

DETECTION OF HYDROXYL RADICALS IN AQUEOUS SUSPENSIONS OF FRESH SILICA DUST AND ITS IMPLICATION TO LIPID PEROXIDATION IN SILICOSIS

NAR S. DALAL* • Xianglin Shi* • Val Vallyathan†

*Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA

†Department of Pathology, West Virginia University, Morgantown, WV 26506, USA

INTRODUCTION

Despite considerable effort over the years, the mechanism by which the quartz particles exert their toxic action on cells and the processes by which these actions progress to fibrosis are still not fully understood.^{1,2} It is generally thought, nevertheless, that the interaction of the quartz particles with the cell membranes is the starting point of the silicotic process.³ We felt that the mechanism of the membrane damage by quartz might involve oxygenated free radicals because (a) a suspension of quartz particles in contact with alveolar macrophages has been reported^{4,5} to initiate an enhancement of lipid peroxidation, defined broadly as the oxidative deterioration of polyunsaturated components of lipids, and (b) hydroxyl ($\cdot\text{OH}$) radicals are known to be capable of peroxidation by abstracting hydrogen atoms from cell-membrane Lipids⁶ and initiating lipid peroxidation in lysosomal membranes.⁷ Moreover it is known that exposure of cell membranes, fatty acids and unsaturated food oils to ionizing radiation, which generates $\cdot\text{OH}$ radicals, causes rapid peroxidation.⁶ Earlier studies of the aqueous chemistry of quartz suspensions have reported detection of H_2O_2 ,⁸ implicating the formation of $\cdot\text{OH}$ radicals as transient species, but, we are not aware of any report of the detection of $\cdot\text{OH}$ radicals in quartz suspensions and this provided the motivation for the present undertaking. Since it is known that, because of their high reactivity (hence short life time) in aqueous media, the $\cdot\text{OH}$ radicals cannot be detected via electron spin resonance (ESR) directly,^{9,10} we have used ESR combined with the spin-trap methodology⁹ for studying the $\cdot\text{OH}$ formation.

MATERIALS AND METHODOLOGY

Crystalline silica with particle sizes of 0.2 to 2.5 mm was obtained from the Generic Respirable Dust Technology Center, Pennsylvania State University, University Park, Pennsylvania. Particles in the range of smaller than 25 microns were produced by hand grinding in air, using an agate mortar and pestle because of the structural similarity of agate to that of quartz. Also a rather mixed particle size, rather than a specific range, was employed, with a view to

roughly approximate the random particle-size distribution in the mining atmosphere. ESR spectra were obtained at X-band (~9.7 GHz) using a Bruker ER 200D ESR spectrometer. For accurate measurements of the g-values and hyperfine splittings, the magnetic field was calibrated with a self-tracking NMR gaussmeter (Bruker, model ER035M) and the microwave frequency was measured with a frequency counter (Hewlett-Packard, Model 5340A). 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) was purchased from Aldrich and used without further purification, since very weak or no ESR signals were obtained from the purchased sample when used by itself. If necessary the background signals were subtracted from those related to quartz by using an Aspect 2000 microcomputer.

RESULTS

Some typical results of the ESR spin-trapping studies are shown in Figure 1. We found that a 0.1 M aqueous solution of the spin-trap DMPO alone, with unground particles or with TiO_2 powder did not give a detectable ESR spectrum. TiO_2 was used as a control because it is known not to be fibrogenic¹¹ and has a structure resembling quartz (SiO_2). However, when quartz was ground in a 0.1 M DMPO (aqueous) solution or when ground quartz particles were mixed with 0.1 M DMPO (aqueous) solution, an ESR spectrum ($g = 2.0059$), consisting of a 1:2:2:1 quartet pattern with a splitting of 14.9 G, was observed (Figure 1a). Based on earlier work,^{9,12,13} this spectrum was considered to be due to the DMPO-OH adduct.

Two further tests were made to identify the spectrum. First, the Fenton reaction ($\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \cdot\text{OH} + \text{OH}^-$),¹⁴ known to produce $\cdot\text{OH}$ radicals, was used as a standard. The ESR spin-adduct spectrum obtained by mixing 0.085 M H_2O_2 , 0.0165 M FeSO_4 and 0.1 M DMPO was the same as that of Figure 1a (obtained with ground quartz), thus attesting to the formation of the $\cdot\text{OH}$ radical in the quartz suspension.

