

PB84241116

SOLVENT EXPOSURES IN THE
SHOE MANUFACTURING INDUSTRY

Alfredo Salazar
David Gidley
Mary Alexander
SRI International
Menlo Park, California 94025

Contract No. 210-76-0162

U.S. DEPARTMENT OF HEALTH EDUCATION AND WELFARE
Public Health Service
Centers for Disease Control
National Institute for Occupational Safety and Health
Division of Surveillance, Hazard Evaluations and Field Studies
Cincinnati, Ohio 45226

August 1982

REPORT DOCUMENTATION PAGE		1. REPORT NO.	2.	PB8 4 241116
4. Title and Subtitle		Solvent Exposures In The Shoe Manufacturing Industry		
7. Author(s)		Salazar, D., D. Gidley, and M. Alexander		
9. Performing Organization Name and Address		SRI International Menlo Park, California 94025		
12. Sponsoring Organization Name and Address		Division of Surveillance, Hazard Evaluations and Field Studies, NIOSH, U.S. Department of Health, Education, and Welfare, Cincinnati, Ohio		
16. Abstract (Limit: 200 words)		<p>Industrial hygiene surveys of solvent exposures in shoe manufacturing (SIC-3140) industries were summarized. Walk through surveys at 13 facilities and in depth studies at 3 shoe manufacturers were conducted. Personal and area air samples were analyzed for toluene (108883), benzene (71432), other organic solvent vapors, and total dust concentrations in the in depth surveys. All toluene concentrations were below the OSHA standard of 200 parts per million (ppm). All benzene samples were below the OSHA standard of 10ppm; however, 10 samples exceeded 1ppm. Most of the elevated benzene concentrations were observed in manual operations such as washing and cleaning in the finishing areas. Other organic solvents and particulate concentrations were below the relevant federal standards. The authors conclude that toluene does not constitute a health risk in the surveyed facilities. The unexpected elevated benzene concentrations that were observed probably arose from impurities in the toluene or other materials. It is recommended that a systemic search be made for the source of the benzene contamination and an effort be made to remove it.</p>		
27. Document Analysis a. Descriptors				
b. Identifiers/Open-Ended Terms		NIOSH-Publication, NIOSH-Contract, Toxic-vapors, Employee-exposure, Industrial-chemicals, Airborne-dusts, Air-quality-measurement, Exposure-levels, Health-protection, Occupational-exposure, Contract-210-76-0162		
c. COSATI Field/Group				
18. Availability Statement:		19. Security Class (This Report)	21. No. of Pages	88
		20. Security Class (This Page)	22. Price	

DISCLAIMER

Mention of company names or products in this report does not constitute endorsement by the National Institute for Occupational Safety and Health.

NIOSH Project Officer: James Oser
Principle Investigator: David Gidley

ABSTRACT

A study on occupational exposures to toluene and epidemiological assessment of these exposures has been undertaken by NIOSH. As part of the study, a selection of the most significant industries using toluene was made. Employment of a scientific process and preliminary survey of several industry groups in the shoe manufacturing industry was selected as the best candidate for evaluation of occupational toluene exposure studies.

Following preliminary walk-through industrial hygiene surveys of thirteen typical toluene using plants, in-depth studies of three shoe manufacturing plants involving extensive air sampling and other environmental measurements were made. The objective of this report is a composite evaluation of environmental data for these three facilities. In all cases, toluene exposures were well below permissible levels. Other organic solvents were also surveyed and found mostly within acceptable levels.

Specific occupations within the industry with potential for increased risk were identified for closer control.

This report was submitted in partial fulfillment of Contract No. 210-76-0162 by SRI International under the sponsorship of NIOSH. The funding for this research was provided by the Division of Cancer Cause and Prevention, National Cancer Institute through the Interagency Agreement in Research On Occupational Carcinogenesis. (Y-01-CP-60605)

CONTENTS

Disclaimer.....	ii
Abstract.....	iii
Introduction.....	1
Background.....	5
Facilities and Personnel Surveyed.....	10
Process and Control Operations.....	23
Personnel Activities.....	33
Health and Safety Programs.....	35
Survey Procedures and Methods.....	39
Results and Observations: Plants A, B, C.....	44
Summary and Recommendations.....	64
References.....	68
Appendices	
A. Short term sampling data.....	70
B. Composition of materials.....	76

FIGURES

1. Typical Adhesive Manufacturing.....	14
2. Adhesive Label Manufacturing.....	15
3. General Shoe Manufacturing Process.....	20

TABLES

1. Chemical and physical data for toluene.....	6
2. Adhesive manufacturers.....	12
3. Adhesive users.....	19
4. Plant A - Ventilation measurements for spray booths and vapor collection hoods.....	27
5. Plant B - Ventilation measurements.....	29
6. Plant C - Ventilation measurements.....	31
7. Number of employees with potential direct toluene exposure.....	34
8. Personal and area time weighted average concentrated (ppm) at Plant A, 11/28-11/30/79.....	47
9. Range of long-term exposure at Plant A.....	50
10. Personal and area time weighted average concentrations (ppm) at Plant B, December 10-13, 1979.....	51
11. Range of exposure at Plant B.....	55
12. Personal and area time weighted average concentration (ppm) at Plant C, January 15-18, 1980.....	59
13. Range of exposure at Plant C.....	61
14. Air sampling results for airborne dust - Plant C - December 18, 1980.....	62
15. Exposure range and mean at similar operations in Plant A, B, and C.....	63

TABLES (CONT.)

A-1. Plant A - Air sampling results (Draeger Pump and Detector Tubes)....	70
A-2. Plant A - Air sampling results (Century Organic Vapor Analyzer) 11/28/79.....	71
A-3. Air sampling results (h-nu Photoionization Analyzer).....	72
A-4. Plant B - Air sampling results - Draeger Pump and Toluene Detector Tubes.....	74
A-5. Plant C - Air sampling results (h-nu Photoionization Analyzer) 11/17/80.....	75
B-1. Summary of solvent materials encountered in study.....	77

INTRODUCTION

NIOSH has been granted the authority and responsibility under the Occupational Safety and Health Act of 1970 to develop needed information regarding worker exposure to potentially toxic substances in industry. NIOSH contracted with SRI International to investigate industries with agents that are newly suspected as occupational health hazards. Toluene was selected as one of those agents for study because it is chemically similar to benzene (toluene is a methylated benzene) which is reported to be a human carcinogen; it is widely used with estimates of almost five million workers exposed. Various uses of toluene are presented in the following listing.

Electronic industry and cleaning parts
Plating
Munitions
Auto machinery
Gasketing
Brake shoe manufacturing
Cleaning window frames
application of resin on paper
Paints, lacquers and vehicles
Molding (spray)
Cloth manufacturing
Pressure-sensitive adhesive levels
Scotch tape
Medical and surgical tape manufacturers
Flexible packaging manufacturers
Glazing industry
Woodbonding and veneering
Construction
Mobile home manufacturing
Shoe manufacturing
Insulation manufacturing
Electrical insulation
Automotive industry
Book binding
Household furniture
Cabinet making
Paperboard containers
Converted paper products

Several industries using toluene were considered in an attempt to isolate a "pure" exposure to toluene, that is, with as few other solvents present as possible. Considered were adhesive manufacturing, shoe manufacturing, leather manufacturing, bookbinding, household furniture industry, cabinet makers, lacquer and thinner manufacturing, munitions, and the rubber industry. The shoe manufacturing industry was finally selected as a toluene adhesive user for several reasons: 1) no industry was identified as using only toluene, 2) the exposures to other chemicals appeared minor, 3) the industry has not been well studied in terms of occupational safety and health problems, and 4) the industry was well suited for both an epidemiologic and detailed industrial hygiene studies. Plants were selected based on type of adhesive used, number of years of use of the adhesive or toluene, number of workers exposed, average percent employee turnover rate, availability and completeness of current and terminated employee record, history of production and use, no prior benzene use, and geographical location. An epidemiologic study is to be conducted by NIOSH for facilities which are best suited, based on above criteria.

Over 20 adhesive, cement, and sealant manufacturers were surveyed by telephone. They were selected from a computer printout of 25 adhesive manufacturers (obtained via the Economic Information System Terminal at SRI) and from the Adhesive Redbook, an industry listing. Ten of the companies made adhesives that contained toluene. The remainder involved exposures to other solvents such as styrene, ethyl acetate, acetone, benzene, xylene, and aliphatic naphtha.

Contact cements contain considerable amounts of toluene, and specific end uses include:

Pressure-sensitive adhesive labels
Scotch tape

Medical and surgical tape manufacturers

Flexible packaging manufacturers
Glazing industry (factory-built windows)
High pressure laminates used in woodbinding
Shoe manufacturing
Electrical insulation
Insulation manufacturing
Automotive industry (bonding of hoods and vinyl roofs).

Other adhesives are used in:

Refrigerators and other appliances
Aircraft
Electrical equipment
Book binding
Textiles
Packaging.

In general, two types of adhesives contain toluene, natural and reclaimed rubber adhesives and neoprenes. Natural and reclaimed rubber are used in construction and to make pressure-sensitive adhesives such as masking tapes and paper labels. Neoprenes are used as structural adhesives, i.e., binding metal to metal, as formica adhesive, as consumer adhesive, and in the automotive industry.

In a telephone survey of six shoe manufacturers selected in a manner similar to the adhesive manufacturers, exposures to only toluene were found in the use of neoprene glues to cement the shoe and sole. Two of the major suppliers of neoprene cements to the shoe industry sell products which contain 50% toluene, 35% heptane or hexane, and 10 to 14% ethyl acetate.

OBJECTIVES AND SCOPE

The objectives of this industrial hygiene study were to:

Review and summarize toxic effects of toluene through a correlative study of environmental evaluations and epidemiological investigations.

Document and describe selected workplaces including information on the extent of use of toluene in the presence of other environmental agents.

Identify job types and describe specific jobs.

Describe current industrial hygiene or safety practices and controls, including engineering controls, work practices, administrative controls, biological and environmental sampling and control procedures.

Document job function exposures.

Describe analytical procedures.

