 times) in a circle up to 3 cm in diameter.

The concentrations of bacteria and fungi in the wood samples were determined by dilution plating. Aliquots of 200 mg of each sample were suspended in 20 ml of sterile phosphate buffered saline (Sigma Chemical Co., St. Louis, MO) containing 0.1% (v/v) Tween 80 (Fisher Scientific Co., Fair Lawn, NJ) and, after vigorous shaking, serial 10-fold dilutions were made up to 10<sup>-6</sup>. The 0.1 ml aliquots of each dilution were spread on duplicate sets of the following agar media: (i) sheep blood agar for total aerobic bacteria, (ii) eosin methylene blue agar (EMB agar, Difco Lab., Detroit, MI) for gram-negative bacteria, (iii) half-strength tryptic soya agar (Difco) for thermophilic actinomycetes, (iv) rose bengal streptomycin agar (RBS) for total fungi, and (v) yeast malt agar for yeasts. The blood agar and EMB plates were incubated for 48 hrs at 35°C, the tryptic soya plates for 120 hrs at 55°C, and the RBS and yeast malt plates for 96 hrs at 28°C.

Following incubation, bacterial colonies were counted and differentiated on the basis of colony morphology, Gram reaction, and biochemical reactions. The gram-positive isolates were identified according to Bergey's Manual.<sup>21</sup> The gram-negative isolates were identified with the API<sup>R</sup> Systems 20 E (for enterobacteria) and NFT (for non-fermenting bacteria) (API Analytab Products, Plainview, NY), using supplementary biochemical tests selected according to Bergey's Manual<sup>14</sup> and API<sup>R</sup> Systems recommendations. Mold colonies were counted and differentiated on the basis of morphological properties. Representative yeast colonies were isolated and differentiated on the basis of morphological and biochemical properties.<sup>13</sup> Final results for microbial concentrations were reported in terms of the colony forming units (cfu) in one gram of ground wood.

For endotoxin determination, 100 mg portions of the wood samples were extracted with 5 ml of sterile non-pyrogenic water (Travenol Laboratories Inc., Deerfield, IL) by rocking for 60 min. at room temperature. The suspension was centrifuged at 1000 g for 10 minutes to remove particulate debris, and the supernatant fluid was separated for further

analysis. Quantification of gram-negative bacterial endotoxin content was performed in duplicate by a quantitative chromogenic modification of the *Limulus amebocyte lysate* test (QCL-1000; Whittaker Bioproducts, Walkersville, MA). Results were reported in terms of Endotoxin Units (EU) in one gram of ground wood.

The Students' t-test for matched pairs, test for linear regression and chi-square test were used for statistical evaluation of the results.

## RESULTS

The concentration of microorganisms and endotoxin varied significantly with the kind of wood examined ( $P < 0.001$ ). As shown in Figures 1-6, the highest levels of bacteria, fungi and endotoxin were found in the wood samples from logs of American basswood and black locust ( $10^3$ - $10^8$  cfu/gm,  $10^2$ - $10^7$  cfu/gm and  $10^4$ - $10^6$  EU/gm, respectively). The levels were lower in the logs of soft maple and black cherry ( $0$ - $10^6$  cfu/gm,  $0$ - $10^7$  cfu/gm and  $10^1$ - $10^4$  EU/gm, respectively) and lowest in the logs of white poplar and red oak ( $0$ - $10^4$  cfu/gm,  $0$ - $10^5$  cfu/gm and  $10^0$ - $10^5$  EU/gm, respectively).