As a second, confirmatory, test of the $\cdot\text{OH}$ radical formation, spin-trap ESR experiments were performed in which ethanol was added as a secondary trap. It has been shown^{10,15} that in the presence of ethanol, the intensity of the DMPO-OH signal decreases, because ethanol scavenges some of the $\cdot\text{OH}$ radicals to form the ethanoyl radicals¹² which react with DMPO to give the spin-adduct DMPO-

This research has been supported by the Department of the Interior's Mineral Institute program administered by the Bureau of Mines through the Generic Mineral Technology Center for Respirable Dust under the grant number GI135142.

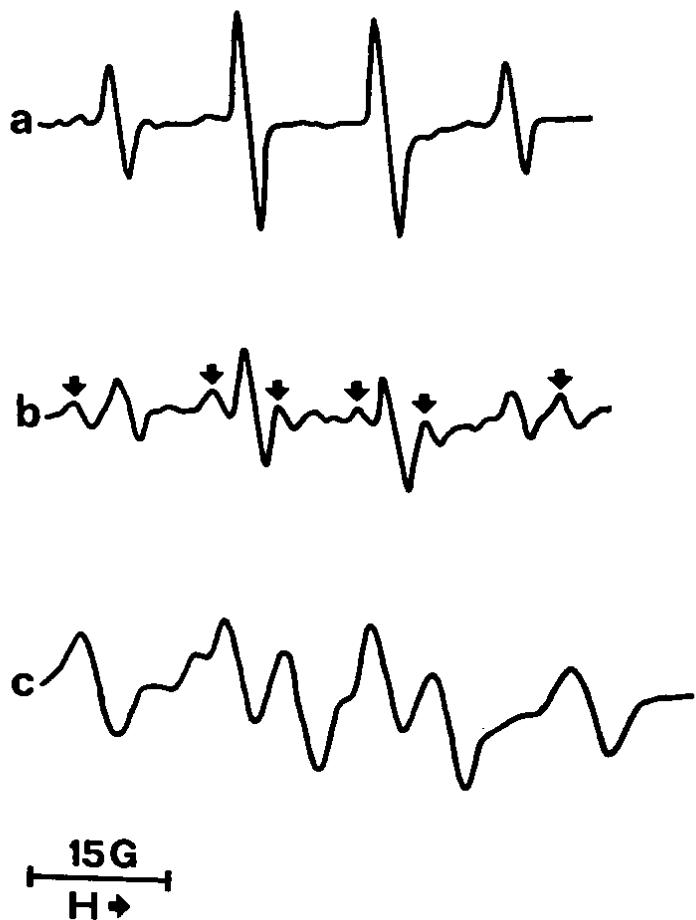


Figure 1. ESR spectra recorded 2 minutes after mixing 100 mM DMPO aqueous solution with (a) freshly ground quartz particles; (b) same as (a) but with 30% ethanol added; (c) same as (a) but with excess ethanol. Receiver gain, 5×10^5 ; modulation amplitude, 2 G; scan time, 100 seconds; field, 3460 ± 75 G.

CHOHCH_3 . The ESR spectrum of the spin-adduct DMPO- CHOHCH_3 was indeed observed as indicated by arrows in Figure 1b (for 30% ethanol) and more clearly in Figure 1c, obtained in the presence of excess ethanol, thus confirming the $\cdot\text{OH}$ radical formation in the quartz suspension.

The intensity of the $\cdot\text{OH}$ radical adduct signal increases with the amount of grinding (Table I), thus showing that the $\cdot\text{OH}$ radical generation is related to some surface property of the freshly made dust, most likely the silicon-oxygen radical sites known to form on grinding.¹⁶⁻²¹ Additional spin-trap measurements as a function of the time of "aging" of the dust after grinding showed that freshly generated quartz dust produces more $\cdot\text{OH}$ radicals than that which had been stored in air after grinding (Table II). In order to characterize the kinetics of the dust's aging on its ability to generate $\cdot\text{OH}$ radicals, attempts were made to determine whether the reaction was of the first order (a straight line plot for $\log (\text{con.})$ vs. time) or second order (straight line plot for $(\text{con.})^{-1}$ vs. time). The analysis indicated the kinetics to be neither first nor second order but of a more complex nature. Thus while it was not possible to define a unique half-life for the decrease in the $\cdot\text{OH}$ radical producing potential of the quartz dust on storage after grinding, we note that, on the average, freshly ground quartz dust loses its $\cdot\text{OH}$ -generating capacity to about 50% in approximately 1 day.