Detailed industrial hygiene surveys reflecting these objectives were conducted at three shoe manufacturing facilities in the United States where toluene and toluene-based adhesives are used. These detailed surveys, all of which have been preceded by preliminary surveys, were conducted from November 1979 to May 1980.

STUDY CONSTRAINTS

The industrial hygiene surveys conducted during this study represent singular evaluations of worker exposures to toluene and do not reflect possible variations in exposure due to seasonal or operational changes. These studies were conducted during periods of normal production. The possibility of encountering a highly unusual exposure situation during a sampling period was remote and therefore the sampling results can be considered to represent those exposures associated with normal working conditions.

One of the difficult problems in identifying a relatively "pure" exposure to toluene is that it is, as described above, often used in combination with other solvents such as xylene and acetone. Much of the toluene still being used contains small quantities of benzene. These confounding factors were considered as much as possible in selecting the facilities studied.

BACKGROUND

NIOSH estimates that almost five million persons are occupationally exposed to toluene in the United States, ranking number six in over 7,000 substances most often observed in its National Occupational Hazard Survey (NOHS). Toluene is produced in large volumes with an annual production rate in excess of five billion pounds. Toluene has often been used as a substitute for benzene because the carcinogenic potential of benzene was shown. However, because toluene is a methylated benzene and, because of its similar chemical structure, it is of concern that it may have health effects similar to those of benzene.

TOLUENE DESCRIPTIVE DISCUSSION

Chemical and Physical Properties

Toluene is a clear, colorless, noncorrosive liquid with a sweet odor similar to that of benzene. The chemical formula and some chemical and physical properties of the compound are given in Table 1.

Table 1. Chemical and Physical Data for Toluene

Synonyms: Toluol, Methylbenzene, Methylbenzol, Phenylmethane

Chemical formula: $C_6 H_5 CH_3$

Some chemical and physical properties

Molecular weight:	92.13
Boiling point:	(760 mm Hg): 110.60°C (231°F)
Freezing point:	-95°C
Specific gravity (20°C):	0.866
Vapor density (air=1):	3.14
Vapor pressure (25°C , 77°F):	28 mm Hg
Flash point (closed cup):	4.4°C (40°F)
Flammability limits (in air):	1.27 - 7.0%
Solubility:	not soluble in water (0.5g/100ml) but soluble in most organic solvents

Sources: References (15 & 18)

Production and Uses

Approximately 70% of all toluene that is produced is converted to benzene. Another 15% is consumed in the production of other chemicals. The remainder is used as a solvent, as a gasoline additive and in many household and industrial uses. Highly purified toluene (Reagent Grade and Nitration Grade) is presently used for many commercial purposes and contains less than .01% benzene. However, toluene of high purity was not available until about 1940, so that experimental data before that time are open to question because benzene content may have been as high as 25% (as reported by the Manufacturers' Chemist Association).

PHYSIOLOGICAL EFFECTS OF TOLUENE

Toxicity

The current standard set by OSHA is 200 ppm with a ceiling level of 300 ppm and a peak of 500 ppm, based on Von Oettingen's work in 1942.(13) The standard is designed to protect the health and safety of workers for an 8-hour day, 40-hour week over a working lifetime; compliance with the standard should therefore prevent adverse effects of toluene on the health and safety of workers. NIOSH's recommended standard is 100 ppm, with a ceiling of 200 ppm. The 1981 ACGIH TLV is 100 ppm for an 8-hour day with a short term exposure limit (STEL) of 150 ppm.

Acute exposure to toluene generally causes irritation of the skin, conjunctivitis, and respiratory mucous (ILO, 1971). It depresses the central nervous system as do other hydrocarbons, resulting in headache, paraesthesia, nausea, muscular weakness, neuromuscular incoordination, vertigo, dilation of the pupils and, in extremely high exposures (thousands of ppm), coma and death (Von Oettingen, 1942).

The LD50 in the rat is 1640 mg/kg intraperitoneally (Keplinger et al., 1959). Rats exposed to 200, 1000, and 2,000 ppm toluene 8 hours per day for 32 weeks (Takeuchi, 1969) showed no significant changes in body weight, leukocyte count, erythrocyte count, eosinophil count, or hemoglobin levels.

In general, the narcotic effect of toluene is somewhat stronger than benzene, but the effect on the blood forming organs is considerably less severe.

No data was found that toluene is mutagenic in the Ames Salmonella typhimurium test, but Dobrokhotov (1972) reported that toluene alone and when administered with benzene produced chromosome aberrations. One-half of these were breaks and 1/5 to 1/3 were chromatid ruptures. The breaks were noted in 5 to 9% of aberrant metaphases. Dobrokhotov and Enikeev (1977) exposed rats chronically to toluene and found an increase in chromosome lesions in bone marrow cells. When combined in exposure to benzene, the number of lesions was equal to the sum of the number of disturbances for each separate chemical.

Hematopoietic Effects

Various studies conducted to evaluate the effects of toluene on the hematopoietic system have shown generally no myelotoxic effect in humans; however, some controversy still exists. Greenburg et al. (1942) studied 61 painters exposed from 100 to 1100 ppm toluene for from 2 weeks to 5 years in an airplane factory. Results indicated decreased levels of erythrocyte counts, absolute lymphocytosis, and elevation of the hemoglobin level, and they also observed hepatomegaly and macrocytosis.

Curtis et. al. (1973) reported a case of a 47-year-old worker who was diagnosed as having chronic myeloid leukemia after 4 years of occupational exposure to solvent vapors containing 55 ppm toluene. The man spent 10% of his working hours in the shop and was transferred 2 years prior to his diagnosis. His wife was also diagnosed as having chronic myeloid leukemia which casts doubt on his occupational exposure.

Nervous System Effects

Acute exposures to toluene depress the central nervous system as do other hydrocarbons, resulting in headache, nausea, and muscular weakness, neuromuscular deterioration, dilation of the pupils, and in extremely high exposures coma and death. Von Oettingen (1942) showed that at concentrations of 200 ppm for 8 hours, slight but definite impairment of coordination and reaction time resulted which he felt was liable to render affected persons dangerous to their own safety and to the safety of others.

Kidney Effects

Renal disease resulting from exposure to toluene has been recently reported by Ehrenreich (1977). In addition, O'Brien et al. in 1971 described a case of a 19-year-old male who had been sniffing glue containing 80% toluene for 3 years and who had developed serious but apparently reversible injury to his kidneys. Taher (1974) reported reversible renal tubular acidosis associated with sniffing toluene.

Other Effects

Toluene is a defatting agent and may remove lipids from the skin resulting in

dermatitis, dryness, fissuring, and secondary infection. Toluene has also been shown to cause corneal damage and conjunctival irritation when accidentally splashed into the eye.

There are other factors that may determine the health effects associated with exposure to toluene. These involve the uptake, retention and elimination of inhaled toluene in human subjects. Uptake of toluene depends on the levels being emitted, the duration of exposure and the degree of physical activity.

Although men seem to show a larger uptake of toluene than women, men also excrete the toluene at a much faster rate. In addition, women eliminate toluene in expired air only about one-half as much as men. This is thought to be due to the increased body fat in women because toluene is highly soluble in fat (10,11).

FACILITIES AND PERSONNEL SURVEYED

In attempting to find an industry or facility with exposures to toluene that were adequate for study both from an industrial hygiene and epidemiological standpoint, seven adhesive manufacturers and five adhesive user facilities were visited for walk-through surveys. Three of the adhesive users were shoe manufacturing plants (Plants A, B, and C), which were surveyed in detail and are the subject of this report. The remaining walk-through surveys provided insight into the extent of exposure to toluene in the other industries and will be briefly described here.

Adhesive Manufacturers

Seven adhesive manufacturers were visited (Plants D through J). The results of

the environmental sampling in these plants are summarized in Table 2 along with relevant data for the plants.

Plant D is an adhesive manufacturing plant making neoprenes and urethanes using toluene. These adhesives are used by the shoe manufacturing industry to cement upper and lower soles together. The processes are described in Figure 1. The toluene levels ranged from less than one to 270 ppm. These variations were seen during the filling of drums with adhesive and near mixing areas with additive barrels.

Plant E is a plant manufacturing pressure-sensitive adhesives for use on labels, i.e., rubber based and acrylic adhesives. About 50% of the products contain lactol spirits which is 5% toluene. A process flow diagram is shown in Figure 2. Charcoal and Draeger samples indicate that exposures are below the TLV with the range between 3 to 32 ppm.

Plant F is a plant manufacturing solvent-based (25% of production) and water-based adhesives. The process operator adds solvents and resins to the mixing tanks, mixes the cement, and then draws it off into drums. Packaging operators fill adhesive into smaller packages from smaller tanks. The process is described in Figure 1. Toluene levels were 8.1 to 51.2, with a mean of 28 ppm. Other solvent exposures include MEK, methylene chloride, hexane, lactol spirits.

Solvent and water based adhesives and solvent-based mastics or sealers are manufactured by Plant G. The process for making solvent-based adhesive consists of mixing neoprene rubber with solvent such as acetone, toluene, water, textile spirits, chloroethane, 1,1,1-trichloroethane, heptane, and hexane. There is also

Table 2. Adhesive manufacturers.