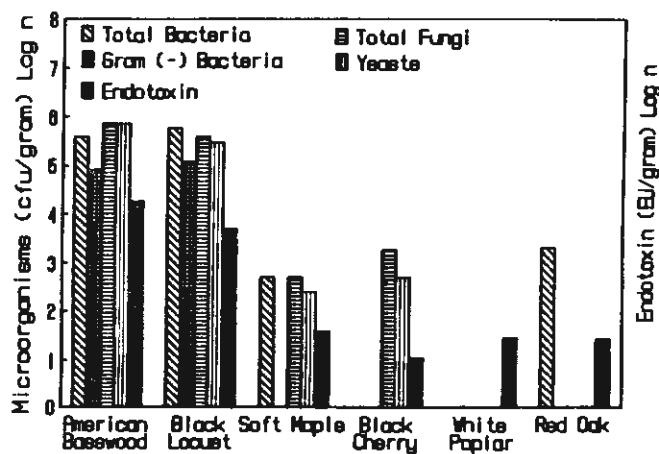



Figure 1. Concentrations of bacteria, fungi and endotoxin in the samples of heartwood collected in August, 1987.

High concentrations of bacteria, fungi and endotoxin were found in all the examined kinds of wood tissue: heartwood (Figures 1-2), sapwood (Figures 3-4) and bark (Figures 5-6). No significant differences were noted between the contamination rates in August and October ( $P > 0.05$ ).

In most of the samples of heartwood and sapwood, gram-negative bacteria dominated the total bacteria flora. Except for two cases (Figure 5), this was not observed in the bark samples. In bark samples taken in October, viable gram-negative bacteria were absent completely and the very high level of bacteria found in the bark of the black locust was due to the presence of large numbers of spore-forming bacilli (Figure 6). For each kind of wood tissue (heartwood, sapwood and bark) a significant correlation has been found between the concentrations of gram-negative bacteria and en-

dotoxin ( $P < 0.05$ ). No thermophilic actinomycetes were found in the examined wood samples.

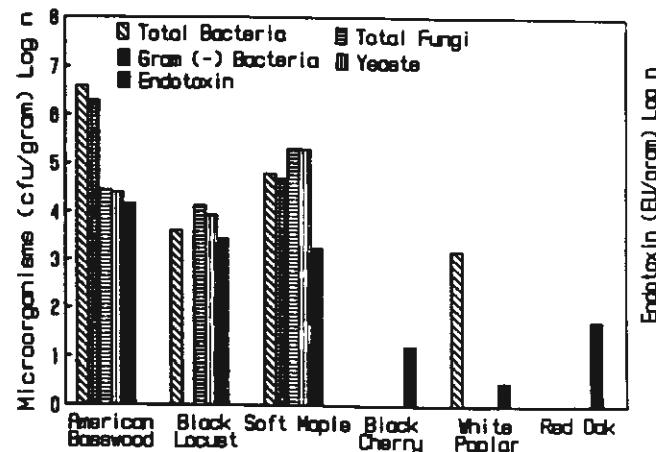



Figure 2. Concentrations of bacteria, fungi and endotoxin in the samples of heartwood collected in October, 1987.

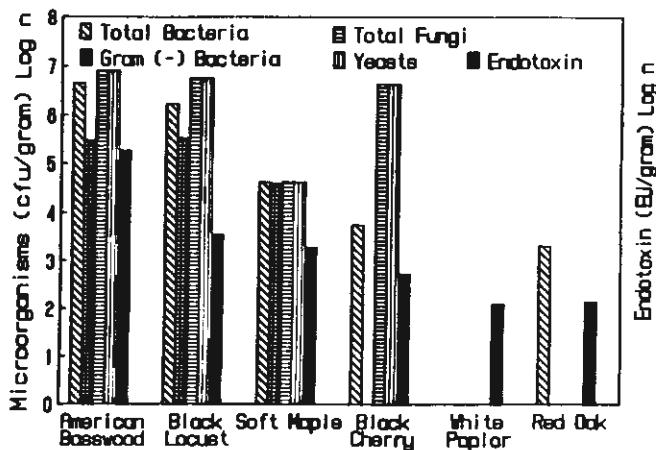



Figure 3. Concentrations of bacteria, fungi and endotoxin in the samples of sapwood collected in August, 1987.

