

IN DEPTH SURVEY REPORT  
OF  
P\*I\*E NATIONWIDE, INC.  
Jacksonville, Florida

PB90130055



SURVEY CONDUCTED BY:  
Dennis D. Zaebst  
David Marlowe  
Virginia Ringenburg  
Dennis Roberts  
NIOSH  
Industrial Hygiene Section  
Industrywide Studies Branch

Rebecca Stanevich  
NIOSH  
Division of Respiratory Disease Studies  
Morgantown, W.Va.

REPORT WRITTEN BY:  
Dennis D. Zaebst

DATE OF SURVEY:  
April 1988

DATE OF REPORT:  
July 1989

REPORT NUMBER:  
146.13

Division of Surveillance, Hazard Evaluations, and Field Studies  
National Institute for Occupational Safety and Health  
Centers for Disease Control  
Cincinnati, Ohio



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |                                      |                        |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------|------------------------|----------------|
| <b>REPORT DOCUMENTATION PAGE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | 1. REPORT NO.                        | 2.                     | 3. PB90-130055 |
| 4. Title and Subtitle In Depth Survey Report of P-I-E Nationwide, Inc., Jacksonville, Florida, Report No. IWS-146-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | 5. Report Date                       |                        | 88/04/00       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  | 6.                                   |                        |                |
| 7. Author(s) Zaebst, D. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | 8. Performing Organization Rept. No. |                        | IWS-146-13     |
| 9. Performing Organization Name and Address Division of Surveillance, Hazard Evaluations, and Field Studies, NIOSH, U.S. Department of Health and Human Services, Cincinnati, Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  | 10. Project/Task/Work Unit No.       |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  | 11. Contract (C) or Grant(G) No.     |                        | (C)<br>(G)     |
| 12. Sponsoring Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | 13. Type of Report & Period Covered  |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  | 14.                                  |                        |                |
| 15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |                                      |                        |                |
| <p>16. Abstract (Limit: 200 words) A study was conducted at the P-I-E Nationwide terminal, Jacksonville, Florida as part of a larger effort to determine whether persons exposed to diesel aerosol as part of their job continued to have an elevated risk of contracting lung cancer after controlling for tobacco smoking and to determine relative exposures to diesel aerosol among the four major presumably exposed job groups: road drivers, local drivers, dock workers, and mechanics. This dock operated 24 hours a day on three shifts. Seven tow motor trucks were located on the dock, six diesel powered, one propane powered. Sampling conducted at the site indicated that most jobs had low level exposures on the order of 6 micrograms/cubic meter (microg/m<sup>3</sup>). Geometric mean exposures to submicrometer elemental carbon (7440440) ranged from a low of 4.1microg/m<sup>3</sup> in mechanics working primarily in the repair shop to 25.4microg/m<sup>3</sup> in the dock workers driving diesel powered lift trucks. Only the dock workers had exposures to elemental carbon which were substantially above the concentrations determined from highway area samples. The principal source of the dose workers' exposures was diesel emissions from the fork lift trucks operated on the docks.</p> |  |                                      |                        |                |
| 17. Document Analysis a. Descriptors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                                      |                        |                |
| <p>b. Identifiers/Open-Ended Terms NIOSH-Publication, NIOSH-Author, NIOSH-Survey, Field-Study, IWS-146-13, Region-4, Dockworkers, Dockyards, Longshoremen, Exhaust-gases, Diesel-emissions</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                      |                        |                |
| <p>REPRODUCED BY<br/>U.S. DEPARTMENT OF COMMERCE<br/>NATIONAL TECHNICAL INFORMATION SERVICE<br/>SPRINGFIELD, VA. 22161</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                      |                        |                |
| c. COSATI Field/Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                      |                        |                |
| 18. Availability Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | 19. Security Class (This Report)     | 21. No. of Pages<br>35 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  | 22. Security Class (This Page)       | 22. Price              |                |



**PURPOSE:** To conduct an in depth survey of workers' exposures to diesel exhaust. The survey was conducted as part of the Industrywide Studies Branch case control mortality and industrial hygiene study of truck drivers, dock workers and mechanics presumably exposed to diesel exhaust aerosol.

**DATE OF SURVEY:** April 19-22, 1988

**PLANT CONTACTS:** Mr. John H. Trapp, V.P., Corp. Services  
Mr. J. Gary Glover III, Region Manager  
Mr. Hermes Ortiz, Personnel Manager

**UNION REPRESENTATIVE:** Mr. William Adams  
Vice-President  
UAW Local 1196  
13710 Glendale  
Cleveland, OH 44105 (216) 561-7984

**PERSONS CONDUCTING SURVEY:** Dennis D. Zaebst, M.S., C.I.H.  
David A. Marlow, B.S.  
Virginia Ringenberg, B.S.  
Dennis Roberts, M.S.  
Rebecca Stanevich, M.S.

**SIC CODE:** 4231 - Freight Trucking Terminals, with or without maintenance facilities



DISCLAIMER

Mention of facility names or products in this report does not constitute endorsement by the National Institute for Occupational Safety and Health.



## TABLE OF CONTENTS

|                                                      | <u>Page</u> |
|------------------------------------------------------|-------------|
| Abstract.....                                        | iv          |
| Introduction.....                                    | 1           |
| Truck Terminal Description.....                      | 1           |
| Workforce Description.....                           | 3           |
| Medical, Safety and Industrial Hygiene Programs..... | 3           |
| Diesel Aerosol Toxicology and Exposure Criteria..... | 4           |
| Methods.....                                         | 6           |
| Background.....                                      | 6           |
| Sampling Strategy.....                               | 7           |
| Methods & Materials.....                             | 7           |
| <br>Results.....                                     | <br>9       |
| Conclusions.....                                     | 10          |
| Recommendations.....                                 | 11          |
| References.....                                      | 12          |

## TABLES AND FIGURES

|                                             |    |
|---------------------------------------------|----|
| Table I (Permissible Exposure Limits) ..... | 15 |
| Tables II-V (Sampling Summaries) .....      | 16 |
| Figures 1-2 (Mean Exposures by job).....    | 18 |

## APPENDICES

|                                                           |    |
|-----------------------------------------------------------|----|
| Appendix A - Site plot diagram.....                       | 20 |
| Appendix B - Medical exam form.....                       | 22 |
| Appendix C - Tables 1-3 (individual sample results) ..... | 24 |



## Abstract

The Industrywide Studies Branch of NIOSH is currently conducting a combined case-control and industrial hygiene study of members of the International Brotherhood of Teamsters. The purposes of the study are: 1) to determine whether persons exposed to diesel aerosol as a part of their job continue to have an elevated risk of contracting lung cancer after controlling for tobacco smoking, and 2) to determine relative exposures to diesel aerosol among the four major presumably exposed job groups (road drivers, local drivers, dock workers, and mechanics) identifiable from Teamsters union records. The second objective was accomplished by conducting a series of industrial hygiene surveys at seven U.S. truck terminals. During each of these surveys, personal and area sampling were conducted to evaluate exposures to submicrometer elemental carbon (used as the principal surrogate marker of exposure), submicrometer organic carbon, and several other particulate components of diesel exhaust, including gravimetrically determined respirable and submicrometer dust.

Elemental carbon sampling results at the P\*I\*E Nationwide terminal in Jacksonville, FL during mild weather indicate low-level exposures (similar to background highway concentrations - on the order of 6  $\mu\text{g}/\text{m}^3$ ) in most jobs. Geometric mean exposures to submicrometer elemental carbon ranged from a low of 4.1  $\mu\text{g}/\text{m}^3$  in mechanics working primarily in the repair shop, to 25.4  $\mu\text{g}/\text{m}^3$  in dock workers driving diesel-powered lift trucks. Other job exposure means were intermediate to these. Only the dock workers had exposures to elemental carbon substantially above concentrations determined from highway (area) samples. The principal source of the dock workers' exposures appeared to be diesel emissions from the diesel-powered fork lift trucks operated on the dock.



## INTRODUCTION

NIOSH researchers are conducting a study to characterize the current and historical diesel exhaust exposures of trucking industry employees, with the objective of ranking jobs by exposure within the industry. The rankings will be used subsequently in a case-control mortality study to help interpret the results of the study in terms of dose-response, and to correctly classify the study participants by the level of their diesel exhaust exposure. The purpose of the mortality study is to determine if workers in certain jobs in the trucking industry have experienced an increased risk of developing lung cancer compared to others, after controlling for smoking. The study includes men who died in 1982-83, and applied for a Teamsters pension. Thus all persons in the study are long term Teamsters Union members.

One of the difficulties in determining relative exposures to diesel exhaust is deciding what substance or substances to measure. Whole diesel exhaust cannot be measured directly since it is a complex mixture of chemical substances. In addition, many other combustion or pyrolysis products, such as tobacco smoke, industrial aerosols, and wood smoke, contain many of the same components. Several components or fractions of diesel exhaust for which measurement methods have been established include respirable particulate, total airborne particulate, and oxides of nitrogen, sulfur, and carbon (1). In this study, measurement of the elemental carbon content of airborne submicrometer particulate was used as the primary marker of exposure to diesel exhaust.

This report describes the results of an in-depth industrial hygiene survey conducted at P.I.E. Nationwide's break-bulk terminal in Jacksonville, Florida during the period April 19-22, 1988. During the survey, 84 personal samples were obtained for evaluation of workers' exposures to elemental and organic carbon in airborne "submicrometer" aerosol (particles generally smaller than one micrometer in aerodynamic diameter). Additional area samples were obtained for evaluation of concentrations of airborne respirable dust and submicrometer dust. This report describes the terminal and its workforce, the toxicity of diesel exhaust and applicable exposure criteria, the methods used during the survey to evaluate diesel exhaust exposures, the results of the sampling, and preliminary conclusions and recommendations.

## TRUCK TERMINAL DESCRIPTION

The terminal, located on Kings Road in Jacksonville, Florida, is one of the P.I.E. Nationwide company's largest. The site currently includes some corporate offices, and the break-bulk (or hub) terminal, which consists of terminal offices and truck/driver dispatching area, a 104-door dock, a wash rack, and a truck repair shop. Appendix A is a simplified site layout diagram, and it illustrates the general traffic flow at the terminal. Both line-haul (over the road) and local drivers operate to and from this terminal.

The terminal began operations as the Great Southern Trucking Company in the early 1940's. A 60-door dock was built in 1952, and was expanded to its present size in 1979. In 1953, the company was renamed the Ryder Trucking

Company after a merger with that company. In 1983, the name changed again to Ryder-P.I.E. Nationwide after a merger with the P.I.E. Nationwide Company. The name was changed again in 1985, and the company is now called the P.I.E. Nationwide Company.