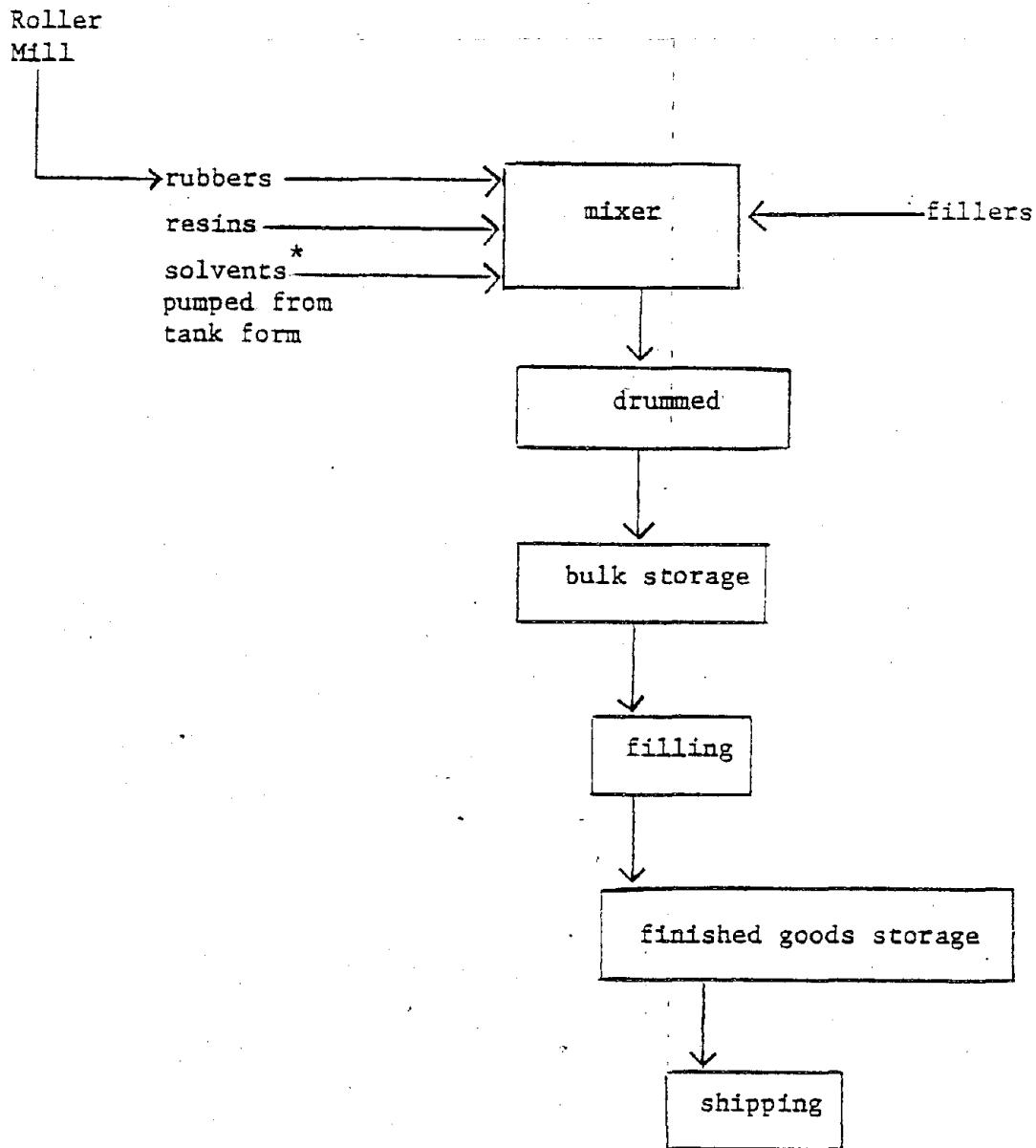

PLANT	NO. PEOPLE IN PRODUCTION	PRODUCTS / PROCESS	EXPOSURES (OTHER THAN TOLUENE)	PAST EXPOSURES PPM TOLUENE	REPRESENTATIVE JOB TITLE	TOLUENE CONCENTRATIONS	
						RANGE (PPM)	MEAN PPM (GEOMETRIC)
Company D 15	15	neoprene, urethanes	heptane, hexane, ethyl acetate, acetone, methyl ethyl ketone & hexane	14 +	loader, draw-off man, material handler	<1 - 270 ^a	39
Company E 79	18	rubber-based and acrylic adhesives	lactol spirits textile spirits MEK, pulverized rubber		compounder, quality control technician	3 - 32 ^b	17.5 ^b
Company F 31	19	solvent-based (neoprenes) and water-based adhesives	acetone, methylene chloride MEK, hexane 1,1,1-trichloroethane heptane, lactol spirits	2-96	process operator, packaging operator	trace - 25 ^c 8.1 - 51.2 ^b	28.1 ^b
Company G 22	22	solvent and water-based adhesives, solvent-based mastics or sealers	textile spirits (4% toluene), chloro- ethane, heptane, 1,1,1-trichloroethane, toluene, hexane, acetone, asbestos	2-20 ^b	class A operators, mill operator, porter mixer	N.D. ^c	
Company H 231	198	solvent-based adhesives for labels	hexane, heptane, ethyl acetate, alcohol, ketones, "pigments"	50-290	coating machine opera- tor, compounder, line operator, QA technician	2.8 - 30mg/m ³ ^b	2.9 mg/m ³ ^b
Company I 83	83	solvent-based adhesive (neoprene, urethane)	MEK, acetone, 1,1,1-trichloroethane, hexane, textile spirits, ethyl acetate, naphtha xylene, asbestos, acrylonitrile, epichlorohydrin	25-150 ^b	processor, processor helper, quality-control technician	1 - 8 ^b	3.6 ^b
					operator, QA technician	14 - 28 ^b	18 ^a
					coating machine opera- tor, compounder, line operator, QA technician	25 - 80 ^a	38.4 ^a
					processor, processor helper, quality-control technician	11 - 34 ^a	
					operator, QA technician	trace - 10 ^c	

TABLE 2 (Concluded)

PLANT	NO IN PRODUCTION	NO EXPOSED	PRODUCTS/ PROCESS	OTHER EXPOSURES (OTHER THAN TOLUENE)	PAST EXPOSURES (PPM) (TOLUENE)	TOLUENE CONCENTRATIONS	
						REPRESENTATIVE JOB TITLE	MEAN PPM (GEOMETRIC)
Company J	225	31	polymerization, solvent-based adhesives, rubber based solution polymers	vinyl acetate, MEK ethyl acetate, acrylic acid, acrylic monomers, maleic anhydride, methylene chloride, hexane, acetone	21 ppm	operator, assist- ant operator, helper	barely detectable to 7.3 ^a 12 ^a

LEGEND:

- a Century Organic Vapor Analyzer samples
- b Area charcoal tube samples
- c Draeger detector tubes
- + OSHA survey found levels in compliance

*Toluene, acetone, lactol spirits, acetone, methylene chloride, hexane, heptane, methyl ethyl ketone, chlorothene.

Figure 1. Typical Adhesive Manufacturing

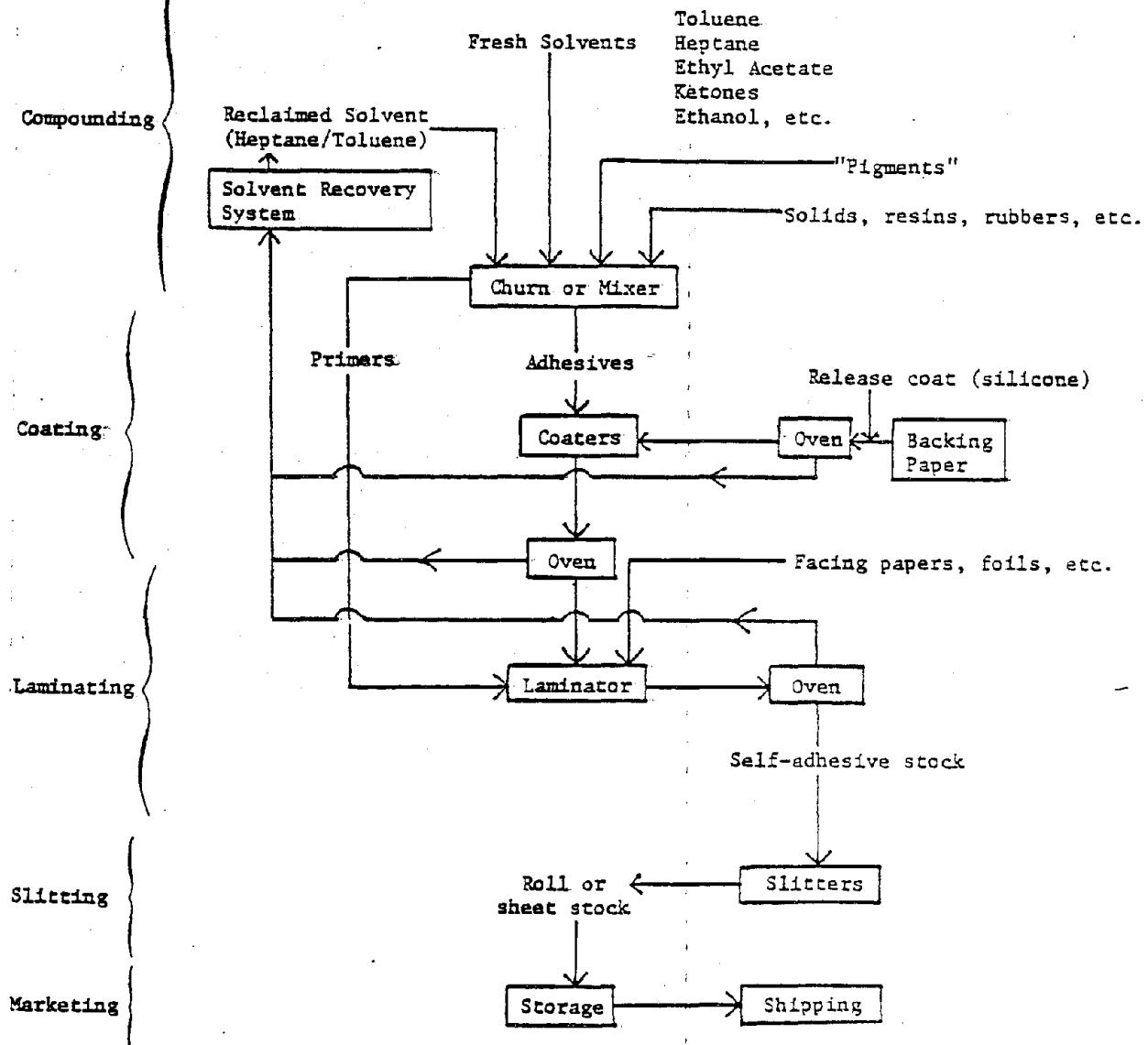


Figure 2. Adhesive Label Manufacturing Process

some synthetic styrene butadiene adhesive produced. Asbestos is used occasionally in making a neoprene and a putty. Levels of asbestos were found to be in compliance by Cal-OSHA. The process is presented in Figure 1. Short term samples showed low levels of toluene with a range of 2.8 to 3 mg/m³ and none detectable with Draeger detector tubes having a detection limit of 5 ppm. Total hydrocarbon as sampled with a TLV Sniffer showed excursions up to 200 ppm near filling areas.