Twelve species and/or genera of gram-negative bacteria and seven genera of gram-positive bacteria were found in the wood samples (Table I). The gram-negative flora comprised five fermentative species (belonging to the *Enterobacteriaceae* family) which, in most cases, were associated with the sapwood and seven non-fermentative species (mostly of the genus *Pseudomonas*) which were mostly associated with the heartwood. Among the gram-positive bacteria, the most common organisms were endospore-forming bacteria of the genus *Bacillus* and coryneform bacteria belonging to the genera *Arthrobacter*, *Brevibacterium*, *Corynebacterium* and *Microbacterium*.

In all kinds of wood samples examined, yeasts were the predominant fungi observed (Figures 1-6, Table II) and the

Table I  
Species of Bacteria Occurring in Wood Samples

| Name of the species                | Heartwood             | Sapwood                | Bark                           | Maximal concentration<br>( $\times 10^5$ cfu/gram) |
|------------------------------------|-----------------------|------------------------|--------------------------------|----------------------------------------------------|
| <b>GRAM-NEGATIVE BACTERIA</b>      |                       |                        |                                |                                                    |
| <b>Fermentative</b>                |                       |                        |                                |                                                    |
| <i>Citrobacter freundii</i>        | +(B, M)               | ++ (B), +(M)           |                                | 0.10 (Sapwood, B)                                  |
| <i>Enterobacter agglomerans</i>    | ++ (B), +(B)          | +++ (B), +(B)          | ++ (B, L)                      | 3.00 (Sapwood, B)                                  |
| <i>Enterobacter cloacae</i>        |                       | ++ (M)                 |                                | 0.38 (Sapwood, M)                                  |
| <i>Klebsiella</i> sp.              |                       | +++ (B), +(B)          |                                | 1.45 (Sapwood, B)                                  |
| <i>Serratia rubidans</i>           | ++ (L)                | ++ (L)                 |                                | 0.41 (Sapwood, L)                                  |
| <b>Non-fermentative</b>            |                       |                        |                                |                                                    |
| <i>Acinetobacter calcoaceticus</i> | +(M)                  |                        | +++ (L)                        | 30.50 (Bark, L)                                    |
| <i>Agrobacterium radiobacter</i>   | +++ (L)               | +++ (L)                |                                | 2.64 (Sapwood, L)                                  |
| <i>Pseudomonas fluorescens</i>     | +(M)                  |                        |                                | 0.07 (Heartwood, M)                                |
| <i>Pseudomonas maltophilia</i>     | +(M)                  |                        |                                | 0.02 (Heartwood, M)                                |
| <i>Pseudomonas oryzihabitans</i>   | +++ (B)               |                        |                                | 15.10 (Heartwood, B)                               |
| <i>Pseudomonas putida</i>          | +++ (B), ++ (M)       | +(B)                   |                                | 3.84 (Heartwood, B)                                |
| <i>Pseudomonas stutzeri</i>        | ++ (B), +(M)          | +(M)                   |                                | 0.45 (Heartwood, B)                                |
| <b>GRAM-POSITIVE BACTERIA</b>      |                       |                        |                                |                                                    |
| <i>Bacillus</i> spp.               | +++ (B), ++ (L), +(M) | +++ (L), +(B, M)       | +++ (L, M), ++ (B), +(C, O, P) | 154.00 (Bark, L)                                   |
| <i>Coryneform</i> bacteria*        | +++ (B, L), +(P)      | +++ (B, L), +(C, M, O) | +++ (L), ++ (B, M), +(C, P)    | 20.30 (Heartwood, B)                               |
| <i>Staphylococcus</i> spp.         | +(M, O, P)            | +++ (L), +(O)          | +(P)                           | 5.00 (Sapwood, L)                                  |
| <i>Streptomyces</i> spp.           |                       | +++ (L)                | ++ (L), +(B)                   | 2.51 (Sapwood, L)                                  |

B = American Basswood M = Soft Maple + = occurred in concentration below  $1 \times 10^4$  cfu/gram\*Comprise: *Arthrobacter*C = Black Cherry O = Red Oak ++ = occurred in concentration  $1 \times 10^4 - 1 \times 10^5$  cfu/gram*spp.*, *Brevibacterium* spp.