#### Dock Operations

The dock is typical of truck docks at this type of terminal. The floor of the dock consists of an elevated (approximately 3 feet off the ground) concrete slab that allows easy loading and off-loading of truck trailers. The dock building itself is an open-sided covered structure with a total of 104 open doors placed along both sides and the west end of the building (terminal offices are adjacent to the east end). Each door is sized larger than the open end of most truck trailers, again to allow easy access to the interior of the trailer. The doors do not have closures, but during normal dock operations, trailers are parked at most of the door openings. Ventilation conditions on the dock are essentially the same during both warm or cool weather; i.e., dock doors remain open to the same degree during all weather, and the dock is not heated.

The floor of the dock is an open space, but most of it, except for the tow-motor (forklift) driving lanes, is normally taken up with materials, hand carts and other moving equipment, and other stock being transferred from one trailer to another within the dock.

The dock operates twenty-four hours per day on three shifts. There are seven tow-motor trucks on the dock. Six of the seven tow-motors are 1984 model Toyota diesel-powered vehicles, and one is a 1982 model Clark propane-powered vehicle. The P.I.E. Nationwide company has been gradually converting to diesel powered tow-motors since 1981. Currently, almost all tow-motors owned company wide are diesel powered.

#### Repair Shop Operations

The repair shop at this site consists of four repair bays and one service lane, plus shop offices, parts storage, and a tool crib. Each bay (running east-west) is approximately 200 feet long and about 18-20 feet wide, with large overhead bay doors at each end. Minor and medium level repairs are done in the four repair bays, while routine safety checks and services are done in the service lane. All arriving trucks are routed through the service lane. These trucks are driven into the service/safety check bay, parked, and the engine turned off. If the engine must remain running while in the service bay area, a local exhaust hood is attached to the exhaust stack of the truck. The mechanics in charge of this lane run through a checklist of service/safety items (oil, brakes, grease, tires, lights, wipers, etc.) to determine the operating condition of the vehicle.

The repair shop does most tune-ups, and mechanical, tire and wheel, and electrical repair, but does not do major jobs such as major engine or transmission overhauls. During the survey, the large bay doors on all bays

were kept open at both ends due to the warm (greater than 50-degree daytime highs) ambient temperatures. Other than the local exhaust systems for the truck stacks, no ventilation systems were in place in the shop area.

#### Truck Fleet Description

This terminal employs both Line-haul (long-distance) drivers, and short-haul (city only or local) drivers. Twenty-two road tractors (used in line-haul) are housed at this terminal. These include both Freightliner and Kenworth: 1) conventional design single axle tractors (in which the engine is situated in front of the cab), which can haul up to 20,000 lbs. weight; and 2) "Cabover" designs (in which the cab is situated directly over the engine compartment), which can haul up to 34,000 lbs. with a conversion for a tandem axle. All line haul tractors used by P.I.E. are configured with vertical stack exhausts on the right (opposite from the driver) side of the cab. Since 1958, all of the line haul tractor cabs (but none of the city cabs) have been either bought or retrofitted with air-conditioning units.

P.I.E. Nationwide began conversion of the road tractor fleet from gasoline engines to diesel engines in the mid- 1950's, and the conversion was completed in 1958. Reliable non-asbestos composition brake linings became available in 1966, and since that time, all tractor wheels have been relined with the non-asbestos linings.

#### WORKFORCE DESCRIPTION

As of the date of the survey, approximately 110 persons were on the seniority list at this terminal. These included about 50 "checkers" (dock workers), 11 city truck drivers, 16 "hostlers" (yard operators), and 5 tow-motor (lift truck) drivers. An additional 25 workers were on layoff at the time of the survey. The terminal also employed 10 office clerks, and 13 management personnel. The management personnel included one terminal manager, one office manager, one city truck dispatcher, two dock superintendents, and eight dock supervisors. The terminal personnel (exclusive of office, managerial, and road drivers) were all male, and approximately 33% were black or Hispanic.

In addition to the terminal personnel, 47 road drivers were employed at this terminal, about 22 of whom were dispatched from this terminal. All of the drivers were males, seven were black, and one was Hispanic. In 1965, the terminal employed about 100 road drivers. The number has steadily decreased to 47 at the time of the survey.

#### MEDICAL, SAFETY, AND INDUSTRIAL HYGIENE PROGRAMS

##### Safety and Hygiene Programs

The company has no formal in-house industrial hygiene program, but P.I.E. Nationwide has a well developed safety program, with a safety supervisor located in Charlotte, N.C. The program includes extensive new-employee and periodic training programs in safety and hazardous materials, and an incentive

awards program. On-site safety coordination and implementation is the responsibility of managers and supervisors. Safety meetings are held irregularly as time permits, and safety and hazardous materials topics are covered regularly in "breakfast" meetings.

#### Medical Programs

There is no on-site medical clinic or nurse's station, but there is a first aid station. The company has no specific arrangement for medical or emergency care, but the city emergency response system is reportedly excellent. At the time of the survey, the company had no policy or program for training personnel in C.P.R.

For drivers, the Department of Transportation requires a pre-employment physical and a periodic physical every two years. The physical is a limited one and includes a medical history, vision tests, hearing and audiometry, and urine analyses which include specific gravity, albumin, and sugar. The examination also includes an EKG and a chest X-ray. Appendix B is a copy of the blank form used for the examination.

### DIESEL AEROSOL TOXICOLOGY AND EXPOSURE CRITERIA

#### Toxic and Carcinogenic Effects

Three characteristics of diesel exhaust particles (DEP) are important when considering the toxicity of diesel exhaust. First, the particles are small and readily inhalable and therefore can reach the lower respiratory system, where they are retained (2). Second, at least several thousand organic compounds can be adsorbed onto the surface of the carbon particle aggregates, many of which are cytotoxic, carcinogenic or mutagenic (3). These adsorbed compounds can include polynuclear aromatic hydrocarbons (PAHs), and nitro-substituted PAHs such as 1-nitropyrene and 2-nitrofluorene (4). Third, diesel particles consist largely of carbonaceous material which is relatively stable in biological media. Thus, inhaled diesel particles tend to be retained for long periods in the lower respiratory tract and can accumulate, favoring induction of chronic pulmonary effects such as respiratory impairment and carcinogenesis (4).

Whole diesel exhaust also includes a number of toxic gases or vapors (i.e., various oxides of nitrogen and sulfur, aldehydes, etc.), which appear to play a major role in effects such as acute respiratory irritation. However, it is conceivable that these gases, or the organic material adsorbed on deposited particles, may play an additive or synergistic role in reducing ciliary clearance as well, perhaps through direct chemical cell toxicity (2).

In a major chronic inhalation study conducted by the Lovelace Institute, rats exposed at a concentration of 350 ug/m<sup>3</sup> DEP for 7 hr/day, 5 days/wk for up to 2 years did not have clearance rates that were significantly different from controls (5). However, rats similarly exposed at a concentration of 7000 ug/m<sup>3</sup> did show clear evidence of pulmonary accumulation of DEP after only 12

months, indicating impaired particle clearance. Rats exposed at concentrations of 3500  $\mu\text{g}/\text{m}^3$  did not demonstrate impaired clearance until after 18 months of exposure. These data suggest that (at least in rats) impairment of pulmonary clearance is a function of both concentration and duration of exposure, and that significant impairment of pulmonary clearance and subsequent accumulation of DEP begins somewhere between a concentration of 350 and 7000  $\mu\text{g}/\text{m}^3$  of DEP. However, substantial differences in lung clearance rates between test animals and humans make these data difficult to interpret in terms of human risk assessment (2).

NIOSH recently published a current intelligence bulletin (1) which concluded that "...whole diesel exhaust be regarded as a potential occupational carcinogen in conformance with the OSHA Cancer Policy (29 CFR 1990)". This conclusion was based on the results of recent animal and human epidemiology studies. The studies in rats and mice confirmed the association between induction of lung tumors and exposure to whole diesel exhaust, and especially the particulate phase (5-9). Several recent human epidemiology studies also consistently suggested an association between occupational exposure to whole diesel exhaust and lung cancer (10-12).

The most recent and thorough epidemiological studies were done by Garshick et al. (11,12) in railroad workers. In both of these case control studies, significant excesses of lung cancer were identified in certain age groups of exposed railroad workers, after controlling for tobacco smoking and asbestos exposures. Classification of the workers into exposed and unexposed groups was confirmed using adjusted respirable particulate (ARP) exposure measurements in 39 representative jobs from four U.S. railroads over a 3-year period. The measurements were adjusted by analyses for nicotine from composited filters obtained from each job group (13). Geometric mean exposures to ARP ranged from 17  $\mu\text{g}/\text{m}^3$  for clerks to 134  $\mu\text{g}/\text{m}^3$  for locomotive shop workers. Differences in climate, facilities, equipment, and work practices were found to affect exposures to diesel exhaust (14).

#### Exposure Criteria

Permissible exposure limits (PELs) promulgated by the Occupational Safety and Health Administration (OSHA) and the Mine Safety and Health Administration (MSHA) and NIOSH recommended exposure limits (RELs) exist for a number of gas/vapor species present in whole diesel exhaust (Table I, reproduced from NIOSH's Current Intelligence Bulletin No. 50 (1). There are essentially no exposure limits (either promulgated as standards or recommended) directly applicable to evaluation of diesel aerosol (particulate phase) exposures. Both OSHA and MSHA have promulgated exposure limits for respirable nuisance (inert or nontoxic) dust for general occupational (5  $\text{mg}/\text{m}^3$ ) and coal-mine environments (2  $\text{mg}/\text{m}^3$ ). However, neither of these standards were intended to apply to diesel exhaust particulate. These standards are roughly comparable to the medium (3.5  $\text{mg}/\text{m}^3$ ) and high (7  $\text{mg}/\text{m}^3$ ) exposure concentrations used in the animal studies reported by Mauderly et al. (5). Thus it is unlikely that these concentrations represent reasonable exposure limits for human exposure to diesel aerosol. There are also no existing

exposure limits for specific PAHs or N-substituted PAHs. Similarly, the OSHA PEL for coal tar pitch volatiles (measured by solvent extraction of collected particulate) is not considered relevant to diesel emissions.

Measurements of the specific compounds mentioned above (and relating the results to published standards and recommendations) will not serve as adequate surrogates for diesel exhaust exposure nor do they allow an accurate assessment to be made of the effects of factors such as climate, facility design, work practices, and tractor/tow-motor configuration, type, or age. The measurement of submicrometer elemental carbon, which was used in this survey, appears to be a more sensitive and specific surrogate for diesel exhaust than other previously used surrogates. Currently there are no promulgated standards or recommended exposure limits for exposure to submicrometer elemental carbon in whole diesel exhaust.

#### METHODS

##### Background

Characterizing worker exposure to diesel exhaust is difficult because of the complex nature of diesel engine emissions. One of the chief difficulties is determining which of the thousands of compounds best serves as an index at diesel exhaust exposure and as an indicator for the expression of adverse health effects. Since measuring each of the compounds in diesel exhaust is obviously impossible, it is necessary to identify a component of whole exhaust which is thought to be related to the health effect of interest. In this study the health effect of interest is lung cancer.