In Plant H, an adhesive lable manufacturing plant, there are seven buildings with three active toluene-based adhesive production lines. One end-line was singled out for the walk-through. Raw materials for the process as described in Figure 2 include rubber, resin powders or other similar materials, toluene, hexane, heptane, ethyl acetate, alcohol, ketone, and "pigments", in proprietary combinations. These ingredients are mixed in "drums" and then the adhesive is applied to paper for use as labels. The wet stock is oven-dried, "laminated" to the facing stock (paper, foil), and then transferred to the slitting department where it is cut and sent to storage.

Sampling in the past indicated levels almost as high as 300 ppm prior to 1974. Seven Century Gas Analyzer samples taken during the survey showed a range of 25 to 80 ppm with a mean of 38.4 ppm. Three charcoal tube samples showed a range of 14 to 28 ppm with a mean of 20 ppm. Concurrent charcoal tube sampling by the company showed a range of 13 to 37 ppm and a mean of 17 ppm.

Plant I manufactures a broad range of solvent and water based adhesives, coatings, caulk, and sealants. About one-third of the adhesives made are sold to the shoe industry. Asbestos is used for manufacturing of caulk which occurs in a separate

room. The raw materials include neoprene and polyurethane rubbers, phenolic resins, toluene, MEK, acetone, 1,1,1,-trichloroethane, hexane, textile spirits, ethyl acetate, naphtha xylene, and occasionally acrylonitrile and epichlorohydrin. Benzene was used prior to 1958. Past exposures to toluene dating back to 1976 showed a range of 25 to 150 ppm when the caulk hopper was being cleaned. Other toluene concentrations were 55 ppm during mixing, 70 ppm during mixing, and 60 ppm in the middle of the room. Exposure to acrylonitrile in 1978 was 0.1 ppm and epichlorohydrin was < 1 ppm.

Sampling during the survey with five charcoal tubes showed a range of 1 to 8 ppm with a mean of 2.6 ppm toluene. Three samples taken with the Century Organic Vapor Analyzer showed 11 to 35 ppm with a mean of 18 ppm toluene. Draeger tube samples were from a trace to 10 ppm toluene. Total hydrocarbon ranged from 28 to over 400 ppm.

Plant J manufactures toluene-based adhesives by two basic processes: the first, by polymerization and the second, by addition of solvents to mixing kettles and the solution of rubbers in these mixes. In the production of solvent-based adhesives through polymerization, the solvents used include toluene, vinyl acetate, MEK, and ethyl acetate. In addition, acrylic acid, acrylic monomers, and maleic anhydride are used. In the production of rubber-based solution polymers, the raw materials are natural and synthetic rubber, toluene, methylene chloride, MEK, hexane, and acetone. Toluene is often used in both departments for cleaning of kettles or tanks.

Area sampling in the past with charcoal tubes indicated that toluene exposures

were less than 1 ppm. "Century" samples showed a range from barely detectable to 12 ppm with a mean of 7.3 ppm.

Adhesive Users

Adhesive users (see Table 3) visited included Plant K where shoes are manufactured using water and solvent based adhesives. The general manufacturing process is presented in Figure 3. Cut material of leather stock are assembled and sent to sub-assembly benches for sewing, trimming, decorating, and upper finishing cleaners, cements, and adhesives of different types (solvent-base, water-base or hot-melt) are used in several of these processes. Cements are used to fit the shoes' upper assemblies to lasts (dummy feet). The bottom of the shoe is trimmed, finished, "shanked" (metal arched), and fitted smooth with a mix of saw-dust and cement to form a mating surface for the sole. Soles and uppers are cemented together, cured-dried and finished. Toluene is one of the main components of the adhesives used, but other organic solvents are used in the formulations including hexane, hexol, and ethyl acetate. Exposure data in 1977 showed toluene exposures at 15 and 20 ppm. During the survey, charcoal tube samples ranged from 0.9 to 19 ppm with a mean of 11.9 ppm and Draeger detector tubes ranged from none detectable to 22 ppm. Hexane levels were 2.6 to 4.5 ppm and ethyl acetate was 0.09 to 45 ppm. These low levels may be credited to an extensive ventilation system recently installed in the facility. Another adhesive user facility, Plant L, makes pressure sensitive labels from toluene-based adhesives. Use of toluene-based adhesives began in 1948. Most of the products over the years have used 50% lactol spirits which is 5% toluene. An OSHA inspection in 1974 showed them to be in compliance. Charcoal tube samples showed a range of 1 to 31 ppm with an average of 15.6 ppm. Draeger detector tubes showed a range of none detectable to 170 ppm during laminating operations. The exposures to toluene during use of toluene-based adhesives is in the preparation of the label stock.

Table 3. Adhesive users.*

PLANT	NO. PEOPLE EXPOSED	PRODUCTS / PROCESS	EXPOSURES (OTHER THAN TOLUENE)	PAST EXPOSURES		REPRESENTATIVE JOB TITLES	TOLUENE CONCENTRATIONS	
				PPM	TOLUENE		PPM	MEAN PPM (GEOMETRIC)
Company K	303	298	shoe manufacturing using water- and solvent-based adhesives	hexane, hexol, ethylacetate	15.06 - 19.96	bottom cementer	.9-19 ^b ND-20 ^c	11.9 ^b
Company L	55	55	label manufacturing using solvent-based adhesives	lactol spirits, MEK, + hexane, textile spirits	operator, tape machine operator, slitter helper	slitter operator, tape machine operator, slitter helper	ND-170 ^c 1-31 ^b	15.6 ^b

* Three other facilities were also walk-through surveyed. They are the subject of the in-depth surveys (Plants A, B, C) and are not tabulated here.

LEGEND:

a Century Organic Vapor Analyzer samples

b Area charcoal tube samples

c Draeger detector tubes

+ OSHA survey found levels in compliance

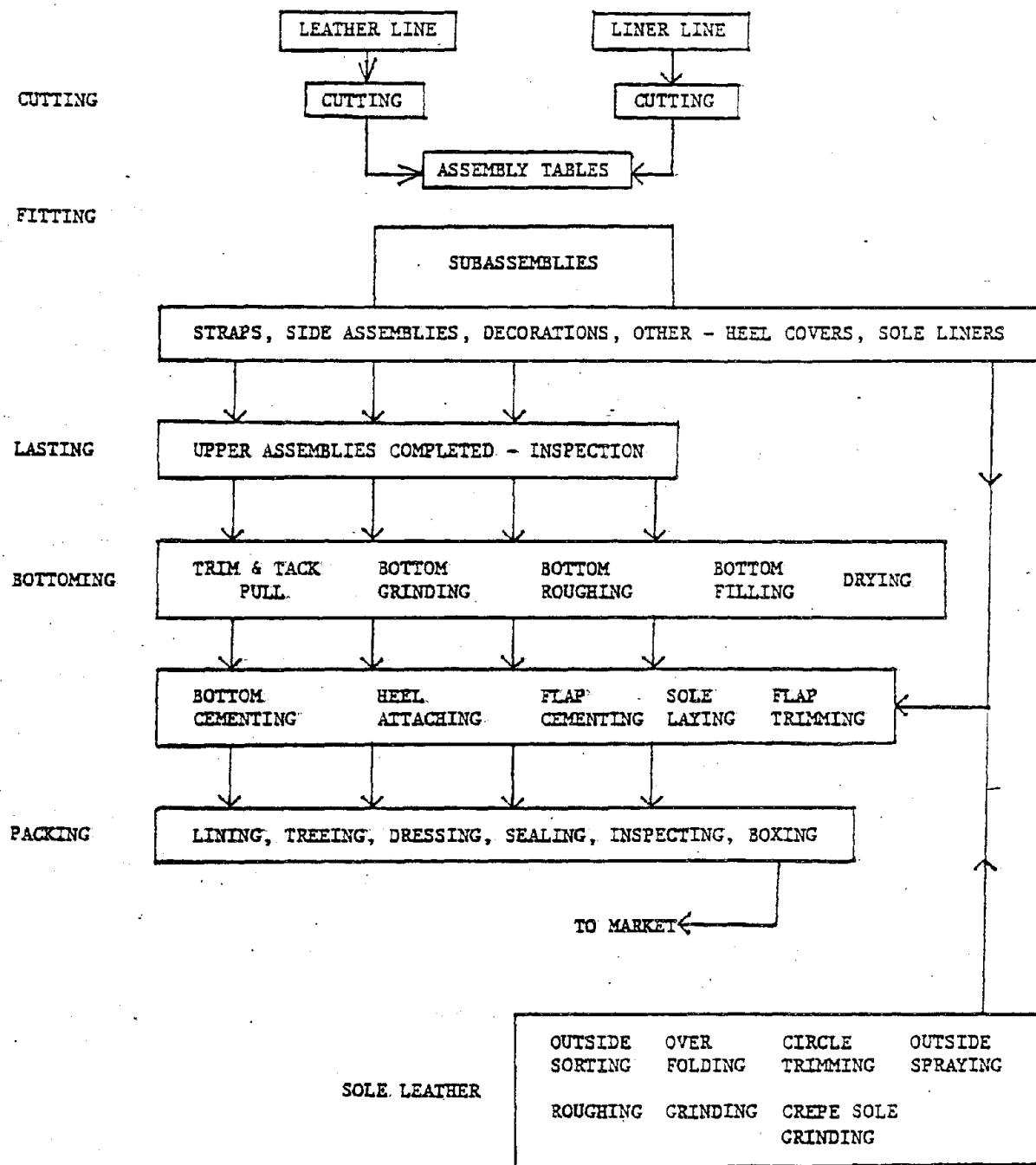


Figure 3. General Shoe Manufacturing Process

In summary, the walk-through surveys of toluene-based adhesive manufacturers and users indicate low-level exposures to toluene. There are also few areas where there is "pure" exposure to toluene, as other organic solvents are generally present.