L = Black Locust

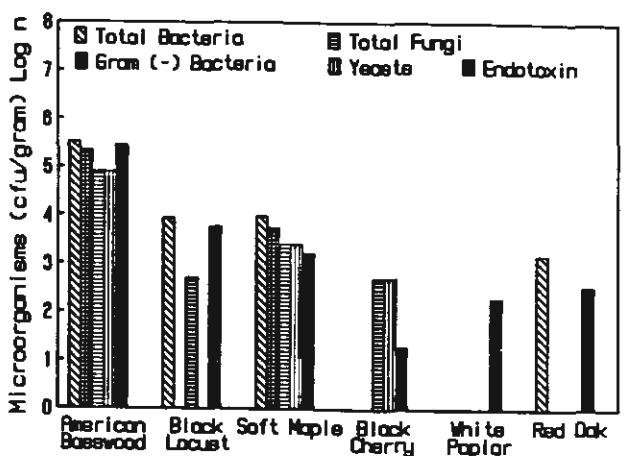

P = White Poplar +++ = occurred in concentration over  $10^5$  cfu/gram*Corynebacterium* spp.

Figure 4. Concentrations of bacteria, fungi and endotoxin in the samples of sapwood collected in October, 1987.




Figure 5. Concentrations of bacteria, fungi and endotoxin in the samples of bark collected in August, 1987.

Table II  
Fungi Occurring in Wood Samples

| Organism                 | Heartwood                  | Sapwood             | Bark                            | Maximal concentration<br>( $\times 10^5$ cfu/gram) |
|--------------------------|----------------------------|---------------------|---------------------------------|----------------------------------------------------|
| DBB- yeasts <sup>a</sup> | +++ (B,L), ++ (M)<br>+ (C) | +++ (B,C,L), ++ (M) | +++ (B,L,M), ++ (C,O),<br>+ (P) | 78.35 (Sapwood, B)                                 |
| DBB+ yeasts <sup>b</sup> | ++ (B,L,M)                 | +++ (B), ++ (C,L)   | ++ (B,C,L,O)                    | 1.45 (Sapwood, B)                                  |
| <u>Acremonium</u> sp.    | ++ (L), + (B)              | ++ (L)              | +++ (M), + (B,P)                | 14.00 (Bark, M)                                    |
| <u>Oidiodendron</u> sp.  |                            |                     | ++ (C,M)                        | 0.79 (Bark, M)                                     |
| <u>Penicillium</u> sp.   | ++ (L)                     | ++ (B,L)            | ++ (L,P), + (B,C,O)             | 0.72 (Bark, L)                                     |
| <u>Trichoderma</u> sp.   |                            | ++ (C)              | ++ (B,L)                        | 0.49 (Bark, L)                                     |
| Nonsporulating           | + (B,C,M)                  |                     | ++ (L,M), + (B,O,P)             | 0.26 (Bark, M)                                     |

<sup>a</sup>Negative reaction with Diazonium Blue B (DBB); presumptive Ascomycetes and their anamorphs (includes Candida zeylanoides, other undetermined Candida spp., and Hansenula silvicola).

<sup>b</sup>Positive reaction with DBB; presumptive Basidiomycetes and their anamorphs (includes undetermined Candida spp., Cryptococcus laurentii, and Rhodotorula glutinis).

