2008 showed 6 aa substitutions in the envelope gene: V129I, L131Q, I170T, E203D, M340T, and I380V. Our results support the notion that aa positions at 129 and 131 in the envelope gene are critical genetic markers for phylogenetic classification of DENV-2 (7–9).

Notably, residue 131 in the envelope gene is located within a pH-dependent hinge region at the interface between domains I and II of the envelope protein. Mutations at this region may affect the pH threshold of fusion and the process of conformational changes (10).

Our results suggest the circulation of genetically different DENV-2 in Brazil and that these viruses may have a role in severity of dengue diseases. These findings can help to further understand the complex dynamic pathogenic profile of dengue viruses and their circulation in dengue-endemic regions.

Michelle Faria Oliveira,¹ Josélia Maria Galvão Araújo,¹ Orlando Costa Ferreira Jr.,¹ David Fernandes Ferreira, Dirce Bonfim Lima, Flávia Barreto Santos, Hermann Gonçalves Schatzmayr, Amilcar Tanuri, and Rita Maria Ribeiro Nogueira

Author's affiliations: Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (M.F. Oliveira, O. Costa Ferreira Jr., D.F. Feirreira, A. Tanuri); Instituto Oswaldo de Janeiro (J.M.G. Araújo, F.B. Santos, H.G. Schatzmayr, R.M. Ribeiro Nogueira); and Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil (D.B. Lima)

DOI: 10.3201/eid1603.090996

References


Yersinia Species Isolated from Bats, Germany

To the Editor: Bats are distributed worldwide and are among the most diverse and species-rich mammals on earth. They exist in a large variety of distinct ecologic niches. Many bat species roost near humans, which is of particular interest for research on bat-to-human transmission of potential zoonotic pathogens. Moreover, migratory bats could act as long-distance vectors for several infectious agents. In recent decades, scientific interest in chiropteran species has markedly increased because bats are known hosts to zoonotic agents, such as henipaviruses, Ebola virus, and severe acute respiratory syndrome (SARS)–like corona viruses (1,2). However, investigations regarding bacterial pathogens with potential for mutual transmission between bats and humans are sparse. The effect of bacterial agents on individual bats is largely unknown and has been neglected in most studies published to date (3).

We conducted a broad study during 2006–2008 on diseases and causes of death in bats among 16 species found in Germany. Two hundred deceased bats, collected in different geographic regions in Germany (southern Bavaria, eastern Lower Saxony, eastern Brandenburg, and Berlin greater metropolitan area), were subjected to necropsy and investigated by using routine histopathologic and bacteriologic methods. During necropsy, instruments were dipped in 70% ethanol and moved into a Bunsen burner flame after every incision to prevent any cross-contamination. For bacteriologic examination, tissue samples were treated accordingly to prevent environmental contamination. A freshly cut tissue surface was plated onto Columbia agar (5% sheep blood; Oxoid, Wesel, Germany), Gassner agar (Oxoid), and MacCo-
nkey agar (Oxoid) and incubated at 37°C for 24–48 hours.

Twenty-five bacterial genera were cultured from bats, including 2 known human-pathogenic *Yersinia* spp., i.e., *Y. pseudotuberculosis* and *Y. enterocolitica*. The first *Yersinia* strain (Y938) was cultured from lung, heart, kidney (pure cultures), liver, spleen, and intestine (mixed cultures) of a greater mouse-eared bat (*Myotis myotis*). This isolate was identified as *Y. pseudotuberculosis* by Api 20E (bioMérieux, Nürtingen, Germany), Micronaut-E (Merlin Diagnostik GmbH, Bornheim-Hersel, Germany), and 16S rRNA gene analysis (Table). The sequence was deposited into GenBank under accession no. FN561631. Further serologic characterization by agglutination test (Denka Seiken, Tokyo, Japan) and multilocus sequence typing (4) identified *Y. pseudotuberculosis* serogroup 1, biovar 5, sequence type (ST) 43 in all tissue samples investigated. During necropsy, severe enlargement of the liver and a marked hemoperitoneum were seen. Microscopic examination showed multifocal severe necrotizing hepatitis and splenitis associated with numerous intralesional gram-negative coccobacilli and a moderate to marked interstitial pneumonia. The remaining organs, including heart, kidney, and intestine, had no pathologic changes.

The second *Yersinia* strain (Y935), *E. enterocolitica*, was isolated in pure culture from spleen and intesti-
Acknowledgments

We thank Nadine Jahn, Doris Krumnow, Stephan Schatz, and Robert Schneider for excellent technical assistance and Martin Pfeffer and Holger Scholz for editorial help.

This study was supported by the Adolf and Hildegard Isler Stiftung and the Klara Samariter Stiftung. The multilocus sequence typing database is publicly available at http://mlst.ucc.ie, which is currently supported by a grant from the Science Foundation of Ireland (05/FE1/B882).

Kristin Mühldorfer, Gudrun Wibbelt, Joachim Haensel, Julia Riehm, and Stephanie Speck1

Author affiliations: Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany (K. Mühldorfer, G. Wibbelt, S. Speck); Berlin, (J. Haensel); and Federal Armed Forces Institute of Microbiology, Munich, Germany (J. Riehm)

DOI: 10.3201/eid1603.091035

1Current affiliation: Federal Armed Forces Institute of Microbiology, Munich, Germany.

References


Address for correspondence: Kristin Mühldorfer, Leibniz Institute for Zoo and Wildlife Research, Research Group Wildlife Diseases, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany; email: muehldorfer@izw-berlin.de

Letters

Letters commenting on recent articles as well as letters reporting cases, outbreaks, or original research are welcome. Letters commenting on articles should contain no more than 300 words and 5 references; they are more likely to be published if submitted within 4 weeks of the original article’s publication. Letters reporting cases, outbreaks, or original research should contain no more than 800 words and 10 references. They may have 1 Figure or Table and should not be divided into sections. All letters should contain material not previously published and include a word count.

Human Herpesvirus 8, Southern Siberia

To the Editor: Human herpesvirus 8 (HHV-8) is the etiologic agent of Kaposi sarcoma. Sequence analysis of the highly variable open reading frame (ORF)–K1 of HHV-8 has enabled the identification of 5 main molecular subtypes, A–E (1). A and C subtypes are prevalent in persons in Europe, Mediterranean countries, northwestern China, and the United States; subtype B, in persons in sub-Saharan Africa; subtype D, in persons in the Pacific Islands and Japan (2–6); and subtype E, in Native Americans in the United States.

Considering that K1 gene polymorphisms of HHV-8–infected persons reflect the divergence accumulated during the early migrations of modern humans out of Africa (1), it is tempting to put the polymorphisms observed in the different subtypes into an evolutionary perspective with their geographic distribution. It is thought that Native Americans infected by subtype E and Pacific Islanders, including those infected by subtype D in the Japanese archipelago, originated from a common ancestral genetic stock in continental Asia. Because Siberia constitutes the geographic link between mainland Asia, North America, and the Pacific (online Technical Appendix, www.cdc.gov/eid/content/16/3/585-Techapp.pdf), it is likely that the Siberian region has served as a source or a corridor of human dispersals to these regions. Thus, we conducted a molecular epidemiology HHV-8 survey of the Buryat population, a major indigenous group in southern Siberia, to gain new insights into the origins, possibly common, of HHV-8 subtypes D and E.

After consent of local authorities and participants, we collected 745 human blood samples in 1995 in 17 medical/social structures (homes for elderly persons, veterans of the Russian army,