SPECIFIC STUDIES IN SELECTED PLANTS: A, B, C,

Three facilities at which various types and styles of men's and women's shoes are manufactured are included as the subjects for this report. Attempts have been made to provide as much of an exposure cross section as possible. The plants were selected on the basis of such criteria as the number of persons potentially exposed to toluene, the number of years of toluene use as an adhesive vehicle, the level of toluene concentrations as determined by preliminary area sampling, routine or continuous operations and therefore relative continuity of exposure levels, exposure situations where the compounding effects of other chemicals would be minimized or clearly identified, and processes representative of a significant use of the substance. Based on initial investigation, toluene cannot be placed in a high-use category within the shoe industry, but its use is higher than all other industries investigated where extreme interfering factors could be held to a minimum.

The facilities are designated as Plant A, B, and C in this report. The plants are briefly described below, followed by a description of the shoe manufacturing processes, personnel and jobs in which potential exposure to toluene occurs, and control programs, if any, that have been established.

OVERVIEW OF PLANTS: A, B, C

Plant A

Plant A is located in an industrial park in a moderately industrialized area of the south-central United States. Until 1950, Plant A was located in the East. Following its geographical relocation in the South, the plant operated from approximately 12 years (1950-1962) in an inner-city setting. The present facility, constructed in 1962, is located in an industrial complex at the edge of the city where the parent company is also located. Toluene-based adhesives have been utilized by Plant A throughout its lifetime. Some shifts from neoprene to urethane adhesives have changed patterns of exposure but, in general, toluene-based adhesive usage has remained consistent within all departments.

Plant B

Plant B is located in a rural area in the Southeast. The plant was built in 1970 with a warehouse added in 1972. Prior to 1970 the plant was located in an eastern city. Operations began in 1946 and continued at that location until the facilities were moved to their current location. Toluene-based adhesives have been used in the present plant since the start-up of production in 1970. Before that, toluene-based adhesives were used in the eastern plant at least as far back as 1962. Approximately 4 years ago (1975) urethanes were introduced into the process. Currently, 65% of the cements used are neoprene, containing toluene as the solvent vehicle, and 35% are urethane, utilizing methyl ethyl ketone as the solvent base.

Plant C

Plant C is located in a small city in the East and has been in operation under the present ownership since 1924. The present plant was built in 1958, undergoing periodic enlargement through 1977. Toluene usage has been consistent at least since

1958 with little history prior to that date. Urethane adhesives have been introduced into the plant since that time, adding an additional solvent (MEK) to the airborne inventory but doing little to change the character or extent of exposure to toluene.

PROCESS AND CONTROL OPERATIONS

GENERAL DESCRIPTION OF SHOE MANUFACTURING PROCESS

Receiving--

This area of the building is where domestic and imported leather and other shoe raw materials are separated, graded, and stored. No adhesives or solvents are used in this limited-access area which is usually separated from the main manufacturing bay by means of an enclosure.

Cutting Area--

In this area, leather from Receiving is cut with various sized dyes to the forms needed for manufacture of different shoe styles. Cutters and trimmers are employed in this department, most of whom are highly skilled because as many pieces as possible must be cut from each skin to minimize waste. No adhesives, solvents, dyes, or finishes are used in this department.

Fitting Department--

This department is the first stage of shoe assembly involving the majority of the

work force. There are a number of subassembly areas or benches depending on the shoe design under manufacture. These may include side assemblies, straps, decorations, linings, heel covers, etc. For example, in the Doubling Area, leather linings are glued to outer leather components, and at the VAMP Benches, the vamp glove (shoe lining) is cemented to the vamp. At the Decorative Benches, decorative fixtures such as bows, piping, inlays or other accents are assembled. The remainder of the Fitting Department consists of benches for cutting, fitting, and sewing operations.

Insole Department--

This department is engaged in cementing insoles, outsoles and heels, as well as, preparing the inner soles for the lasting operations that follow. The operation known as "insert box toe" is also done in the insole department in which the pre-glued box toe is assembled and subjected to heat and pressure to harden the box toe and give the shoe its firmness.

Lasting Department--

In this department, the upper part of the shoe is fitted over the "last" (a dummy foot) and shaping and additional fitting continued. Identifiable operations include antiquing where antiquing dyes are used, side and heel lasting, toe lasting, toe fastening, bottom sanding, cobbling, back part molding, crowning, and covering.

Welting and Bottoming Department--

Some plants make welt shoes in which the soles are fully sewn as well as glued to the shoe. This is an additional process but renders the shoes more durable and

form-retentive. To cement the bottoms, cement is dispersed through nozzles of the cementing machines and is laid onto the grooved periphery of ~~the~~ innersole. This operation is called "cement bottoms". In another operation called "lay soles", cement is spread over the shoe soles before they are applied to the bottom of the shoes. This process involves running the sole through an adhesive roller and stacking them in wire racks to dry. "Bottom filling" is also done, in which cork bottom filler material mixed with a toluene-based adhesive is pressed into place in the depression in the sole that is created by the surrounding welt. The cork bottom filler provides additional cushioning for the foot following application of the sole that seals the material into place. An additional operation is "shanking" where a metal arch is integrated into the shoe bottom, fitted with adhesive and a filler (cork or sawdust) to make a mating surface for the sole.

Making Department--

The operations in this department consist of shaping the shoe heels and applying them to the shoe by cementing and/or pinning. The lasts are removed from the shoes, and soles and heels are trimmed, ground, and smoothed.

Finishing, Packing, and Shipping Department--

Operations in this department involve the dyeing or inking of heels, the cleaning or spotting of shoes, and the application of a spray shine within two water-curtain spray hoods using latex-based liquid finishes. A shoe repair operation is also included to mend minor damage that may have occurred in manufacture. Additional spotting or antiquing may be involved and, after treeing and polishing, the shoes go on to be packaged for final delivery.

Plant A Environmental Controls

Plant A makes extensive use of local exhaust ventilation for the control of particulates at abrasive operations such as grinding, sanding, roughing, and buffing machines in the welting, bottoming, making, and finishing departments. The majority of the dust collection hoods are ducted to two baghouse collectors on the exterior south side of the building that together return 102,000 cfm of air into the plant. Negative pressures within the building is offset by dampers entering at the rear of the building which open during negative pressure situations to bring in an additional 50,000 cfm of heated or cooled fresh air to the air handling system.

In addition to the baghouse collectors, there are seven Torit cyclone and fabric collectors inside the building, distributed throughout the front and rear of the plant to supplement baghouse collection. These units are designed to collect larger particulates in the cyclone component and diffuse return air through four fabric collectors to remove the fines. Each Torit collector is ducted to sets of from two to four adjacent abrasive machines such as sanders, sole roughers, heel scourers, and edge trimmers. In general, the particulates generated by all abrasive machines in the plant are of non-respirable size. Generation of respirable size dust is minimal, although some deposited dust from air returned through the Torit fabric filters was observed on undisturbed surfaces to the units.

Local exhaust ventilation for vapor-generating operations in Plant A was confined to spraying operations in the finishing department, vamp glove gluing operations in the fitting department, and insole and outsole cement operations in the insole department. Table 4 shows hood dimensions and flow rates encountered at vapor gen-

Table 4. Plant A - ventilation measurements for spray booths and vapor collection hoods.

Location	Hood dimensions	Average face velocity (fpm)
Packing Department (finish spray booth - 2nd coat, south face)	16" x 32"	300
Packing Department (finish spray booth - 2nd coat, north face)	16" x 32"	700
Packing Department (repair hood)	18" x 24"	50-60
Packing Department (repair hood)	18" x 24"	140
Fitting Department - cement uppers	3" x 12"	800+
Insole Department - cement outsoles - hood #1	Exhaust system being installed	Not operating
Insole Department - cement outsoles - hood #2	Exhaust system being installed	Not operating

erating work stations. Hoods at the cement outsole and cement insole operations were new installations at the time of the survey, and electrical connections to the exhaust fans had not been made. Exhaust from vented spray hoods and other solvent vapor-generating consist of weather caps covering stacks of minimal height. Depending on temperature differential between the vented air and the outside air, there is potential for vapor to collect on the roof. It is possible but unlikely that vapors could be recirculated into the building through open doors and windows because the building is provided with air conditioning in the summer and it is not a usual practice to leave doors and windows open.

Plant B Environmental Controls

This plant uses Torit cyclone and fabric collectors exclusively throughout the buildings to collect dust from abrasives operations. Two units in Bottoming collect particulates from edge trimmers, toe grinders, and roughers. There are also two Torit collectors in the Sandal Department, each ducted to four or five trimmers, grinders, roughers, and scourers. In the Sole Department, three Torit units remove dust generated during sandal manufacture. Generation of fines was not observed to be excessive in any department, although some deposited dust from air return through the fabric filters was noted on undisturbed surfaces adjacent to the Torit units.

Local exhaust ventilation is applied to a variety of vapor generating operations throughout the plant including finish and spray hoods in Packing, adhesive dip operations in the Sandal Department, latex spray hoods in the Sole Department, and a glue applicator table and chlorinating unit in Bottoming Department. Table 5 shows hood dimensions and flow rates at hood faces, takeoffs, and duct entries

Table 5. Plant B - ventilation measurements.