B = American Basswood

M = Soft Maple

+ = occurred in concentration below  $1 \times 10^4$  cfu/gram

C = Black Cherry

O = Red Oak

++ = occurred in concentration  $1 \times 10^4 - 1 \times 10^5$  cfu/gram

L = Black Locust

P = White Poplar

+++ = occurred in concentration over  $10^5$  cfu/gram

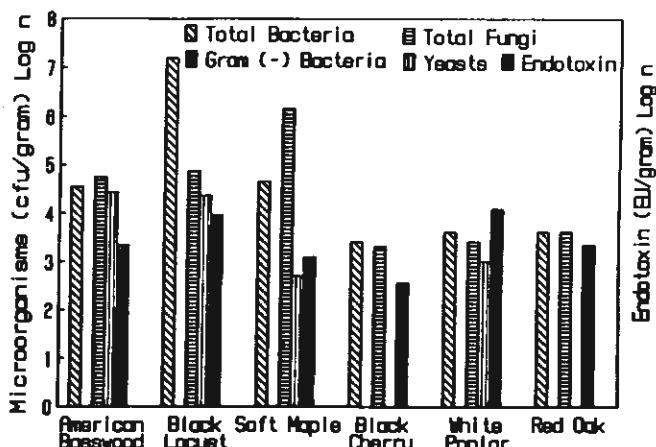



Figure 6. Concentrations of bacteria, fungi and endotoxin in the samples of bark collected in October, 1987.

most numerous among them were presumptive Ascomycetes and their anamorphs, i.e., they gave a negative reaction with Diazonium Blue B (DBB).<sup>13</sup> Yeast fungi tended to be found in the greatest numbers in the sapwood. Species of yeast isolated include undetermined Candida spp. (include both DBB+ and DBB- species), Candida zeylanoides, Cryptococcus laurentii, Hansenula silvicola and Rhodotorula glutinis.

Molds found in these samples included Acremonium (Cephalosporium sp., Alternaria sp., Aspergillus fumigatus, Aureobasidium pullulans, Bispora sp., Cladosporium sp., Mortierella sp., and Trichoderma sp. as well a number of fungi that could not be identified because of their failure to sporulate. The molds that occurred in the greatest numbers were Acremonium sp., Oidiodendron sp., Penicillium sp., and Trichoderma sp.. The highest numbers of molds were found in the bark.

## DISCUSSION

The levels of microorganisms and endotoxin in timber logs showed notable variation depending on the species of the tree. The concentrations of bacteria and fungi in the most contaminated wood species (basswood, locust) exceeded the level of  $10^6$  cfu/gm, and were comparable to the values reported for certain organic dusts related to harmful respiratory effects in workers.<sup>3</sup>

The concentration of endotoxin in the wood reached, in many cases, a level of  $10^5$ - $10^6$  EU/gm which corresponds to the values found in organic materials (grain, silage, mushroom farm pre-flush) associated with the cases of respiratory disorders in exposed workers.<sup>17</sup> This finding is in agreement with the fact that some of the wood samples contained high concentrations of gram-negative bacteria. Among these bacteria were the species (Enterobacter agglomerans, Klebsiella spp., Pseudomonas putida) which are known producers of biologically active endotoxin that can cause pulmonary

injury through non-specific stimulation of alveolar macrophages.<sup>19</sup>

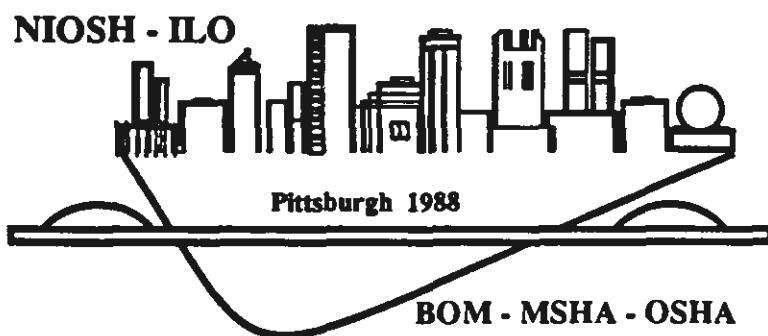
The occurrence of high concentrations of fungi in the wood presents another factor of potential respiratory risk for sawmill workers. The *Penicillium* species that were frequently isolated in this study have been reported as a source of the pathogenic respiratory allergens.<sup>6,24</sup> Another potentially pathogenic species are *Aspergillus fumigatus* and *Aureobasidium pullulans*.<sup>8,10,22</sup>

The data conform to some earlier reports on the occurrence of bacteria and fungi in the wood<sup>9,15,16,18</sup>. The composition of the microflora of examined logs, characterized by the prevalence of yeasts and gram-negative bacteria indicates that it was in the stage of "pioneer colonization" which precedes the stage of wood decay by brown rot and white rot fungi.<sup>11,20</sup>

The main conclusion from this preliminary study is that some kinds of apparently not decayed timber stored for processing in sawmill contain very high concentrations of "pioneer" microorganisms and their toxins. These organisms may cause respiratory disorders in the woodworkers if inhaled with the sawdust. Although not defined by the current study, the potential problems associated with microbiologically contaminated woods are intriguing and require further research.