DISCUSSION

It is clear that the breakage of quartz crystals implies the homolysis of Si-O-Si bonds and the generation of silicon-based radicals ($\equiv\text{Si}\cdot$, $\equiv\text{SiO}\cdot$, $\equiv\text{SiOO}\cdot$).^{8,16-21} We have indeed verified that Si \cdot and SiO \cdot -type of radicals are produced by grinding in air, and that the radicals decay as a function of time when the dust is stored in air after grinding,¹⁷ with a half-life of about one and a half day. Earlier workers¹⁶ have reported that the crushing of quartz under vacuum produces SiO \cdot -type radicals whose concentration decreases drastically on exposure to atmosphere with a half-life of about 30 hours.

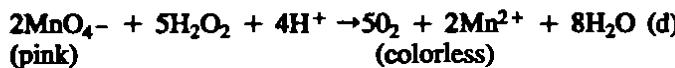
Table I
Dependence of the ESR Intensity of the DMPO-OH Adduct (i.e., $\cdot\text{OH}$ production) on Size (grinding times) of Quartz Particles

Grinding times (minutes)	Relative ESR intensity
0.0	0.0
0.5	0.3 ± 0.3
1.0	1.1 ± 0.6
2.0	2.3 ± 0.7
4.0	3.4 ± 0.8
10.0	5.1 ± 1.2

Table II

Dependence of the ESR Intensity of the DMPO-OH Adduct
(i.e., $\cdot\text{OH}$ production) on the "Aging" of Quartz Dust

Time after grinding	Relative ESR intensity
5 minutes	5.2 \pm 0.8
1 day	3.2 \pm 0.8
2 days	1.9 \pm 0.7
3 days	1.7 \pm 0.8
4 days	1.3 \pm 0.7


Following Kalbanev et al.,⁸ we suggest that the $\cdot\text{OH}$ radical production might involve the following steps:⁸

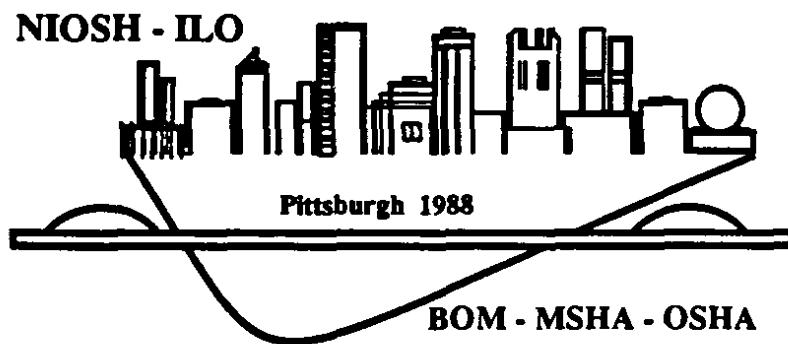
Kalbanev et al. have also suggested⁸ that the hydrolysis of SiOOH could produce H_2O_2 , according to reaction (c):

The yield of H_2O_2 , depending on the pH and the temperature of hydrolysis, was reported to be as high as 10^{18} molecules/g quartz particles,⁸ enough to be measured by the standard method of wet analytical chemistry, the MnO_4^- reduction:

We verified the reducing activity of our quartz particle suspension with respect to KMnO_4 , although the H_2O_2 yield was measured to be about an order of magnitude smaller for our samples than those of Kalbanev et al.⁸ Thus experiments were carried out to examine whether the $\cdot\text{OH}$ radical formation was through the Fenton reaction,¹⁴ the Fe^{2+} possibly being a trace impurity. The experiments consisted of spin-trap measurements in which diethylenetriaminepenta-acetic acid (DETAPAC) (0.03 – 3.0 mM) was used as a strong metal-ion chelate. It is known that the iron-DETAPAC complex formation stops the $\cdot\text{OH}$ generation from H_2O_2 .⁹ On adding DETAPAC the $\cdot\text{OH}$ radical-related ESR signals showed no variation in either the g value or the observed splitting pattern but only a small (20 %) decrease in intensity even at the high DETAPAC (3 mM) levels. This result, together with the dependence of the $\cdot\text{OH}$ radical concentration on time and surface freshness, suggests that the Fenton-type mechanism is not a major contributor to the $\cdot\text{OH}$ radical generation in our quartz suspensions.