Location	Hood and Duct Dimensions	Flow Rate (fpm)	Location	Hood and Duct Dimensions	Flow Rate (fpm)
Bottoming-Edge trimmer No. ME 0545 from Torit Collector ME 0503 (Two branches, lower branch blocked.)	4 inch duct with flared take-off	2000+	Sandal - Trimmer No. ME 0586 off Torit Collector No. ME 0591	4 branches	upper left - 150 upper right - 800 hood face - 10 lower take-off - 400
Bottoming-Toe Grinder No. ME 0515 from Torit Collector ME 0503 (Two branches, left branch closed.)	4 inch duct	right-1300	Sandal - Trimmer No. EX 028 off Torit Collector No. ME 0587	trimmer head enclosure	200
Bottoming-Toe Grinder No. ME 0537 from Torit Collector ME 0503 (Two branches, right branch closed.)	4 inch duct	left-1000	Sandal - Rougher-Trimmer No. HE 0605 off Torit Collector. No. 0587	hood face=negligible upper take-off 325	hood face=negligible upper take-off 950
Bottoming-Rougher No. LE 124 from from Torit Collector ME 0513	4 inch duct	left-850 right-650-700	Sandal - Wheel Grinder No. 0603	2 branches	left face - 175 right face= 100-150
Bottoming-Rougher No. LE 123 from Torit Collector ME 0513	4 inch duct	left-1700 right-1500	Sandal - Trimmer No. 0589 off Torit Collector No. HE 0587		lower - 1000 right - 300 left - no access
Bottoming-Trimmer No. EX 020 from Torit Collector ME 0513	5" x 6" hood	375	Sole - Concur heel No. ME 0067 off Torit Collector No. ME 0051		200-300
Bottoming-Trimmer No. EX 019 from Torit Collector ME 0513	5" x 6" hood	300	Sole - Latex Adhesive Sprayhood (vented through wall)		hoodface - 70 avg left duct entry-70 right duct entry-70 lower duct entry-650
Bottoming-Cement Sole Roller (NSN) (vented through roof)	2' x 2' canopy hood	175-180	Sole - Scourer-Rougher No. ME 0063 off Torit Collector No. HE 0061	2" x 4" hood	face - 375
Finish - Vinyl Finish Hood No. ME 0728 (vented through roof)	2-1/2' x 2-1/2' face	150	Sole - Chicago trim No. ME 0606 off Torit Collector No. ME 0061	at work face	200+
Finish - Spray Hood No. EX 037 (vented through roof)	2-1/2' x 2-1/2' face	40	Sole - Trimmer No. ME 0057 off Torit Collector No. ME 0061	at work face	550
Finish - Spray Hood No. EX 038 (vented through roof)	2-1/2' x 3' face	60	Sole - Grinder No. EX 003 off Torit Collector No. ME 0061	grinder-head enclosure	enclosure face-50
Finish - Spray Hood No. EX 039 (vented through roof)	2' x 2' face	75	Sole - Router (NSN) off Torit Collector No. ME 0061		upper duct entry-600 lower duct entry-250
Finish - Spray Hood No. EX 040 (vented through roof)	2' x 2' face	75	Sole - Vertical Grinder No. EX 002, off Torit Collector No. ME 0061	flared hood	upper duct entry-600 lower duct entry-- blocked
Finish - Wafer curtain hood No. EX 035 (vented through roof)	2' x 2' face	125			
Finish - Wafer curtain hood No. EX 034 (vented through roof)	2' x 2' face	125			
Sandal - Heel dip trough-east unit (vented through south wall)	8'10" x 2'5"	left face, negligible; right face-10; zt filter = 250	Sole - Vertical Grinder (NSN) off Torit Collector (NSN)	flared hood	2000+
Sandal - Heel dip trough-west unit	9'10" x 2'5"	at face - 15 left filter - 125 right filter-100	Sole - Edge Trim No. ME 0066 off Torit Collector (NSN)	2 take-offs	left - 500 right- 900
Sandal - Heel rougher off Torit Collector No. ME 0539	rear take-off	1800	Sole - Edge Trimmer No. ME 0550 off Torit Collector (NSN)	slot exhaust	2000+
Sandal - Trimmer No. ME 0591 off Torit Collector No. ME 0591	rear take-off	2000	Sole - Trimmer No. LE 037	trim head enclosure	250 at enclosure face 1300 @ duct take-off

*NSN = No serial number.

at all ventilated operations in Plant B. Exhaust ducts from spray hoods, adhesives operations, and other solvent vapor-generating activities are either vented through the roof or are vented through the walls directly behind the hoods. Roof vent stacks consist of weather caps covering short stacks. It is possible but unlikely that vapors could be recirculated because doors are kept closed to maximize air-conditioner efficiency, and there are no windows. Spray hoods in the Sole Department and the heel dip hood in the Sandal Department are vented through the north and east walls. The vent ducts extend laterally through the walls to the exterior and there is some potential for plugging.

Plant C Environmental Controls

Plant C makes extensive use of local exhaust ventilation for the control of particulates at abrasive operations. The majority of dust collection hoods and take-offs are connected to an Amerjet baghouse with 31 fabric collectors, which recirculates air into the plant through a water scrubber on the roof. The remaining particulate-generating operations are vented to an American Air Filter (AAF) rotocclone and fabric collector. The unit is like the Torit units used in Plant A and B in that it is designed to collect larger particulates in the rotocclone separator and diffuse return air through four fabric bags to remove the fines. The AAF serves from 9 to 10 roughers and grinders in the cement room. No information was available on air volumes handled, but flow rates at the abrasives machines in operation (refer to Table 6) indicate good air velocities. Both units (Amerjet and AAF) recirculate filtered air into the plant, and makeup air does not appear to be a problem. Generation of fines within the makeup air appears to be minimal, although some dust deposits were noted adjacent to the AAF bag diffusers.

Table 6. Plant C - ventilation measurements.

Location	Air Velocities Flow Rate (fpm)	Associated Collection Unit	Location	Flow Rate (fpm)	Associated Collection Unit
Cement Room - Rougher #5791	2000 - upper hood face	AAF Rotoclane	Stockfitter - Beveler	7200	AMF Baghouse
Cement Room - Rougher #5797	2000 - upper hood face	AAF Rotoclane	Stockfitting - Roughing Machine #8552	>250	AMF Baghouse
Cement Room - 3rd Rougher	2000 - lower take-off	AAF Rotoclane	Stockfitting - Brush stand #3496	At hood face - 150 At plenum - >2000	AMF Baghouse
Cement Room - 4th Rougher #5838	1000 - upper take-off 2000 - lower take-off 7500 - upper take-off	AAF Rotoclane	Stockfitting - Insole beveler #28414	500	AMF Baghouse
Cement Room - Pounding Machine #8161	right hood - 1050 (avg) left hood - 375 (avg)	AAF Rotoclane	Stockfitting - Edge Rougher South unit	At cutting head >500	AMF Baghouse
Cement Room - Pounding Machine #0164	right hood - 600 (avg) left hood - 700	AAF Rotoclane	Stockfitting - Edge Rougher North unit	At cutting head 1100	
Cement Room - Pounding Machine #98200	right hood - 625 (avg) left hood - 200 (avg)	AAF Rotoclane	Stockfitting - Edge Spray Hood	At hood face 450	Through roof
Cement Room - Pounding Machine North End	right hood - 800 (avg) left hood - 400 (avg)	AAF Rotoclane	Packing - Chlorinating hood	At hood face - 250	Through roof
Lasting Dept. - Edge Trimmer #0656	At cutting wheel - 350 At duct face - 140	AMF Baghouse	Packing - North Finish Spray Hood	At north hood face - 140 At plenum entry - 1000 At south hood face - 175	Through roof
Stockfitting - Lining Reducer	1250	AMF Baghouse	Packing - South Finish Spray Hood	At west hood face - 225 At east hood face - 225	Through roof
Stockfitting - Roughing Machine	1700	AMF Baghouse			
Stockfitting - Shank Reducer	700	AMF Baghouse			
Stockfitting - Sola Reducer	No access - Collection poor	AMF Baghouse			
Stockfitting - Roughing outsoles	At hood face - 450	AMF Baghouse			
Stockfitting - Compo-machine (rougher)	>2000	AMF Baghouse			
Stockfitting - Edge reducer #C940	1200	AMF Baghouse			
Stockfitting - Sola reducer	At snorkel face - 2000 At tool head - 500	AMF Baghouse			

Local exhaust ventilation for vapor generating operations is limited to one spray hood in stock fitting, the chlorinating hood in the packing department, and two spray finish hoods also in the packing department. Exhaust from these hoods is vented through the roof to the atmosphere. The vent stacks consist of weather caps anchored at the roofline. As with Plants A and B, potential exists for recirculation into the building, but doors and windows are kept closed to accommodate the air conditioners.

COMPOSITE EVALUATION OF PROCESSES AND ENVIRONMENTAL CONDITIONS - PLANTS A, B, AND C

It is apparent from the foregoing that the three shoe manufacturing facilities are very similar from the standpoint of both the physical plant and the processes. Operations at all three are conducted for the most part in large, open, single-story facilities with little or no definition or separation between departments or "rooms". The single exception is Plant B where sandal manufacturing is done in a separate room at the rear of the facility. Machines and equipment used in the manufacturing processes in the three facilities are also much the same with only minor in-plant modifications. This applies to sanders, roughers, grinders, and buffers as well as pull-over machines and relatively new, hot-melt adhesive machines. We were advised during our surveys that there are no proprietary processes or equipment in the industry and this appeared to hold true as there were few meaningful variations in process flow, production techniques, or the type of equipment used. As applied to environmental controls, pronounced similarities appeared in their application. All plants had concentrated heavily on dust collection systems with relatively few vapor collection devices applied to adhesives operations. Spray shine and antiquing stations in all plants utilized water curtain hoods or dry enclosures of similar design. In addition, all three plants relied heavily

on interior rotoclean and diffuser bag collectors for a variety of particulate-generating operations. The two larger plants (A and B) had also installed baghouses to accommodate their larger number of operations.

Chemicals used in these plants involve a large number of adhesives, glues, and cements, employing a variety of industrial solvents. Requests were made to ascertain the composition of these materials. Many of these requests were compiled through Material Safety Data Sheets or other forms of information. A summary of all these responses is tabulated in Appendix B.

PERSONNEL ACTIVITIES

COMPOSITE JOB ANALYSIS, PLANTS A, B, AND C

In general, jobs within the three plants are similar in character with minor variations associated with the production of sandals in Plant B. Most cementing, cleaning, and washing operations in all plants are done in open areas on what can be considered the open, main floor. However, heel dips, heel wash, and heel cover operations in Plant B are done in a walled room at the rear of the building and larger quantities of neoprene and urethane adhesives are used than are normally associated with traditional shoe manufacturing operations.

In addition to the personnel sampled who had direct contact with toluene, count was kept in all plants of employees with potential direct exposure to toluene. These numbers compared to total production personnel are shown in Table 7. Only those employees actually working with adhesives or other solvent containing materials are reflected in the table. Employees at noncontact operations are not included regardless of the proximity.