One of the many problems associated with choosing an appropriate air sampling method for the carcinogenic component of diesel exhaust is the uncertainty about which specific agent or agents are responsible for its mutagenic and carcinogenic properties. It has been established in previous research that whole diesel exhaust has low in-vitro mutagenic potency and low in-vivo carcinogenic potency in rats and mice (15). At present, the role of individual diesel components in the etiology of human lung cancer is unknown. However, it has been established that 90% of the mutagenic potency of diesel exhaust appears to be limited to the particulate phase (16). In addition, although a few animal studies indicate that filtered diesel exhaust (i.e. the gaseous phase) may also be carcinogenic, lung tumor induction in animals has been primarily associated with exposure to the particulate fraction (1). Therefore, it is reasonable to use an index directly related to the particulate, and not gaseous phase, of diesel aerosol.

Several methods have been used previously to measure worker exposures to diesel exhaust. Measurement of ARP (respirable particulate adjusted for the contribution of tobacco smoke by quantitation of nicotine extracted from the same filters) was used in a recently completed exposure study in railroad workers (14). MSHA, the Bureau of Mines (BOM), and NIOSH have measured exposures to diesel aerosol in coal mines by gravimetric determination of submicrometer particulate, using a custom-designed "dichotomous" sampling cassette (17).

The major problems associated with the use of these methods in the trucking industry include: 1) the relative insensitivity of the gravimetric method (as high as 200 mg/filter), and 2) lack of specificity, since tobacco smoke produces an unknown and potentially large positive bias.

Exposure to submicrometer elemental carbon (Ce) was chosen as the principal marker of exposure to whole diesel exhaust in this study because: 1) it has a 100-fold greater sensitivity over the gravimetric method (the limit of detection is on the order of 2 ug/filter); 2) diesel particulate is typically 60-80% elemental carbon by weight (thus the major component of diesel exhaust is measured); and 3) tobacco smoke is almost entirely organic carbon, and should not produce a significant positive bias.

#### Sampling Strategy

Approximately 6 to 10 personal samples for submicrometer Ce and organic carbon (Co) were obtained on each of the two shifts sampled each day. Generally, 3 to 5 personal samples were obtained from both mechanics and road drivers during the second shift, and an equivalent number of personal samples were obtained from dock workers (both tow-motor drivers and non-driver dock workers), and local drivers during the day shift. Sampling was conducted for three days (six shifts).

Additional area sampling was conducted during the survey to measure respirable airborne particulate, and submicrometer airborne particulate (both gravimetric analyses). These methods were used for comparison to the results from other recently completed research, specifically Woskie et al. (railroad workers) (14), and additional exposure assessments currently being conducted in coal and metal/nonmetal mines by NIOSH, BOM, and MSHA. Two samples of each type were obtained on each shift, one in each of the two areas sampled; i.e., on the dock and in city tractor cabs during the day shift, and in the repair shop and road tractor cabs during the second shift. In the case of the tractor cabs, the sampling pumps were placed on the floor of the cab driven by the person (road or city driver) on whom personal samples were obtained for submicrometer elemental carbon. The sampling cassettes were attached to an appropriate location near the dashboard. In the case of the dock and repair shop, the samplers were placed at one strategic location in each area.

#### Methods and Materials

Worker exposures to submicrometer Ce were determined by obtaining full shift personal samples using a modified dichotomous sampling cassette developed by NIOSH's Division of Respiratory Disease Studies (DRDS) (17), but containing 37 mm Pallflex Corporation QAOT quartz fiber filters instead of 37 mm PVC filters. Battery-operated personal sampling pumps were used to draw air through these cassettes at a flowrate of 4 Lpm. The modification to the DRDS design entailed resizing the inlet diameter to approximately 0.0520" in order to preserve the impaction characteristics (>1 um aerodynamic diameter) when operating the sampler at 4 Lpm instead of 2 Lpm.

The dichotomous cassette is essentially a single-stage personal cascade impactor, designed to collect submicrometer particles, and to reject supermicrometer (those larger than 1 um) particles. The dichotomous cassette was used in order to exclude, to the extent possible, non-diesel particulate, since almost all diesel particles (about 95%) are smaller than one micrometer (18). All of these samples were obtained for a full shift, since the main problem is sensitivity, not overloading. The limit of detection is about 2 ug/filter, which translates to a concentration of about 1 ug/m<sup>3</sup>, assuming a 2 cubic meter air volume. Subsequent to the survey, the sample filters were submitted to a laboratory for thermal-optical quantitation of elemental and organic carbon. The method used is capable of accurate speciation of elemental and organic carbon fractions in deposits on the filter.

Defining the nature of elemental carbon is not simple. Most researchers define it entirely in terms of the method of analysis. However, elemental (as opposed to "organic") carbon has certain fundamental properties which allow its separation and quantitation. These properties include:

- nonvolatility even at high temperature in an oxygen-free atmosphere,
- small particles which absorb light of any wavelength,
- chemically inert to most acids at room temperature,
- insolubility in all solvents, and
- electrical conductivity.

The thermal-optical determination (19-20) makes good use of the first two of these properties. In this analysis, a portion of the filter (i.e., a "punch") is removed and placed in a furnace. During each of the two major phases of the analysis, the furnace temperature is increased in a stepwise manner several times to drive off the various carbon species in stages, resulting in a carbon species profile, or thermogram.

In the first major phase of the analysis, the temperature in the furnace is stepped from 250° to 680° C., in the absence of oxygen, to drive off organic carbon compounds. In the second major phase, the furnace temperature is reduced slightly, and stepped from 525° to 750° C., in a 2% oxygen atmosphere to oxidize elemental carbon to carbon dioxide. Quantitation is accomplished during both phases by catalytic reduction of carbon dioxide to methane, and detection using flame ionization. During the first phase, the transmission of a helium-neon laser beam through the filter is monitored to correct for inadvertent pyrolysis (charring) of organic carbon species to elemental carbon.

Similar dichotomous samplers were used (but at a flowrate of 2 Lpm) to collect submicrometer aerosol using pre-weighed 5 um pore-size polyvinyl chloride filters. Subsequent to the survey, these filters were reconditioned to constant temperature and humidity and reweighed to determine the net weight of collected submicrometer particulate.

Respirable dust samples were obtained using NIOSH method 0600 (21). This method measures the mass concentration in air of any nonvolatile respirable dust, as specified by the American Conference of Governmental Hygienists

(22). The samples were collected using a preweighed 37 mm Millipore 5 um pore-size polyvinyl chloride filter held in a polystyrene cassette. The cassette was placed in a 10 mm nylon cyclone, which separates the particles into respirable and non-respirable fractions. Air is drawn through the cyclone/filter at a flowrate of 1.7 Lpm. The filter is post weighed after reconditioning in the laboratory to determine the net weight of particulate collected on the filter.

## RESULTS

Tables II and III present statistical summaries, by job categories, of personal samples used to evaluate time weighted average exposures to elemental and organic carbon. Tables IV and V contain statistical summaries of respirable dust and submicrometer dust concentrations by job or area. Tables 1, 2, and 3 in appendix C contain the individual personal, eight-hour time weighted average exposures to elemental and organic carbon, respirable dust, and submicrometer dust samples. Figures 1 and 2 are bar charts of the geometric mean elemental carbon concentrations, by job, including the results of the background highway and residential area samples. In the following discussion, the terms "average" and "mean" denote geometric means (not arithmetic), unless otherwise indicated.

### Submicrometer Elemental and Organic Carbon

As shown in Table II, the geometric mean submicrometer elemental carbon exposures of personnel sampled at this facility ranged from a low of 4.1 ug/m<sup>3</sup> in mechanics to a high of 25.4 ug/m<sup>3</sup> in dock tow motor operators. The exposure means in other jobs were (see Figure 1): road drivers (5.5 ug/m<sup>3</sup>), local drivers (7.1 ug/m<sup>3</sup>), hostlers (7.5 ug/m<sup>3</sup>), and dock workers (16.3 ug/m<sup>3</sup>). By contrast, Ce concentrations measured on a local freeway near Jacksonville averaged 5.7 ug/m<sup>3</sup> (range: 3.9 to 8.6 ug/m<sup>3</sup> in three samples), and in a residential area (at least one mile from the nearest highway or freeway), averaged 1.2 ug/m<sup>3</sup> (range: 0.9 to 1.6 ug/m<sup>3</sup> in three samples).

Inspection of Figure 1 shows that exposures in most jobs (with two exceptions, dock workers and dock tow-motor operators) were of the same order of magnitude as highway background concentrations. The 95% upper confidence limit of the highway concentrations, was, in fact, greater than the 95% lower confidence limit of any of the other job means, suggesting that none of the true job means were significantly higher than local highway concentrations of submicrometer elemental carbon. However, it is possible that the number of samples within individual jobs (N ranging from 2 to 15) were too small to detect a true significant difference. Thus final judgement on this conclusion (using factorial analysis of variance) will be reserved until the data from all seven surveys have been pooled and analyzed together.

The principal source of dock workers' exposures to diesel aerosol was diesel-powered lift trucks on the dock. However, an unknown proportion of the dock workers' exposures was undoubtedly due to road, local, and switching

tractors operating in the yard adjacent to the dock. The fact that the hostlers' (working mainly in the yard) mean exposures were substantially lower than the dock workers' exposures supports the conclusion that the primary source of diesel aerosol was the diesel-powered tow-motors.

Table III contains comparable summary statistics for the same samples analyzed for organic carbon. As indicated, geometric mean exposures to submicrometer organic carbon ranged from 32.8 ug/m<sup>3</sup> in road drivers to 76.6 ug/m<sup>3</sup> in dock tow-motor operators. Other job means (Table III and Figure 2) were intermediate. Highway background concentrations averaged 16.8 ug/m<sup>3</sup>, and residential concentrations averaged 11.5 ug/m<sup>3</sup>. Again, the 95% UCL for the highway samples (38.2 ug/m<sup>3</sup>) was greater than the 95% LCL for all other job means, with the exception of the dock workers. Inspection and comparison of Figures 1 and 2 suggests the same relative levels of exposures between the jobs. However, the substantially higher concentrations of organic carbon also suggest that other, non-diesel aerosol may have contributed to total carbon exposure. These sources may have included tobacco (cigarette, pipe, and cigar) smoke as well as industrial emissions.

#### Respirable and Submicrometer Dust

Table IV is a summary of concentrations of respirable dust obtained in specific areas of the repair shop, dock, and in local and road truck tractors. Respirable dust concentrations in two areas of the repair shop averaged 19.3 and 49.3 ug/m<sup>3</sup>, 40 to 44.3 ug/m<sup>3</sup> on the dock, 26 to 47.6 ug/m<sup>3</sup> in local tractor cabs, and 51.0 ug/m<sup>3</sup> in road tractor cabs. In general, concentrations of respirable dust were of the same order of magnitude in all areas sampled, approximately 40-50 ug/m<sup>3</sup>.