## REFERENCES

1. Al Zuhair, Y.S., Whitaker, C.J., Cinkotai, F.F.: Ventilatory Function in Workers Exposed To Tea and Wood Dust. *Br. J. Ind. Med.* 38:339-345 (1981).
2. Carosso, A., Ruffino, C., Bugiani, M.: Respiratory Diseases in Wood Workers. *Br. J. Ind. Med.* 44:53-56 (1987).
3. Dutkiewicz, J.: Exposure to Dust-borne Bacteria in Agriculture. I. Environmental Studies. II. Immunological Survey. *Arch. Environ. Health* 33:250-270 (1978).
4. Dutkiewicz, J.: Bacteria, Fungi and Endotoxin in Stored Timber Logs and Airborne Sawdust in Poland. Abstracts of the Second Meeting of the Pan-American Biodeterioration Society. (Washington, D.C., July 28-31, 1981).
5. Dutkiewicz, J., Olenchock, S.A., Lewis, D.M., Ratajczak, Z., Kwapiszewski, C., Piech, T., Bilczuk, A.: Drill Samplers for Quantification of Microorganisms in Wood. *For. Prod. J.* in press.
6. Dykewicz, M.S., Laufer, P., Patterson, R., Roberts, R.N., Sommers, H.M.: Woodman's Disease: Hypersensitivity Pneumonitis from Cutting Live Trees. *J. Allergy Clin. Immunol.* 81:455-460 (1988).
7. Emanuel, D.A., Wenzel, F.J., Lawton, B.R.: Pneumonitis due to *Cryptostroma corticale* (Maple Bark Disease). *N. Engl. J. Med.* 274:1413-1418.
8. Goldsmith, D.F., Shy, C.M.: Respiratory Health Effects from Occupational Exposure to Wood Dusts. *Scand. J. Work Environ. Health* 14:1-15 (1988).
9. Greaves, H. The Bacterial Factor in Wood Decay. *Wood Sci. Technol.* 5:6-16 (1971).
10. Jagels, R.: Health Hazards of Natural and Introduced Chemical Components of Boatbuilding Woods. *Am. J. Ind. Med.* 8:241-251 (1985).
11. Kaarik, A.: Succession of Microorganisms during Wood Decay. In: *Biological Transformation of Wood by Microorganisms*, pp. 39-51. W. Liese, Ed. Springer-Verlag, Berlin (1975).
12. Kolmodin-Hedman, B., Blomquist, G., Lofren, F.: Chipped Wood as a Source of Mould Exposure. *Eur. J. Respir. Dis.* 71 (Suppl. 154):44-51 (1987).
13. Kreger-van Rij, N.J.W., Ed.: The Yeasts. A Taxonomic Study, 3rd Ed. Elsevier Science Publishers, Amsterdam (1984).
14. Krieg, N.R., Holt, J.G., Eds.: *Bergey's Manual of Systematic Bacteriology*, Vol. 1. The Williams and Wilkins Co., Baltimore (1984).
15. Levy, J.F.: Colonization of Wood by Fungi. In: *Biological Transformation of Wood by Microorganisms*. pp. 16-23. W. Liese, Ed. Springer-Verlag, Berlin (1975).
16. Murdoch, C.W., Campana, R.J.: Bacterial Species Associated with Wet-wood of Elm. *Phytopathology* 73:1270-1273 (1983).
17. Olenchock, S.A.: Quantitation of Airborne Endotoxin Levels in Various Occupational Environments. *Scand. J. Work Environ. Health* 14 (Suppl. 1):72-73 (1988).
18. Rossell, S.E., Abbot, E.G.M., Levy, J.F.: Bacteria and Wood. A Review of the Literature Relating to the Presence, Action and Interaction of Bacteria in Wood. *J. Inst. Wood. Sci.* 6(2):28-35 (1973).
19. Rylander, R., Snella, M-C.: Endotoxins and the Lung: Cellular Reactions and Risk for Disease. *Prog. Allergy* 33:332-344 (1983).
20. Shigo, A.L., Hills, W.E.: Heartwood, Discolored Wood, and Microorganisms in Living Trees. *Ann. Rev. Phytopathol.* 11:197-222 (1973).
21. Sneath, P.H.A., Mair, N., Sharpe, M.E., Holt, J.G., Eds.: *Bergey's Manual of Systematic Bacteriology*, Vol. 2. The Williams and Wilkins Co., Baltimore (1986).
22. Tatken, R.L., Ed.: *Health Effects of Exposure to Wood Dust. A Summary of the Literature*. National Institute for Occupational Safety and Health, Cincinnati (1987).
23. Terho, E.O., Husman, K., Kotimaa, M., Sjöblom, T.: Extrinsic Allergic Alveolitis in a Sawmill Worker: A Case Report. *Scand. J. Work Environ. Health* 6:153-157 (1980).
24. Van Assendelft, A.H.W., Raitio, M., Turkia, V.: Fuel Chip-induced Hypersensitivity Pneumonitis Caused by *Penicillium* Species. *Chest* 87:394-396 (1985).
25. Wihelmsen, B., Jernud, Y., Ripe, E., Holmberg, K.: Nasal Hypersensitivity in Wood Furniture Workers. An Allergological and Immunological Investigation with Special Reference to Mould and Wood. *Allergy* 39:586-595 (1984).
26. Wimander, K., Belin, L.: Recognition of Allergic Alveolitis in the Trimming Department of a Swedish Mill. *Eur. J. Respir. Dis.* 61 (Suppl. 107):163-167 (1980).
27. Whitehead, L.W.: Health Effects of Wood Dust—Relevance for an Occupational Standard. *Am. Ind. Hyg. Assoc. J.* 43:674-678 (1982).