Table 7 Number of employees with potential direct toluene exposure.

Plant ID	Total production work force	Number of employees potentially exposed	Percent of employees potentially exposed
Plant A	430	47	11.0
Plant B	290	35	12.0
Plant C	306	44	14.3

HEALTH AND SAFETY PROGRAMS

HEALTH AND SAFETY PROGRAM - PLANT A

Plant A, as a subsidiary of a larger corporate structure located on the same site, has available to it safety engineering and loss control services as part of the corporate program. Safety training and development of safety awareness are an on-going part of the program in conjunction with periodic safety inspections and safety engineering of facilities and equipment.

Industrial hygiene services have in the past been available through a consultant, but industrial hygiene surveys have not been available except through the insurance carrier. Only one survey had been conducted by the carrier at Plant A. This had been done 3 years ago, but no information relating to that survey had been submitted to the plant. Aside from this one corporate survey, no other walk-throughs or sampling surveys had been made at Plant A.

Medical services are provided through a local clinic and hospital located near the plant. A licensed nurse is not employed at Plant A, but there is a nurse at the adjacent corporate facilities. First aid treatment is provided by employees with formal CPR-first aid training. Preemployment or baseline physical examinations are not given to new employees nor are periodic physical examinations provided.

Protective clothing, shoes, and respirators are not required or provided by plant management. It was observed that smocks are worn by many of the employees to protect street clothing. Safety glasses are provided for some of the trimming and all of the grinding operations. Latex gloves are provided by the employer and are

worn particularly in antiquing and treeing, but consistent use is not enforced. There are no facilities for taking showers and there are no lockers. Some employees change from their street clothing into work clothing in the rest rooms, but the majority wear their work clothing home. To the best knowledge of plant management, there have been no medical abnormalities aside from occasional dermatitis that can be attributed to occupational exposure.

In regard to housekeeping, the plant is well maintained. Floors are kept clean, and litter, scattered dust, and scrap are kept to a minimum. Employees are responsible for cleaning and maintaining their own work areas throughout the day, and general plant cleaning is done at night by a contractor.

HEALTH AND SAFETY PROGRAM - PLANT B

There is no formal safety program at Plant B, but employees receive initial safety instruction from the foreman on the precautions pertaining to their jobs. There are no formalized safety inspections, no employee safety committee, or awareness training. Injury frequency and severity are low, with the frequency of lost-time accidents in 1978 reported as nine and the severity reported as two. Most of these were tripping, falling, or lifting types of accidents. The only medical abnormalities known to the plant were two cases of contact dermatitis incurred by cement operators using latex cement.

To the best knowledge of plant management, there have been no industrial hygiene surveys conducted within the facility, either through the insurance carrier or other contractual arrangement.

The plant does not retain a physician either on a full-time or part-time basis to provide medical treatment for the employees, although a full-time licensed practical nurse is available to provide first aid treatment from a dispensary. Pre-employment physicals are not conducted nor are periodic physical examinations offered to the employees. Ambulance service is available locally, and seriously ill or injured employees are transported to either of two regional hospitals, a distance of 10 or 25 miles.

Protective clothing, shoes, respirators, and safety glasses are not required or provided by the plant. Latex gloves are provided and are worn, particularly at the heel dipping operations and in treeing. Consistent use is not enforced. There are no facilities for taking showers nor are lockers available for the employees. Some employees change from street clothing into work clothing in the restrooms, but the majority wear their work clothing home. Smocks are worn over street clothing, mostly by female employees.

In regard to housekeeping, the plant is well maintained. Floors are kept clean, and litter and scrap are not allowed to accumulate. General plant cleaning is done at night by maintenance department personnel.

HEALTH AND SAFETY PROGRAM - PLANT C

There is no formal safety program at Plant C. Employees receive initial safety instructions as it applies to their assignment, but periodic safety training and awareness programs are not established. Safety inspections are informal and are not conducted on a regularly scheduled basis.

There have been no industrial hygiene surveys at Plant C except for an air sampling survey by the insurance carrier 3 years ago. Information relating to that survey was not submitted to the company. Aside from the above survey, the only other air sampling conducted in the plant has been by plant management personnel using a Bendix fixed-volume sampling pump, and indicator tubes for acetone, MEK, and toluene.

The plant does not employ the services of an occupational physician. Trained personnel, including two paramedics working in the plant, are available to administer first aid. CPR-first aid training is available at a local hospital, and personnel in the plant have taken advantage of this training. A well-equipped first aid room is available for dispensing first aid treatment. Any emergency cases would be taken to the local hospital, or for nonambulatory cases, the fire department ambulance would be summoned. Preemployment or baseline physical examinations are not given to new employees nor are periodic physical examinations provided.

Protective clothing, shoes, and respirators are not required or provided by Plant C. Smocks are worn by some female employees to protect street clothing. Safety glasses are provided for some of the trimming and grinding operations. Latex gloves and barrier creams are provided by the employer and are worn by some of the adhesive and solvent handling operators. Consistent use, however, is not enforced. There are no facilities for taking showers and there are no lockers. Some employees change from their street clothing to work clothing in the restrooms, but most employees wear their work clothing home. To the best knowledge of plant management, there have been no medical abnormalities attributable to occupational exposure other than occasional, mild contact dermatitis.

The plant is well maintained from the standpoint of housekeeping. Floors are kept clean, and litter and accumulated scraps are kept to a minimum. General plant cleaning is conducted during the day and evening by plant service personnel.

SURVEY PROCEDURES AND METHODS

The procedures for sampling and analytical methods employed in the three surveys of exposure to toluene are described in this section.

PRELIMINARY WALK-THROUGH SURVEYS - PLANTS A, B, AND C

The detailed surveys at each of the three plants had all been preceded by preliminary walk-through surveys, the purpose of which was to identify suitable facilities for in-depth study. The preliminary surveys were conducted throughout the months of December, 1978 and January, 1979.

Plant A--Preliminary determinations were made in manufacturing areas using the Century Organic Vapor Analyzer (OVA), MDA Accuhaler pumps with 150-mg charcoal tubes, and Draeger detector tubes. Measurements with the OVA utilized the gas chromatograph column to provide spot measurements of toluene. Area concentrations of toluene during that survey were found to range from 7 to 60 ppm with highest concentrations found near cementing operations and the box toe operation. One-hour charcoal tube sampling indicated a toluene level of 60 ppm at selected cement bottoms operations, 14 to 16 ppm in fitting where a latex cement was being used, and only 7 ppm in treeing where there is extensive use of aliphatic hydrocarbon solvents and solvent mixtures containing methyl ethyl ketone and ethyl acetate.

Plant B--Preliminary determinations in the production areas were made using the J-W TLV Sniffer, Draeger pump and length-of-strain toluene detector tubes, and charcoal tubes. Low-flow Accuhaler personal sampling pumps were used to draw air through the charcoal tubes. Sampling results showed relatively high total hydrocarbon levels ranging from 65 ppm at the east end of the cutting room to 400 to 420 ppm near the cement outsole operation in the Sole Department. Toluene levels are measured with the Draeger pump and indicator tubes ranged from 45 ppm in the Heel and Bottoming Department to 100 ppm at a Bottom Cementing operation also in the Bottoming Department. Short-term charcoal tube sampling revealed levels of 6 to 16 ppm in the Heel, Sole, and Fitting Department.

Plant C--Preliminary determinations were made using the J-W TLV Sniffer, Draeger pump and length-of-stain detector tubes, and 150-mg charcoal tubes. Low-flow Bendix pumps were used to draw air through the charcoal tubes. Area concentrations of toluene were found to range from 10 to 75 ppm with the highest levels encountered at Bottom Cementers and Treeing operations in the packing room.

IN-DEPTH INDUSTRIAL HYGIENE SURVEY FOR TOLUENE

Both personal and area environmental air samples for the presence of toluene and other expected vapor contaminants were taken during the course of the in-depth surveys at Plants A, B, and C. Personal sampling employed low-flow MDA Accuhaler pumps which were attached to the belts of the workers with Tygon tubing leading to the breathing zone collectors. Charcoal tubes were used as the collection media. Two different sizes of charcoal tubes, 150 and 300 mg, were used during the surveys. The 300-mg charcoal tubes were used at those manufacturing locations where higher concentrations were anticipated to avoid breakthrough of the back-up section

and subsequent sample loss. The sampling pumps were used to draw air through the charcoal tubes at nominal rates of 20 or 100 ml/min. Calibration of the pumps was performed before and after sampling with a bubble-meter (buret set in an inverted position) using a charcoal tube assembly in-line between the pump and buret. The fixed flow rates of the pumps equipped with 20, 50, and 100 ml/min orifices were checked by marking the time required for the soap bubble to traverse the distance from the zero to the appropriate marking on the buret.

Personal sampling was conducted on workers during their total working shift, and the time-weighted average (TWA) exposure for each job was calculated.

Out of the 116 operator and area locations subject to charcoal tube sampling in Plants A, B, and C, 60 of the operator locations were selected for side-by-side passive vapor monitor sampling. The results of the passive monitor sampling will not be discussed or compared to charcoal tube sampling results in this report. An additional study, to be published at a later date, will examine the aspects of the parallel sampling conducted in this study.

In addition to long-term charcoal tube sampling and passive vapor monitoring, readings were taken with different direct-reading instruments at several locations in three plants where pronounced concentrations of solvent vapors were noted. The "grab" samples or direct-reading tests not only gave a secondary set of field measurements but also afforded the opportunity of observing maximum or "ceiling" values where these were suspected. Tables A-1 through A-5 in Appendix A show the results of these measurements. The Draeger pump and Draeger length-of-stain detector tubes were used in Plant A and B at several hand-adhesive application operations. The length-of-stain tubes have presumed accuracy of plus or minus 25% but in the in-

stances where the Draeger unit was used, results corresponded well to those readings obtained with other direct-reading instruments.

The Century Organic Analyzer with gas chromatograph system option was used in Plant A to check the range of airborne hydrocarbon levels. This unit utilizes sample ionization by a hydrogen flame. The total number of ions produced is directly proportional to the concentration of organic materials in the flame. An electric field in the chamber drives the ions to the collecting electrode which causes the current to flow into a pre-amplifier. The rate of ion generation is a function of the quantity and structure of the carbon compound in the sample. Prior to use, the gas chromatograph system option was calibrated against known toluene concentrations.