Table V summarizes concentrations of submicrometer dust obtained in the same areas as were the respirable dust concentrations. Geometric mean concentrations of submicrometer dust ranged from 14.76 ug/m<sup>3</sup> (N=2) on the dock near the foreman's desk, to 37.4 ug/m<sup>3</sup> (N=2) in the repair shop (garage) near the north repair bay. Intermediate means were found in the road tractor cabs (17.3 ug/m<sup>3</sup>, N=2) and in the local tractor cabs (33.7 ug/m<sup>3</sup>, N=3). Individual samples also indicated concentrations of 12.9 ug/m<sup>3</sup> and 24.6 ug/m<sup>3</sup> in the south end of the repair shop and the dock near the billing desk, respectively.

#### CONCLUSIONS

1. Based on measurements of personal, breathing zone concentrations of elemental carbon at this terminal, it appears that only the dock workers' exposures to diesel aerosol were elevated significantly above background highway concentrations found in the Jacksonville area. However, this conclusion is not a rigorous one, since the small sample sizes generated necessarily wide confidence limits around the geometric means. Firmer conclusions must await analysis of this data in conjunction with data collected during the remainder of the surveys at other terminals. It appears that the substantially greater exposures of dock workers were due primarily to emissions from diesel-powered fork lift trucks operated on the dock.

2. Geometric mean organic carbon concentrations were substantially higher than elemental carbon concentrations in all jobs and areas sampled at this terminal, suggesting the presence of non-diesel aerosols, such as tobacco smoke, in the samples. Again, however, the small overall sample sizes preclude firm conclusions.

3. Additional data collected during this survey regarding the environmental factors such as temperature, and factors such as tractor configurations, age, and weight, will be consolidated with similar data collected at other terminals and used to help determine their significance. The data reported here were collected in relatively mild conditions (approximately 70 degrees F. daytime highs), and represent (with a few exceptions) tractors with vertical (stack) exhaust systems, and conventional (not cab-over) tractor designs.

#### RECOMMENDATIONS

With the exception of dock workers (and particularly those spending the majority of their shift driving tow-motors), exposures to elemental carbon were relatively low during the survey. However, in view of the potential human carcinogenicity of whole diesel exhaust (NIOSH 1988) the following recommendations are prudent.

Exposures to diesel exhaust should be reduced to the lowest feasible limit using one or more of the following techniques: source controls, changes in work practices, substitution, and engineering controls such as local and general exhaust ventilation. Source controls include careful, continued engine maintenance and tune-ups, particularly in tow-motors, but also in tractors and switching vehicles, as well as use of direct exhaust controls such as ceramic filters. Changes in work practices include planned rotation of workers between jobs to minimize exposures (between work on the dock and driving tractor cabs, for instance). Local exhaust techniques include flexible-duct, vehicle exhaust removal systems in buildings or other enclosed or semi-enclosed spaces such as the repair shop. General (dilution) exhaust and makeup systems can be useful in controlling exposures in enclosed spaces such as the repair shop, particularly in cold weather, or where it is not possible to effectively control exposure using only local exhaust systems. Substitution would include replacement of older or malfunctioning tow-motors with newer, more efficient models, or substituting gasoline, propane, or electric powered vehicles for diesel powered vehicles.

## REFERENCES

1. Current Intelligence Bulletin No. 50. Carcinogenic Effects of Exposure to Diesel Exhaust. National Institute for Occupational Safety and Health, Cincinnati, OH, July 1988.
2. McClellan, R.O., D.E. Bice, R.G. Cuddihy, N.A. Gillett, R.F. Henderson, R.K. Jones, J.L. Mauderly, J.A. Pickrell, S.G. Shami, and R.K. Wolff. Health Effects of Diesel Exhaust. To be published in the Proceedings of the U.S. - Dutch International Symposium on Aerosols held in Williamsburg, VA, May 19-24, 1985.
3. Pierson, W.R., R.A. Gorse Jr., A.C. Szkariat, W.W. Brachaczek, S.M. Japar, and F.S.-C. Lee. Mutagenicity and Chemical Characteristics of Carbonaceous Particulate Matter from Vehicles on the Road. Environmental Science and Technology 17:31, 1983.
4. Wolff, R.K., R.F. Henderson, M.B. Snipes, J.D. Sun, J.A. Bond, C.E. Mitchell, L.L. Mauderly and R.O. McClellan. Lung Retention of Diesel Soot and Associated Organic Compounds. To be published in Carcinogenicity and Mutagenicity Effects of Diesel Engine Exhaust, Proceedings of the Symposium on Toxicological Effects of Emissions from Diesel Engines held in Tsukuba City, Japan, July 26-28, 1986.
5. Mauderly, J.L., R.K. Jones, W.C. Griffith, R.F. Henderson, R.O. McClellan. Diesel Exhaust is a Pulmonary Carcinogen in Rats Exposed Chronically by Inhalation. Fund. Appl. Toxicol. 9:208-221.
6. Heinrich, U., H. Muhle, S. Takenaka, H. Ernst, R. Fuhst, U. Mohr, F. Pott, W. Stober. Chronic Effects on the Respiratory Tract of Hamsters, Mice, and Rats after Long-term Inhalation of high concentrations of filtered and unfiltered diesel engine emissions. J. Appl. Toxicol. 6(6):383-395, 1986.
7. Brightwell, J., X. Fouillet, A-L Cassano-Zopi, R. Gatz, F. Duchosal. Neoplastic and Functional Changes in Rodents After Chronic Inhalation of Engine Exhaust Emissions. In: Ishinishi, N., A. Koizumi, R.O. McClellan, W. Stober eds. Carcinogenic and Mutagenic Effects of Diesel Engine Exhaust. Proceedings of the Symposium on Toxicological Effects of Emissions from Diesel Engines, Tsukuba City, Japan, July 26-28, 1986. New York, NY: Elsevier Science Publishers, pp. 471-487, 1986.
8. Ishinishi, N., Duwabara, N., Nagase, S., Suzuki, T., Ishiwata, S., Kohno, T. Long-term Inhalation studies on Effects of Exhaust from Heavy and Light Duty Diesel Engines on F344 Rats. In: Ishinishi, N., A. Koizumi, R.O. McClellan, W. Stober eds. Carcinogenic and Mutagenic Effects of Diesel Engine Exhaust. Proceedings of the Symposium on Toxicological Effects of Emissions from Diesel Engines, Tsukuba City, Japan, July 26-28, 1986. New York, NY: Elsevier Science Publishers, pp. 329-348, 1986.

9. Iwai, K., Udagawa, T., Yamagishi, M., Yamada, H. Long-term Inhalation Studies of Diesel Exhaust on F344 SPF rats. Incidence of Lung Cancer and Lymphoma. In: Ishinishi, N., A. Koizumi, R.O. McClellan, W. Stober eds. Carcinogenic and Mutagenic Effects of Diesel Engine Exhaust. Proceedings of the Symposium on Toxicological Effects of Emissions from Diesel Engines, Tsukuba City, Japan, July 26-28, 1986. New York, NY: Elsevier Science Publishers, pp. 349-360, 1986.

10. Edling, C., C-G Anjou, O. Axelson, H. Kling. Mortality Among Personnel Exposed to Diesel Exhaust. Int. Arch Occup. Environ. Health 59:559-565, 1987.

11. Garshick, E., M.B. Schenker, A. Munoz, M. Segal, T.J. Smith, S.R. Woskie, S.K. Hammond, F.E. Speizer. A Case-control Study of Lung Cancer and Diesel Exhaust Exposure in Railroad Workers. Am. Rev. Respir. Dis. 135(6):1242-1248, 1987.

12. Garshick, E., M.B. Schenker, A. Munoz, M. Segal, T.J. Smith, S.R. Woskie, S.K. Hanumond, F.E. Speizer. A Retrospective Cohort Study of Lung Cancer and Diesel Exhaust Exposure in Railroad Workers. Am. Rev. Respir. Dis. 137:820-825, 1988.

13. Hammond, S.K., B.P. Leaderer, A.C. Roche, and M. Schenker. Collection and Analysis of Nicotine as a Marker for Environmental Tobacco Smoke. Atmos. Env. 21:457-462, 1987.

14. Woskie, S.R., T.J. Smith, S.K. Hammond, M.B. Schenker, E. Garshick, and F.E. Speizer. Estimation of the Diesel Exhaust Exposures of Railroad Workers: I. Current Exposures. Am. J. Ind. Med. 13:381-394, 1988.

15. McClellan, R.O. Health Effects of Diesel Exhaust: A Case Study in Risk Assessment. Am. Ind. Hyg. Assoc. J. 47(1):1-13, 1986.

16. Schuetzle, D. Sampling of Vehicle Emissions for Chemical Analysis and Biological Testing. Env. Health Perspectives 47:65-80, 1983.

17. McCawley, M., J. Cocalis, J. Burkhart, and G. Piacitelli. Identification and Measurement of Diesel Particulates. Interim Final Report, Contract No. J0145006. Prepared for the U.S. Dept. of Interior, Bureau of Mines. Division of Respiratory Disease Studies, Environmental Investigations Branch, NIOSH, 1988.

18. McCawley M., J. Cocalis. Diesel Particulate Measurement Techniques for Use With Ventilation Control Strategies in Underground Coal Mines. In: Wheeler, R.W., ed. International Conference on the Health of Miners. Annals of the American Conference of Governmental Industrial Hygienists 14:271-281, 1986.

19. Cadle, S.H., P.J. Groblicki, and D.P. Stroup. Automated Carbon Analyzer for Particulate Samples. Analytical Chemistry 52:2201-2206, 1980.

20. Johnson, R.I., J.S. Jitendra, R.A. Cary, and J.J. Huntzicker. An Automated Thermal-Optical Method for the Analysis of Carbonaceous Aerosol. In: ACS Symposium Series, No. 167, Atmospheric Aerosol: Source/Air Quality Relationships, E.S. Macias and P.K. Hopke, Eds., American Chemical Society, 1981.

21. NIOSH Manual of Analytical Methods, Third Ed., Vols. 1-3. DHHS (NIOSH) Publication No. 84-100. National Institute for Occupational Safety and Health, Cincinnati, OH. 45226, 1984.

22. Threshold Limit Values and Biological Exposure Indices for 1988-1989. American Conference of Governmental Industrial Hygienists, 6500 Glenway Ave., Bldg. D7, Cincinnati, OH. 45211-4438, 1987.