After this work was essentially complete,¹⁷⁻²⁰ two significant reports have appeared. In the first, Fubini et al.,²¹ have report the formation of $\text{Si} \cdot$, $\text{SiO} \cdot$, and $\text{SiO}_2 \cdot$ radicals on quartz particles ground in air, without contact with water. They suggest a possible role of these radicals (or some other surface property) in the mechanism of quartz-induced fibrosis. Our ESR results on the silicon-based radicals,^{18,19} agree with Fubini's.²¹ We further show that the concentration of the silicon-based radicals is time dependent¹⁷ and that their reaction with aqueous media generates (perhaps)

an even more potent species,¹⁸⁻²⁰ the $\cdot\text{OH}$ radicals. The second paper, by Gulumian and Van Wyk,²² reported the detection of $\cdot\text{OH}$ formation in aqueous suspension of glass and quartz fibres in the presence of H_2O_2 , and the scavenging of the generated $\cdot\text{OH}$ radicals by the prophylactic agent (polymer) polyvinylpyridine N-oxide (PVPNO). They suggest that the therapeutic efficacy of PVPNO in silicosis might be related to its scavenging effects on $\cdot\text{OH}$ radicals. Our work shows that the grinding process itself causes the quartz surface to be a source of $\cdot\text{OH}$ radicals in aqueous media and that this activity decreases with the aging of the dusts.^{19,20} This higher toxicity of fresh dust must be taken into consideration in the future *in vitro* or *in vivo* laboratory (e.g., animal exposure) studies of quartz and related mineral dusts.


REFERENCES

1. Reiser, K.M., Last, J.A.: Silicosis and Fibrogenesis: Fact and Artifact. *Toxicology* 13:15-72 (1979).
2. Singh, S.V., Rahman, Q.: Interrelationship between Hemolysis and Lipid Peroxidation of Human Erythrocytes Induced by Silicic Acid and Silicate Dusts. *J. Appl. Toxicol.* 12:91-96 (1987).
3. Parazzi, E., Secchi, G.C., Pernis, B., Vigliani E.: Cytotoxic Action of Silica Dusts on Macrophages in Vitro. *Arch. Environ. Health* 17:850-859 (1968).
4. Gabor, S., Anca, Z., Zugravu, E.: In Vitro Action of Quartz on Alveolar Macrophage Lipid Peroxides. *Arch. Environ. Health* 30:499-501 (1975).
5. Koike, S., Kuno, Y., Morita, H.: The Effects of Silica on Lipid Peroxidation, and the Production of Superoxide Radicals by Phagocytizing Rabbit Macrophages. *Japanese J. Hygiene* 37:510-515 (1982).
6. Halliwell, L.B., Gutteridge, J.M.C.: Lipid Peroxidation: A Radical Chain Reaction. In *Free Radicals in Biology and Medicine* (1985) pp. 159. The University Press (Belfast) Ltd. Northern Ireland.
7. Fong, K.L., McCay, P.B., Poyer, J.L., Keel, B.B., Misra, H.: Evidence That Peroxidation of Lysosomal Membranes Is Initiated by Hydroxyl Free Radicals Produced During Flavine Enzyme Activity. *J. Biol. Phys.* 24:7792-7797 (1973).
8. Kalbanev, I.V., Berestetskaya, I.V., Butyagin, P.U.: Mechanochemistry of Quartz Surface. *Kinetika i Kataliz* 21:1154-1158 (1980).
9. Finkelstein, E., Rosen, G.M., Rauckman, E.J.: Spin Trapping of Superoxide and Hydroxyl Radical: Practical Aspects. *Arch. Biochem. Biophys.* 200:1-16 (1980).
10. Oberley, L.W.: The Spin Trapping of Superoxide and Hydroxyl Radicals. In *Superoxide Dismutase* 2:70-74 (1982). The CRC Press, Boca Raton, Florida.
11. Gormley, I.P., Kowolik, M.J., Cullen, R.T.: The Chemiluminescent Response of Human Phagocytic Cells to Mineral Dusts. *Br. J. Exp. Path.* 66:409-416 (1985).
12. Bannister, J.V., Bannister, W.H.: Production of Oxygen-Centered Radicals by Neutrophils and Macrophages as Studies by Electron Spin Resonance (ESR). *Environ. Health Persp.* 64:37-43 (1985).
13. Rosen, G.M., Freeman, B.A.: Detection of Superoxide Generated by Endothelial Cells. *Proc. Natl. Acad. Sci. USA* 81:7269-7273 (1984).