**ACKNOWLEDGEMENTS:** This work was done when Jacek Dutkiewicz held the National Research Council—NIOSH research associateship.

The authors thank Janet Simpson, Toni Bledsoe, Beverly Carter, Nanci Keenan, Mike Moore and Judith Mull for skillful technical assistance. We appreciate also the organizational support given by the Interstate Lumber Company in Kingwood, West Virginia.

Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health.

*Proceedings of the VIIth International Pneumoconioses Conference*  
*Transactions de la VIIe Conférence Internationale sur les Pneumoconioses*  
*Transacciones de la VIIa Conferencia Internacional sobre las Neumoconiosis*

*Part* **I**  
*Tome*  
*Parte*



Pittsburgh, Pennsylvania, USA—August 23–26, 1988  
Pittsburgh, Pennsylvanie, Etats-Unis—23–26 aout 1988  
Pittsburgh, Pennsylvania EE. UU—23–26 de agosto de 1988



**U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES**  
Public Health Service  
Centers for Disease Control  
National Institute for Occupational Safety and Health

**CDC**  
CENTERS FOR DISEASE CONTROL

## **Sponsors**

International Labour Office (ILO)  
National Institute for Occupational Safety and Health (NIOSH)  
Mine Safety and Health Administration (MSHA)  
Occupational Safety and Health Administration (OSHA)  
Bureau of Mines (BOM)

September 1990

## **DISCLAIMER**

Sponsorship of this conference and these proceedings by the sponsoring organizations does not constitute endorsement of the views expressed or recommendation for the use of any commercial product, commodity, or service mentioned.

The opinions and conclusions expressed herein are those of the authors and not the sponsoring organizations.

**DHHS (NIOSH) Publication No. 90-108 Part I**