Table I.—Limits for occupational exposure to selected components of the gaseous fraction of diesel exhaust; OSHA, MSHA, NIOSH compared

| Component                           | OSHA PEL                                        | MSHA PELs*                                                                                                |                                                                                              | NIOSH REL                                                                                                |
|-------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                     |                                                 | Underground coal mines                                                                                    | Metal and nonmetal mines                                                                     |                                                                                                          |
| Carbon dioxide (CO <sub>2</sub> )   | 5,000 ppm (9,000 mg/m <sup>3</sup> ). 8-hr TWA. | 5,000 ppm (9,000 mg/m <sup>3</sup> ). 8-hr TWA; 30,000 ppm (54,000 mg/m <sup>3</sup> ). STEL <sup>†</sup> | 5,000 ppm (9,000 mg/m <sup>3</sup> ). 8-hr TWA; 15,000 ppm (27,000 mg/m <sup>3</sup> ). STEL | 10,000 ppm (18,000 mg/m <sup>3</sup> ). 8-hr TWA; 30,000 ppm (54,000 mg/m <sup>3</sup> ). 10-min ceiling |
| Carbon monoxide (CO)                | 50 ppm (55 mg/m <sup>3</sup> ). 8-hr TWA.       | 50 ppm (55 mg/m <sup>3</sup> ). 8-hr TWA; 400 ppm (440 mg/m <sup>3</sup> ). STEL                          | 50 ppm (55 mg/m <sup>3</sup> ). 8-hr TWA; 400 ppm (440 mg/m <sup>3</sup> ). STEL             | 35 ppm (40 mg/m <sup>3</sup> ). 8-hr TWA; 200 ppm (230 mg/m <sup>3</sup> ). ceiling (no minimum time)    |
| Formaldehyde                        | 1 ppm. 8-hr TWA; 2 ppm. 15-minute STEL          | 1 ppm (1.5 mg/m <sup>3</sup> ). 8-hr TWA; 2 ppm (3 mg/m <sup>3</sup> ). STEL                              | 2 ppm (3 mg/m <sup>3</sup> ). ceiling                                                        | 0.016 ppm (0.020 mg/m <sup>3</sup> ). 8-hr TWA; 0.1 ppm (0.12 mg/m <sup>3</sup> ). 15-min ceiling        |
| Nitrogen dioxide (NO <sub>2</sub> ) | 5 ppm (9 mg/m <sup>3</sup> ). ceiling           | 3 ppm (6 mg/m <sup>3</sup> ). 8-hr TWA; 5 ppm (10 mg/m <sup>3</sup> ). STEL                               | 5 ppm (9 mg/m <sup>3</sup> ). ceiling                                                        | 1 ppm (1.8 mg/m <sup>3</sup> ). 15-min ceiling                                                           |
| Nitric oxide (NO)                   | 25 ppm (30 mg/m <sup>3</sup> ). 8-hr TWA        | 25 ppm (30 mg/m <sup>3</sup> ). 8-hr TWA                                                                  | 25 ppm (30 mg/m <sup>3</sup> ). 8-hr TWA; 37.5 ppm (46 mg/m <sup>3</sup> ). STEL             | 25 ppm (30 mg/m <sup>3</sup> ). 10-hr TWA                                                                |
| Sulfur dioxide (SO <sub>2</sub> )   | 5 ppm (13 mg/m <sup>3</sup> ). 8-hr TWA         | 2 ppm (5 mg/m <sup>3</sup> ). 8-hr TWA; 5 ppm (10 mg/m <sup>3</sup> ). STEL                               | 5 ppm (13 mg/m <sup>3</sup> ). 8-hr TWA; 20 ppm (52 mg/m <sup>3</sup> ). STEL (5 min)        | 0.5 ppm (1.3 mg/m <sup>3</sup> ). 10-hr TWA                                                              |

\*MSHA limits are based on threshold limit values (TLVs<sup>‡</sup>) of the American Conference of Governmental Industrial Hygienists (ACGIH). 1973 TLVs<sup>‡</sup> are used for metal and nonmetal mines. Current TLVs<sup>‡</sup> are used for underground coal mines.

<sup>†</sup>Time-weighted average.

<sup>‡</sup>Short-term exposure limit.

\*\*Adapted from Reference 5

**Table II**  
**Exposures to Elemental Carbon**  
**P\*I\*E Nationwide, Jacksonville, Florida**  
**April 1988; (ug/m3)**

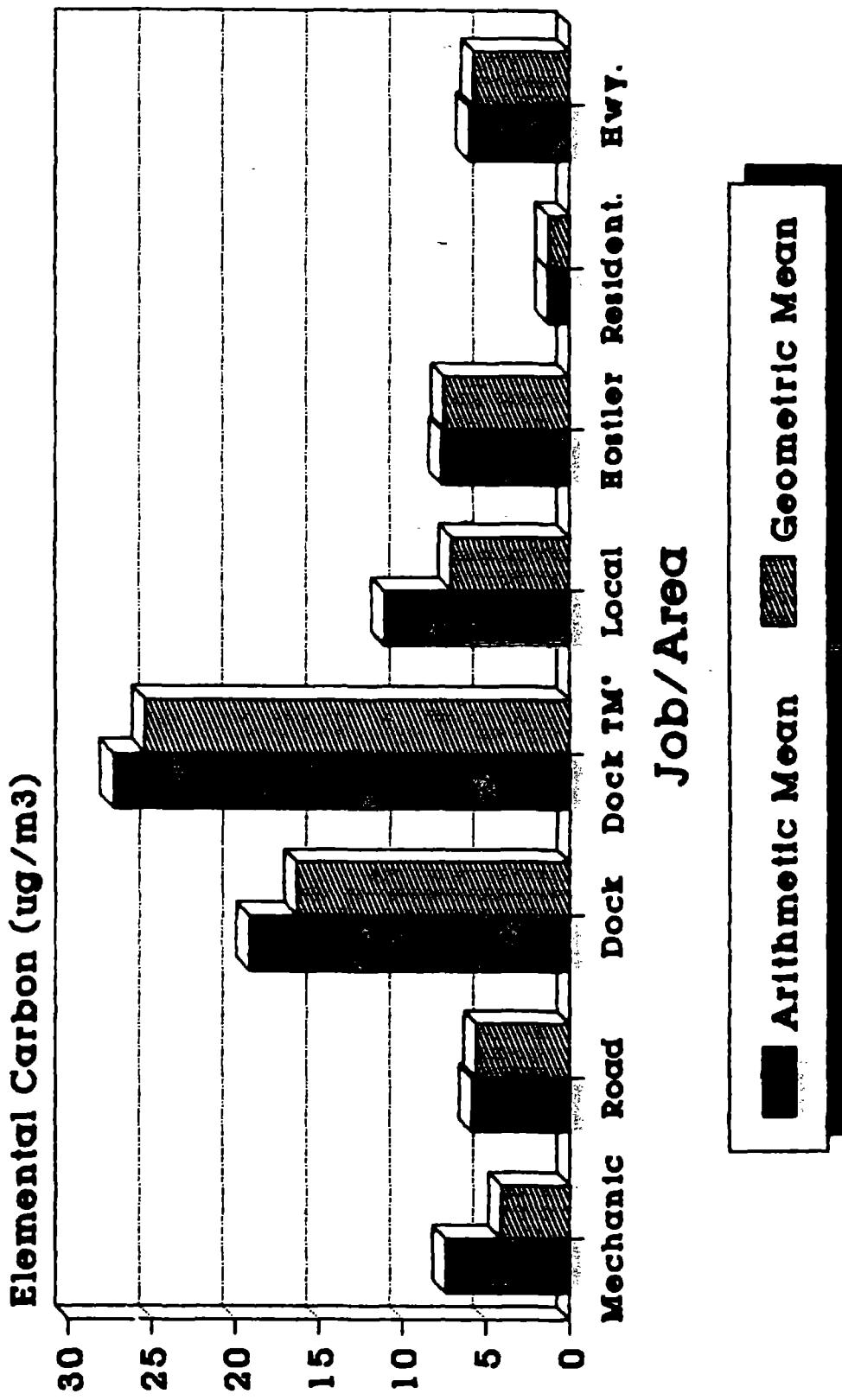
| Job or Area       | N  | Range |      | Arith.<br>Mean | S.E. | Geom.<br>Mean | Geom.<br>S.D. | 95%<br>Confidence Limit |       |
|-------------------|----|-------|------|----------------|------|---------------|---------------|-------------------------|-------|
|                   |    | Min   | Max  |                |      |               |               | Lower                   | Upper |
| Mechanic          | 11 | 0.5   | 44.8 | 7.4            | 3.8  | 4.1           | 2.8           | 2.0                     | 8.2   |
| Road Driver       | 15 | 3.2   | 9.0  | 5.8            | 0.5  | 5.5           | 1.4           | 4.6                     | 6.6   |
| Dock Worker       | 10 | 8.9   | 57.6 | 19.2           | 4.5  | 16.3          | 1.7           | 11.1                    | 24.1  |
| Dock Worker, TM * | 5  | 13.2  | 43.9 | 27.3           | 5.0  | 25.4          | 1.5           | 14.8                    | 43.8  |
| Local Driver      | 10 | 3.5   | 48.1 | 11.1           | 4.4  | 7.1           | 2.5           | 3.7                     | 13.4  |
| Hostler           | 2  | 6.4   | 8.8  | 7.6            | 1.2  | 7.5           | 1.2           | 1.0                     | 54.9  |
| Non-highway       | 3  | 0.9   | 1.6  | 1.3            | 0.2  | 1.2           | 1.3           | 0.6                     | 2.5   |
| Highway           | 3  | 3.9   | 8.6  | 6.0            | 1.4  | 5.7           | 1.5           | 2.1                     | 15.2  |

\* Tow motor (fork lift) operator

**Table III**  
**Exposures to Organic Carbon**  
**P\*I\*E Nationwide, Jacksonville, Florida**  
**April 1988; (ug/m3)**