14. Halliwell, B., Gutteridge, J.M.C.: Oxygen Toxicity, Oxygen Radical, Transition Metals and Disease. *Biochem. J.* 219:1-14 (1984).
15. Weitzman, S.A., Graceffa, P.: Asbestos Catalyzes Hydroxyl and Superoxide Radical Generation. *Arch. Biochem. Biophys.* 228:373-376 (1984).
16. Hochstrasser, G., Antonini, J.F.: Surface States of Pristine Silica Surfaces. *Surface Sci.* 32:644-664 (1972).
17. Dalal, N.S., Suryan, M.M., Jafari, B., Shi, X., Vallyathan, V., Green, F.H.Y.: Electron Spin Resonance Detection of Reactive Free Radicals in Fresh Coal Dust and Quartz Dust and Its Implications to Pneumoconiosis and Silicosis. *Proc. Int. Symp. on Respir. Dusts in the Mineral Ind.* Pennsylvania State University, State College, Pennsylvania, USA (1986) (in press).
18. Vallyathan, V., Shi, X., Dalal, N.S., Irr, W.: Role of Reactive Oxygen Radicals in Silica Cytotoxicity. *4th Int. Cong. on Oxygen Radicals (abstract)*. p. 98, La Jolla, California, USA (1987).
19. Shi, X., Dalal, N.S., Vallyathan, V.: ESR Evidence for the Hydroxyl Radical Formation in Aqueous Suspension of Quartz Particles and Its Possible Significance to Lipid Peroxidation in Silicosis. *J. Toxicol. Environ. Health.* (1988) (in press).
20. Vallyathan, V., Shi, X., Dalal, N.S., Irr, W., Castranova, V.: Generation of Free Radicals from Freshly Fractured Silica Dust: Potential Role in Acute Silica-induced Lung Injury. *Am. Rev. Respir. Dis.* 1988 (in press).
21. Fubini, B., Bolis, V., Giannello, E.: The Surface Chemistry of Crushed Quartz Dust in Relation to Its Pathogenicity. *Inorg. Chim. Acta* 138:193-197 (1987).
22. Gulumian, M., Van Wyk, A.: Free Radical Scavenging Properties of Polyvinylpyridine N-oxide: A Possible Mechanism for Its Action in Pneumoconiosis. *Med. Lav.* 78:124-128 (1987).

Proceedings of the VIIth International Pneumoconioses Conference
Transactions de la VIIe Conférence Internationale sur les Pneumoconioses
Transacciones de la VIIa Conferencia Internacional sobre las Neumoconiosis

Parte I
Tome I
Parte I

Pittsburgh, Pennsylvania, USA—August 23–26, 1988
Pittsburgh, Pennsylvanie, Etats-Unis—23–26 aout 1988
Pittsburgh, Pennsylvania EE. UU—23–26 de agosto de 1988

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
Centers for Disease Control
National Institute for Occupational Safety and Health

CDC
CENTERS FOR DISEASE CONTROL

Sponsors

International Labour Office (ILO)
National Institute for Occupational Safety and Health (NIOSH)
Mine Safety and Health Administration (MSHA)
Occupational Safety and Health Administration (OSHA)
Bureau of Mines (BOM)

September 1990

DISCLAIMER

Sponsorship of this conference and these proceedings by the sponsoring organizations does not constitute endorsement of the views expressed or recommendation for the use of any commercial product, commodity, or service mentioned.

The opinions and conclusions expressed herein are those of the authors and not the sponsoring organizations.

DHHS (NIOSH) Publication No. 90-108 Part I