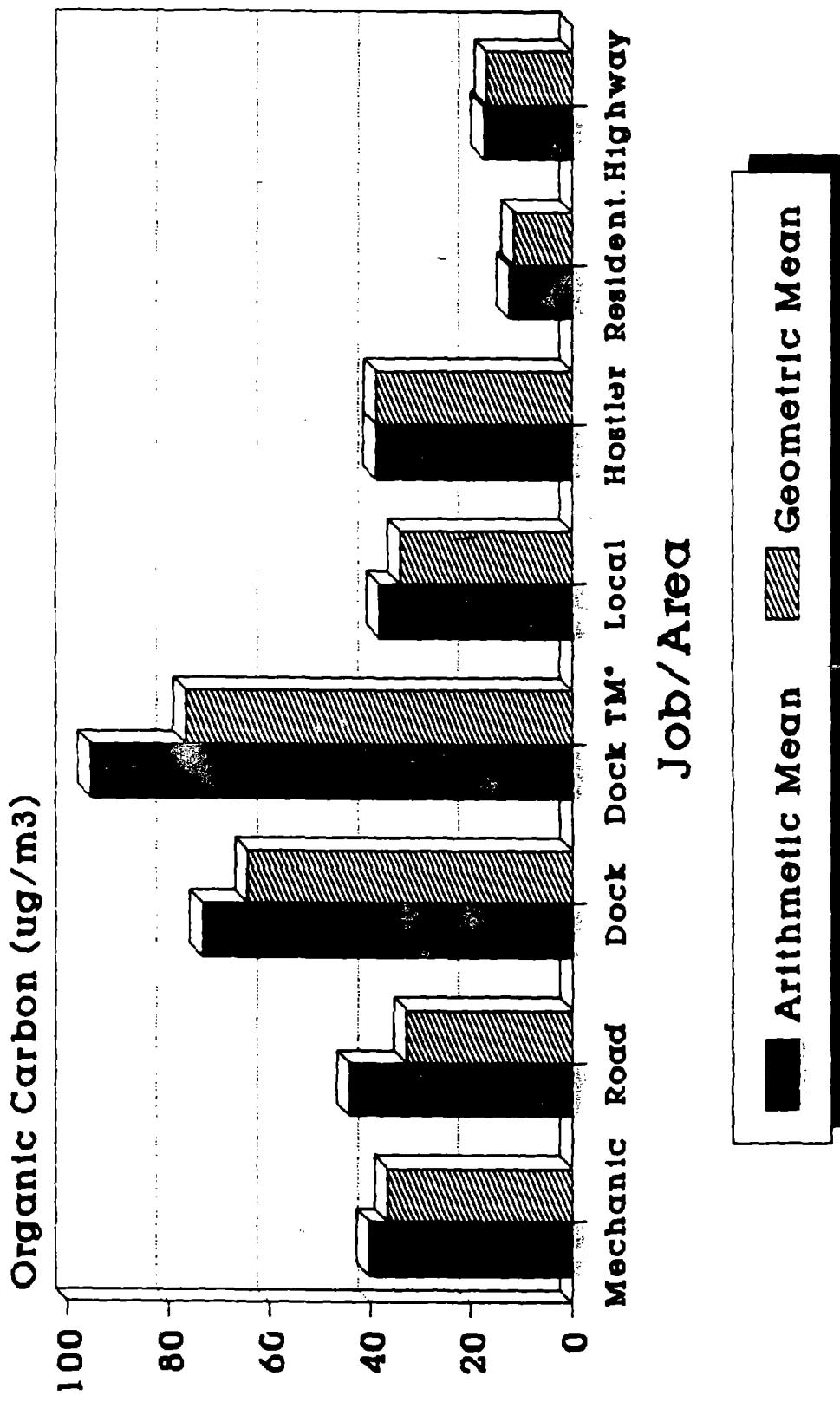
| Job or Area       | N  | Range |      | Arith.<br>Mean | S.E. | Geom.<br>Mean | Geom.<br>S.D. | 95%<br>Confidence Limit |       |
|-------------------|----|-------|------|----------------|------|---------------|---------------|-------------------------|-------|
|                   |    | Min   | Max  |                |      |               |               | Lower                   | Upper |
| Mechanic          | 11 | 26.0  | 109  | 40.3           | 7.1  | 36.7          | 1.5           | 28.0                    | 48.1  |
| Road Driver       | 15 | 2.4   | 143  | 44.2           | 9.4  | 32.8          | 2.5           | 20.0                    | 54.0  |
| Dock Worker       | 10 | 32.3  | 155  | 73.4           | 13.2 | 64.4          | 1.7           | 44.0                    | 94.1  |
| Dock Worker, TM * | 5  | 36.8  | 239  | 95.7           | 36.6 | 76.6          | 2.0           | 32.3                    | 182   |
| Local Driver      | 10 | 10.1  | 70.5 | 38.3           | 5.7  | 34.1          | 1.7           | 23.2                    | 50.2  |
| Hostler           | 2  | 35.2  | 42.8 | 39.0           | 3.8  | 38.8          | 1.1           | 11.3                    | 134   |
| Non-highway       | 3  | 6.5   | 16.3 | 12.4           | 3.0  | 11.5          | 1.6           | 3.3                     | 39.6  |
| Highway           | 3  | 11.9  | 22.8 | 17.4           | 3.2  | 16.8          | 1.4           | 7.4                     | 38.2  |

\* Tow Motor (forklift) operator


**Table IV. Exposures to respirable dust  
By Job or Specific Location  
P\*I\*E Nationwide, Jacksonville, FL  
April 1988; (ug/m<sup>3</sup>)**

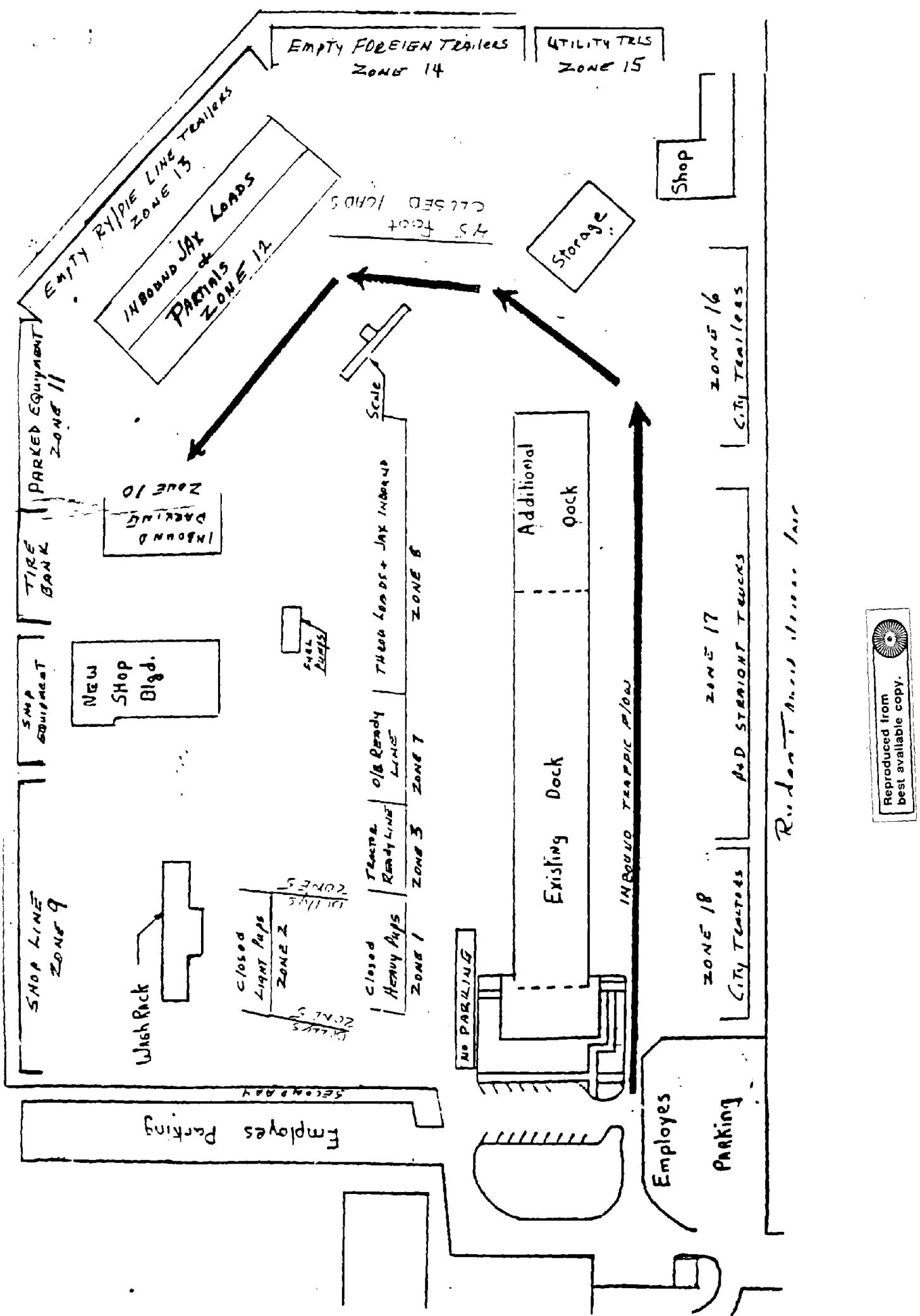
| Job or Area             | N | Range |       | Arith. Mean | Stand. Error | Geom. Mean | 95% Confidence Limit |       |       |
|-------------------------|---|-------|-------|-------------|--------------|------------|----------------------|-------|-------|
|                         |   | Min   | Max   |             |              |            | Geom. S.D.           | Lower | Upper |
| Garage, north bay       | 3 | 29.6  | 130.4 | 63.7        | 33.4         | 49.3       | 2.3                  | 6.1   | 400   |
| Garage, south end       | 3 | <13   | 73.6  | 31.7        | 21.1         | 19.3       | 3.4                  | 0.9   | 413   |
| Dock, city bill desk    | 3 | 27.3  | 54.8  | 41.9        | 8.0          | 40.2       | 1.4                  | 16.7  | 97    |
| Dock, foreman's desk    | 3 | 26.7  | 58.1  | 47.0        | 10.2         | 44.3       | 1.6                  | 14.9  | 132   |
| Local cab, road tractor | 1 | 26.2  | --    | --          | --           | --         | --                   | --    | --    |
| Road tractor cab        | 4 | 36.8  | 98.0  | 55.7        | 14.5         | 51.0       | 1.6                  | 24.5  | 106   |
| Local cab               | 4 | 24.2  | 110.3 | 56.3        | 19.2         | 47.6       | 1.9                  | 16.7  | 136   |

**Table V. Submicrometer Dust Concentrations  
P\*I\*E Nationwide, Inc.  
April 1988  
(ug/m<sup>3</sup>)**


| Area                 | N | Range |      | Arith. Mean | S.E. | Geom. Mean | 95% Confidence Limit |       |        |
|----------------------|---|-------|------|-------------|------|------------|----------------------|-------|--------|
|                      |   | Min   | Max  |             |      |            | Geom. S.D.           | Lower | Upper  |
| Dock; billing desk   | 1 | 24.6  | --   | --          | --   | --         | --                   | --    | --     |
| Garage, south end    | 1 | 13.0  | --   | --          | --   | --         | --                   | --    | --     |
| Dock; Foreman's desk | 2 | 5.8   | 37.1 | 21.4        | 15.7 | 14.6       | 3.7                  | 0.0   | 202447 |
| Road Tractor Cab     | 2 | 16.7  | 18.0 | 17.3        | 0.7  | 17.3       | 1.1                  | 10.6  | 28.2   |
| Local Cab            | 3 | 19.2  | 64.8 | 38.3        | 13.7 | 33.7       | 1.8                  | 7.3   | 155    |
| Garage, north bay    | 2 | 26.2  | 53.2 | 39.7        | 13.5 | 37.4       | 1.6                  | 0.4   | 3322   |

**Figure 1. P·I·E Elemental Carbon Personal Exposures by Job or Area**




• Tow Motor (forklift operator)

**Figure 2. P\*I\*E Organic Carbon Exposure Personal Exposures By Job or Area**



• Tow Motor (forklift operator)

Appendix A  
Site Plot Diagram  
P\*I\*E Nationwide, Inc.  
Jacksonville, FL  
April 1988



Appendix B  
Medical Exam Form  
P\*I\*E Nationwide, Inc.  
Jacksonville, FL

# PHYSICAL EXAMINATION REPORT

Reproduced from  
best available copy.



NOTE TO EXAMINING PHYSICIAN: BE SURE TO ANSWER EACH QUESTION AND SPECIFY STATUS OF ANY PHYSICAL DEFECT, INJURY OR DISEASE. D.O.T. INSTRUCTIONS FOR PERFORMING AND RECORDING A PHYSICAL EXAMINATION ARE SHOWN ON THE REVERSE SIDE.

## PERSONAL HISTORY

|                                          |                    |                 |                                                                                                                                                                                                        |
|------------------------------------------|--------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME IN FULL                             | SOCIAL SECURITY NO | PRE EMPLOYMENT  | CHECK ONE                                                                                                                                                                                              |
| ADDRESS                                  | DATE OF BIRTH      | RECERTIFICATION | <input type="checkbox"/> P & D DRIVER<br><input type="checkbox"/> LINE DRIVER<br><input type="checkbox"/> LEASE DRIVER<br><input type="checkbox"/> DOCK WORKER<br><input type="checkbox"/> SHOP WORKER |
| IF MASTER LEASE DRIVER SHOW OWNER'S NAME | HOME TERMINAL      | DATE EMPLOYED   |                                                                                                                                                                                                        |

## HEALTH HISTORY

|                                                                                                                                                                                                                           |                              |                             |                                                                                                                                                                                                                                  |                              |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|
| HEAD OR SPINAL INJURIES<br>SEIZURES, FITS, CONVULSIONS, OR FAINTING<br>EXTENSIVE CONFINEMENT BY ILLNESS OR INJURY<br>CARDIOVASCULAR DISEASE<br>TUBERCULOSIS<br>SYPHILIS<br>GONORHEA<br>DIABETES<br>GASTROINTESTINAL ULCER | YES <input type="checkbox"/> | NO <input type="checkbox"/> | NERVOUS STOMACH<br>RHEUMATIC FEVER<br>ASTHMA<br>KIDNEY DISEASE<br>MUSCULAR DISEASE<br>SUFFERING FROM ANY OTHER DISEASE<br>PERMANENT DEFECT FROM ILLNESS, DISEASE OR INJURY<br>PSYCHIATRIC DISORDER<br>ANY OTHER NERVOUS DISORDER | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |
|                                                                                                                                                                                                                           | YES <input type="checkbox"/> | NO <input type="checkbox"/> |                                                                                                                                                                                                                                  | YES <input type="checkbox"/> | NO <input type="checkbox"/> |

IF ANSWER TO ANY OF THE ABOVE IS YES, EXPLAIN \_\_\_\_\_

## PHYSICAL EXAMINATION

|                                                                              |                              |                                                         |                             |                                        |                     |
|------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------|-----------------------------|----------------------------------------|---------------------|
| GENERAL APPEARANCE AND DEVELOPMENT:                                          |                              | FAIR                                                    | POOR                        | HEIGHT                                 | WEIGHT              |
| VISION:                                                                      |                              | LEFT 20/                                                |                             | EVIDENCE OF DISEASE OR INJURY          |                     |
| FOR DISTANCE RIGHT 20/<br><input type="checkbox"/> WITHOUT CORRECTIVE LENSES |                              | <input type="checkbox"/> WITH CORRECTIVE LENSES IF WORN |                             | RIGHT                                  | LEFT                |
| HORIZONTAL FIELD OF VISION                                                   |                              | HEARING:                                                |                             | COLOR TEST                             |                     |
| RIGHT                                                                        | LEFT                         | RIGHT EAR                                               | LEFT EAR                    | DISEASE OR INJURY                      |                     |
| AUDIOMETRIC TEST (complete ONLY if audiometer is used to test hearing)       |                              |                                                         |                             |                                        |                     |
| DECIBEL LOSS AT 500 HZ                                                       |                              | AT 1,000 HZ                                             |                             | AT 2,000 HZ                            |                     |
| THROAT:                                                                      |                              |                                                         |                             |                                        |                     |
| THORAX:                                                                      |                              |                                                         |                             |                                        |                     |
| HEART:                                                                       |                              | IF ORGANIC DISEASE IS PRESENT, IS IT FULL COMPENSATED?  |                             |                                        |                     |
| BLOOD PRESSURE SYSTOLIC<br>DIASTOLIC                                         |                              | PULSE BEFORE EXERCISE<br>AFTER EXERCISE                 |                             | LUNGS                                  |                     |
| ABDOMEN:                                                                     |                              |                                                         |                             |                                        |                     |
| SCARS                                                                        |                              | ABNORMAL MASSES                                         |                             | TENDERNESS                             |                     |
| HERNIA                                                                       | YES <input type="checkbox"/> | NO <input type="checkbox"/>                             | IF SO WHERE?                |                                        |                     |
| GASTROINTESTINAL:                                                            |                              | IS TRUSS WORN?                                          |                             |                                        |                     |
| ULCERATION OR OTHER DISEASE                                                  |                              | YES <input type="checkbox"/>                            | NO <input type="checkbox"/> |                                        |                     |
| GENITO-URINARY:                                                              |                              |                                                         |                             |                                        |                     |
| SCARS                                                                        |                              | URETHRAL DISCHARGE                                      |                             |                                        |                     |
| REFLEXES:                                                                    |                              |                                                         |                             |                                        |                     |
| RHOMBERG                                                                     |                              | PUPILLARY                                               | LIGHT R                     | L                                      | ACCOMMODATION RIGHT |
| KNEE JERKS                                                                   |                              | RIGHT NORMAL<br>LEFT NORMAL                             |                             | INCREASED<br>INCREASED                 | ABSENT<br>ABSENT    |
| REMARKS                                                                      |                              |                                                         |                             |                                        |                     |
| EXTREMITIES:                                                                 |                              |                                                         |                             |                                        |                     |
| UPPER                                                                        |                              | LOWER                                                   |                             | SPINE                                  |                     |
| LABORATORY AND OTHER SPECIAL FINDINGS:                                       |                              |                                                         |                             |                                        |                     |
| URINE SPEC GR                                                                |                              | ALB                                                     | SUGAR                       | OTHER LABORATORY DATA (SEROLOGY, ETC.) |                     |
| RADIOLOGICAL DATA (ATTACH FINDINGS REPORT)                                   |                              | ELECTROCARDIOGRAPH                                      |                             | GENERAL COMMENTS                       |                     |

NOTE THIS SECTION TO BE COMPLETED ONLY WHEN VISUAL TEST IS CONDUCTED BY A LICENSED OPTOMETRIST

DATE OF EXAMINATION

ADDRESS OF OPTOMETRIST

NAME OF OPTOMETRIST (PRINT)

SIGNATURE OF OPTOMETRIST

## MEDICAL EXAMINER'S CERTIFICATE

I CERTIFY THAT I HAVE EXAMINED \_\_\_\_\_

Driver's Name (Print)

IN ACCORDANCE WITH THE MOTOR CARRIER SAFETY REGULATIONS (49 C.F.R. 391.41-391.49) AND WITH KNOWLEDGE OF HIS DUTIES, I FIND HIM QUALIFIED  
UNDER THE REGULATIONS  QUALIFIED ONLY WHEN WEARING CORRECTIVE SPECTACLES

A COMPLETED EXAMINATION FORM FOR THIS PERSON IS ON FILE IN MY OFFICE

AT \_\_\_\_\_

ADDRESS \_\_\_\_\_

DATE OF EXAMINATION

NAME OF EXAMINING DOCTOR (PRINT)

SIGNATURE OF EXAMINING DOCTOR

SIGNATURE OF DRIVER

ADDRESS OF DRIVER

## TERMINAL MANAGER'S CERTIFICATE

Examination of this form indicates that the driver meets the minimum requirements of D.O.T. On the basis of this information, medical examiner's certificate card has been issued

DATE

TERMINAL MANAGER'S SIGNATURE

FORM 141 GS RE-2

Appendix C  
Tables 1-3  
Individual Sample Results  
P\*I\*E Nationwide, Inc.  
Jacksonville, FL  
April 1988

**Table 1. Elemental & Organic Carbon Sample Results**  
**P\*I\*E Nationwide, Inc., Jacksonville, FL**  
**April 1988**

| Day-Shift | Sample Number | Job/Area               | Ce Wt. (ug) | Co Wt. (ug) | Time (min) | Volume (L) | Ce Conc. (ug/m3) | Co Conc. (ug/m3) |
|-----------|---------------|------------------------|-------------|-------------|------------|------------|------------------|------------------|
| 19-2      | PD2           | Mechanic               | 5.4         | 54.8        | 467        | 1868       | 2.9              | 29.3             |
| 19-2      | PD1           | Mechanic               | 7.4         | 48.3        | 465        | 1860       | 4.0              | 26.0             |
| 19-2      | PD3           | Mechanic               | 8.7         | 55.9        | 468        | 1872       | 4.6              | 29.9             |
| 19-2      | PJ4           | Road Driver            | 7.3         | 4.6         | 480        | 1920       | 3.8              | 2.4              |
| 19-2      | PJ5           | Road Driver            | 8.5         | 89.1        | 478        | 1912       | 4.4              | 46.6             |
| 19-2      | PJ6           | Road Driver            | 9.7         | 105.9       | 480        | 1920       | 5.1              | 55.2             |
| 19-2      | PJ7           | Road Driver            | 14.9        | 39.8        | 480        | 1920       | 7.7              | 20.7             |
| 19-2      | PJ8           | Road Driver            | 6.9         | 68.0        | 480        | 1920       | 3.6              | 35.4             |
| 20-1      | PJ9           | Dock Worker            | 35.4        | 65.3        | 505        | 2020       | 17.5             | 32.3             |
| 20-1      | PJ10          | Dock Worker, Tow Motor | 88.6        | 121.1       | 505        | 2020       | 43.9             | 59.9             |
| 20-1      | PJ11          | Dock Worker            | 32.0        | 273.9       | 443        | 1772       | 18.0             | 154.6            |
| 20-1      | PJ12          | Dock Worker            | 50.1        | 133.6       | 499        | 1996       | 25.1             | 66.9             |
| 20-1      | PJ13          | Dock Worker            | 14.7        | 121.4       | 410        | 1640       | 8.9              | 74.0             |
| 20-1      | PJ14          | Local Driver           | 7.9         | 135.3       | 480        | 1920       | 4.1              | 70.5             |
| 20-1      | PJ15          | Local Driver           | 6.7         | 58.1        | 480        | 1920       | 3.5              | 30.3             |
| 20-1      | PJ16          | Local Driver           | 92.4        | 19.4        | 480        | 1920       | 48.1             | 10.1             |
| 20-1      | PJ17          | Hostler                | 16.2        | 64.8        | 460        | 1840       | 8.8              | 35.2             |
| 20-1      | PJ18          | Mechanic               | 68.8        | 167.0       | 384        | 1536       | 44.8             | 108.7            |
| 20-1      | PJ19          | Local Driver           | 7.8         | 67.0        | 460        | 1840       | 4.2              | 36.4             |
| 20-1      | PJ20          | Non-highway            | 3.4         | 34.7        | 532        | 2128       | 1.6              | 16.3             |
| 20-1      | PJ21          | Highway                | 8.7         | 28.1        | 399        | 1596       | 5.4              | 17.6             |
| 20-2      | PJ33          | Highway                | 14.1        | 37.3        | 409        | 1636       | 8.6              | 22.8             |
| 20-2      | PJ34          | Non-highway            | 3.5         | 38.2        | 669        | 2676       | 1.3              | 14.3             |
| 20-2      | PD25          | Mechanic               | 5.5         | 44.5        | 411        | 1644       | 3.4              | 27.1             |
| 20-2      | PJ24          | Mechanic               | 8.7         | 60.6        | 397        | 1588       | 5.5              | 38.1             |
| 20-2      | PJ22          | Mechanic               | 4.8         | 57.2        | 407        | 1628       | 2.9              | 35.1             |
| 20-2      | PJ26          | Road Driver            | 15.7        | 214.8       | 480        | 1920       | 8.2              | 111.9            |
| 20-2      | PJ29          | Road Driver            | 11.7        | 61.1        | 480        | 1920       | 6.1              | 31.8             |
| 20-3      | PJ30          | Road Driver            | 14.4        | 57.9        | 480        | 1920       | 7.5              | 30.1             |
| 20-2      | PJ27          | Road Driver            | 14.5        | 70.1        | 480        | 1920       | 7.5              | 36.5             |
| 20-2      | PJ28          | Road Driver            | 10.6        | 50.4        | 480        | 1920       | 5.5              | 26.2             |
| 21-1      | PJ35          | Dock Worker, Tow Motor | 47.0        | 74.7        | 507        | 2028       | 23.2             | 36.8             |
| 21-1      | PJ36          | Dock Worker, Tow Motor | 53.3        | 128.0       | 505        | 2020       | 26.4             | 63.4             |
| 21-1      | PJ37          | Dock Worker            | 115.9       | 122.7       | 503        | 2012       | 57.6             | 61.0             |
| 21-1      | PJ38          | Dock Worker            | 29.1        | 272.3       | 494        | 1976       | 14.7             | 137.8            |
| 21-1      | PJ39          | Dock Worker            | 24.5        | 68.5        | 432        | 1728       | 14.2             | 39.7             |
| 21-1      | PJ34a         | Hostler                | 10.3        | 68.4        | 400        | 1600       | 6.4              | 42.8             |
| 21-1      | PJ41          | Local Driver           | 7.1         | 72.6        | 480        | 1920       | 3.7              | 37.8             |
| 21-1      | PJ40          | Local Driver           | 30.2        | 54.0        | 480        | 1920       | 15.7             | 28.1             |

**Table 1 (Cont'd). Elemental & Organic Carbon Results**  
**P\*I\*E Nationwide, Inc., Jacksonville, FL**  
**April 1988**

| Day-Shift | Sample Number | Job/Area               | Ce Wt. (ug) | Co Wt. (ug) | Time (min) | Volume (L) | Ce Conc. (ug/m3) | Co Conc. (ug/m3) |
|-----------|---------------|------------------------|-------------|-------------|------------|------------|------------------|------------------|
| 21-1      | PJ42          | Mechanic               | 6.7         | 60.2        | 367        | 1468       | 4.6              | 41.0             |
| 21-2      | PJ43          | Mechanic               | 6.3         | 48.3        | 400        | 1600       | 3.9              | 30.2             |
| 21-2      | PJ44          | Mechanic               | 0.4         | 36.2        | 194        | 776        | 0.5              | 46.6             |
| 21-2      | PJ45          | Mechanic               | 7.1         | 47.8        | 385        | 1540       | 4.6              | 31.0             |
| 21-2      | PJ46          | Road Driver            | 17.3        | 274.4       | 480        | 1920       | 9.0              | 142.9            |
| 21-2      | PJ47          | Road Driver            | 6.2         | 74.2        | 480        | 1920       | 3.2              | 38.7             |
| 21-2      | PJ48          | Road Driver            | 7.7         | 46.2        | 480        | 1920       | 4.0              | 24.1             |
| 21-2      | PJ49          | Road Driver            | 11.3        | 52.0        | 480        | 1920       | 5.9              | 27.1             |
| 21-2      | PJ50          | Road Driver            | 10.8        | 63.5        | 480        | 1920       | 5.6              | 33.1             |
| 21-2      | PJ63          | Highway                | 16.5        | 49.9        | 1053       | 4212       | 3.9              | 11.9             |
| 21-2      | PJ65          | Non-highway            | 3.7         | 26.6        | 1028       | 4112       | 0.9              | 6.5              |
| 22-1      | PJ53          | Local Driver           | 10.5        | 58.5        | 556        | 2224       | 4.7              | 26.3             |
| 22-1      | PJ57          | Dock Worker            | 17.8        | 63.4        | 467        | 1868       | 9.5              | 33.9             |
| 22-1      | PJ54          | Local Driver           | 13.3        | 72.7        | 540        | 2160       | 6.1              | 33.7             |
| 22-1      | PJ58          | Dock Worker            | 29.4        | 149.0       | 480        | 1920       | 15.3             | 77.6             |
| 22-1      | PJ55          | Dock Worker, Tow Motor | 57.6        | 151.1       | 480        | 1920       | 30.0             | 78.7             |
| 22-1      | PJ59          | Dock Worker            | 20.7        | 107.7       | 480        | 1920       | 10.8             | 56.1             |
| 22-1      | PJ51          | Local Driver           | 33.5        | 124.1       | 480        | 1920       | 17.4             | 64.7             |
| 22-1      | PJ62          | Dock Worker, Tow Motor | 25.3        | 459.8       | 480        | 1920       | 13.2             | 239.5            |
| 22-1      | PJ52          | Local Driver           | 5.4         | 67.7        | 378        | 1512       | 3.6              | 44.8             |

**Table 2. Respirable Dust Concentrations**  
**P\*I\*E Nationwide, Inc.**  
**April 1988**

| Sample |         |                         | Weight | Time  | Volume | Conc.                        |
|--------|---------|-------------------------|--------|-------|--------|------------------------------|
| Date   | Number  | Job/Area                | (mg)   | (min) | (L)    | ( $\mu\text{g}/\text{m}^3$ ) |
| Apr 19 | FW.1016 | Garage, north bay       | 0.1    | 451   | 766.7  | 130.43                       |
| Apr 19 | FW.904  | Garage, south end       | <0.01  | 452   | 768.4  | <13                          |
| Apr 19 | FW.929  | Dock, city bill desk    | 0.02   | 421   | 732.5  | 27.30                        |
| Apr 20 | FW.967  | Dock, foreman's desk    | 0.04   | 412   | 712.8  | 56.12                        |
| Apr 20 | FW.968  | Local cab, road tractor | 0.02   | 451   | 762.2  | 26.24                        |
| Apr 20 | FW.963  | Garage, north bay       | 0.02   | 397   | 674.9  | 29.63                        |
| Apr 20 | FW.978  | Garage, south end       | 0.01   | 390   | 663.0  | 15.08                        |
| Apr 20 | FW.972  | Road tractor cab        | 0.08   | 480   | 816.0  | 98.04                        |
| Apr 20 | FW.974  | Road tractor cab        | 0.03   | 480   | 816.0  | 36.76                        |
| Apr 21 | FW.969  | Local cab               | 0.03   | 517   | 878.9  | 34.13                        |
| Apr 21 | FW.962  | Local cab               | 0.05   | 521   | 885.7  | 56.45                        |
| Apr 21 | FW.966  | Garage, south end       | 0.05   | 388   | 679.0  | 73.64                        |
| Apr 21 | FW.960  | Garage, north bay       | 0.02   | 382   | 645.6  | 30.98                        |
| Apr 21 | FW.961  | Road tractor cab        | 0.04   | 460   | 782.0  | 51.15                        |
| Apr 21 | FW.977  | Road tractor cab        | 0.03   | 480   | 816.0  | 36.76                        |
| Apr 21 | FW.958  | Dock, foreman's desk    | 0.02   | 433   | 749.1  | 26.70                        |
| Apr 21 | FW.957  | Dock, city bill desk    | 0.04   | 432   | 730.1  | 54.79                        |
| Apr 22 | FW.955  | Dock, foreman's desk    | 0.04   | 405   | 688.5  | 58.10                        |
| Apr 22 | FW.965  | Dock, city bill desk    | 0.03   | 406   | 690.2  | 43.47                        |
| Apr 22 | FW.971  | Local cab               | 0.09   | 480   | 816.0  | 110.29                       |
| Apr 22 | FW.973  | Local cab               | 0.02   | 486   | 826.2  | 24.21                        |

**Table 3. Submicrometer Dust Results**  
**PSIE Nationwide, Inc., Jacksonville, FL**  
**April 1988**

| Date   | Sample Number | Job/Area             | Weight (mg) | Time (min) | Volume (L) | Submicrom Dust Conc (ug/m3) |
|--------|---------------|----------------------|-------------|------------|------------|-----------------------------|
| Apr 21 | 17522         | Dock; billing desk   | 0.02        | 406        | 812        | 24.6                        |
| Apr 21 | 17531         | Dock; Foreman's desk | <0.01       | 434        | 868        | <11.5                       |
| Apr 22 | 17539         | Dock; Foreman's desk | 0.03        | 404        | 808        | 37.1                        |
| Apr 21 | 17540         | Garage, north bay    | 0.04        | 376        | 752        | 53.2                        |
| Apr 21 | 17524         | Garage, north bay    | 0.02        | 381        | 762        | 26.2                        |
| Apr 21 | 17537         | Garage, south end    | 0.01        | 386        | 772        | 13.0                        |
| Apr 21 | 17536         | Local Cab            | 0.02        | 522        | 1044       | 19.2                        |
| Apr 22 | 17528         | Local Cab            | 0.03        | 486        | 972        | 30.9                        |
| Apr 22 | 17534         | Local Cab            | 0.07        | 540        | 1080       | 64.8                        |
| Apr 21 | 17338         | Road Tractor Cab     | 0.05        | 1389       | 2778       | 18.0                        |
| Apr 21 | 17529         | Road Tractor Cab     | 0.04        | 1200       | 2400       | 16.7                        |