Because of its rapid response and observed reliability, the "h-nu" photoionization analyzer, Model PI 101 was used to detect toluene concentrations at Plants A and C. The h-nu employs the principle of photoionization. The pump samples at approximately 150 to 200 cc/minute and the readout meter is linear, reading directly in parts per million. The h-nu was calibrated to known toluene concentrations prior to use. Concentrations at Plant A ranged from 20 ppm to 400 ppm and 10 ppm to 250 ppm at Plant C.

Survey Methodology - Plant A

The two members of the survey team sampled every employee at Plant A who showed any significant potential for toluene exposure. Long-term samples were also collected from adjacent nonadhesives operations to check on dispersion and migration of the solvent vapors. In total, over 290 man-hours of exposure time were sampled

at Plant A. Individual breathing zone samples were taken for 6 to 7 hours from all employees with the exception of short-term or interrupted samples at a few operations.

Charcoal tube monitoring was used as the primary sampling system to quantitate area and personal exposure levels to toluene and other potentially hazardous substances. Although passive monitors were also deployed, charcoal tube sampling is presently considered the most reliable and effective sampling procedure for determining airborne levels of the chemical agents present. Consequentially, all conclusions in this report are derived from the charcoal tube sampling results.

As indicated, spot area monitoring was performed using Century Organic Vapor Analyzer, the h-nu photoionization analyzer, and Draeger length-of-stain tubes. Although not directly translated into exposure concentrations, the direct-reading instruments indicated those areas within the facility where potential for exposure was highest and also those aspects of any one particular operation that generated higher concentrations.

Survey Methodology - Plant B

To obtain the most information possible, the two members of the survey team sampled all personnel at Plant B who showed any significant potential for toluene exposure. As at Plant A, long-term samples were collected from adjacent nonadhesives operations in most departments to check a dispersion and migration of the solvent vapors. In total, over 213 man-hours of exposure time were sampled at Plant B. Individual breathing zone samples were taken for 5 to 7 hours from all employees with the exception of short-term or interrupted samples at a few operations. Primary sampling was accomplished through use of charcoal tubes and all conclusions

in this report are derived from the charcoal tube sampling results. Area monitoring was performed to a limited extent using Draeger pump and toluene detector tubes. The results of that sampling, as set forth in Table A-4 in Appendix A, showed no excursions of note.

Survey Methodology - Plant C

The two-member survey team followed the same procedures as outlined above for Plants A and B. In total, over 180 man-hours of exposure time were sampled at Plant C. Individual breathing zone samples were taken for 6 to 7 hours from all employees with the exception of shorter-term area samples. Charcoal tube monitoring was accomplished through use of charcoal tubes and personal exposure levels to toluene and other potentially hazardous substances. Area monitoring was performed using the h-nu photoionization analyzer. The results of that sampling are set forth in Table A-5 in Appendix A.

RESULTS AND OBSERVATIONS: PLANTS A, B, AND C

Results of the in-depth surveys carried out at Plant A, B, and C are presented in separate parts together with interpretive discussion of the data, summaries, and recommendations.

RESULTS OF SURVEY - PLANT A

Full-shift, time-weighted average exposures, and short-term exposures of personnel at Plant A are presented in Table 12, together with results of area sampling. All

charcoal tube sampling results for toluene, the main contaminant of interest in this study, were well below the current OSHA time-weighted average standard of 200 parts per million. A maximum of 124 ppm was observed during a short-term (78 min) sampling of cementing outsoles in the Insole Department.

Table 13 shows the range of exposures and the geometric mean for all major charcoal sample analysis. These means were found to be extremely low denoting the high proportion of low values encountered for all contaminants. Short-term or interrupted sample values are not included in the ranges or geometric means process.

The last column of Table 12 is the cumulative exposure computed for the entire mix of solvents (as determined from charcoal tubes) in terms of fractions of the permissible daily exposure. Cumulative exposure is calculated from the following formula where C indicates the observed atmospheric concentration and T the corresponding threshold limit.

$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \dots + \frac{C_n}{T_n}$$

If the sum of the above fraction exceeds unity, then the threshold limit of the vapor mixture is considered as being exceeded.

Local exhaust ventilation has only recently been applied to some of the adhesive building operations. In the past, only spraying and grinding operations were equipped with exhaust hoods. The majority of all abrasive operations are provided with hoods, and particulate generation is not a significant problem from an industrial hygiene standpoint. There are wide fluctuations in transient toluene levels, which are effectively moderated by efficient air exchange within the plant.

Although conditions may vary somewhat according to meteorological conditions, it appears that Plant A provides a workplace with moderate toluene concentrations. The scope of exposure to other chemical and physical agents is well defined and does not include materials of overwhelmingly confounding character. The potential for other exposures does exist however, and must be recognized as factors in the future epidemiological study.

RESULTS OF SURVEY - PLANT B

The results of all personal and area samples collected in Plant B are shown in Table 14. Samples #101 through #130 are personal samples and samples #131 through #138 are area samples. As indicated, all charcoal tube sampling results for toluene were well below the OSHA TWA permissible exposure limit of 200 ppm. None of the toluene samples exceeded the level of 55.8 ppm encountered at the heel-covering operation (Sample #112) in the Sandal Department. The range of long-term exposure to toluene extended from 7.2 ppm at an assembler operator location in the Sandal Department where no adhesives or solvents were being used to the aforementioned level of 55.8 ppm at a heel covering operation in the same department where extensive amounts of neoprene adhesives and solvents were in use.

Aside from trace or minimal detectable levels, benzene concentrations ranging from 1.3 to 5 ppm were encountered at a cement lining operation in Fitting and four working, treeing, and vinyl spraying operations in the Sandal and Packing Departments. As with plants A and C, there is no ready explanation for the presence of these benzene levels. While solvent stocks, presumably used at all five operations, may be expected to contain small traces of benzene, the atmospheric concentrations under such circumstances would be expected to remain well below the levels found.

Table 8. Personal and area 8-hour (200 ml/min) time weighted average concentrations (ppm)
at Plant A, 11/28-11/30/79.

SAMPLE NUMBER	LOCATION AND/OR JOB TITLE	CONTAMINANT CONCENTRATION, PPM						CUMULATIVE EXPOSURES a		
		TOluene	BENZENE	MEK	ACETONE	ETHYL ACETATE	XYLENE	HEXANE	HEPTANE	
<u>Fitting Dept.</u>										
25	Cement Uppers	52.0	ND	ND	4.2	3.6	ND	43.0	15.0	0.39
37	Cement Uppers	4.0	ND	ND	13.5	5.2	0.2	ND	ND	0.05
<u>Insole Dept.</u>										
17	Cement Insoles	2.4	0.06	ND	0.4	1.0	ND	2.4	1.1	0.02
41	Area samples (adjacent to cement insole operation)	0.02	0.19	ND	ND	2.6	0.4	ND	ND	0.03
23	Cement Heels & Insoles	10.9	0.11	ND	13.0	6.9	1.7	ND	ND	0.11
46	Outside Cementing	ND	ND	ND	16.0	14.0	0.5	ND	ND	0.06
47	Roughing	5.8	0.22	ND	6.9	2.0	ND	ND	2.0	0.07
<u>Lasting Dept.</u>										
1	Antiquing	14.0	1.05	ND	9.0	13.1	0.6	13.1	9.8	0.21
7	Co-Laster (Scholl pull-over)	30.0	ND	ND	9.5	10.2	0.2	41.0	18.1	0.30
12	Toefast Machine	0.03	0.27	ND	20.0	10.0	0.1	ND	ND	0.07
14	Sand Bottoms (Machine #38985)	2.3	0.13	0.2	ND	1.6	ND	ND	ND	0.03
15	Cobbling	16.8	ND	ND	27.2	15.5	3	ND	ND	0.18
16	Crowner	17.6	1.0	ND	22.0	6.1	ND	13	9.15	0.18
42	Area sample (at pull-over machine)	0.03	0.096	ND	ND	2.1	0.6	ND	ND	0.02
21	Backpart mold and Cobbling	9.1	0.033	ND	12.0	0.5	0.2	6.6	5.0	0.05
28	Side and Heel Laster	19.0	ND	ND	18.0	10.0	0.3	14.0	10.0	0.17
49	Covering Machine and Trim Edges	10.4	0.1	0.2	15.0	5.1	0.4	45.0	5.3	0.15

Table 8 . Personal and area 8-hour (200 ml/min) time weighted average concentrations (ppm)
at Plant A, 11/28-11/30/79.

SAMPLE NUMBER	LOCATION AND/OR JOB TITLE	CONTAMINANT CONCENTRATION, PPM						CUMULATIVE EXPOSURES a	
		TOLUENE	BENZENE	MEK	ACETONE	ETHYL ACETATE	XYLENE	HEXANE	HEPTANE
<u>Welding Dept.</u>									
3	Shanking	26.5	ND	3.8	ND	0.5	ND	47.4	10.5
4	Bottom Filler	31.0	ND	3.7	164.0	0.6	ND	51.7	55.0
5	Sole giving, Perforating bevelling	62.0	0.24	29.0	20.2	7.35	ND	65.0	46.2
8	Welt Butt	19.6	ND	32.0	ND	5.0	ND	25.6	17.2
9	Cement Rans and Bottoms and lay sole machine operation	12.0	ND	0.52	19	6.2	ND	33.0	18.2
10	Cement Bottoms (machine # 41977)	1.51	0.13	ND	ND	ND	ND	3.0	0.8
43	Sole Layer Area Sample (near cement bottom station)	0.056	0.066	ND	ND	3.05	0.6	ND	ND
48	Shank Cementing Outsole gluing, sole trimming & roughing	ND	0.062	ND	ND	ND	0.05	ND	ND
51	Shank Cementing	11.6	0.09	14.0	16.6	9.0	2.1	ND	ND
52	Outsole gluing, sole trimming & roughing	36.1	ND	21.4	3.7	1.8	0.4	39.0	16.0
<u>Bottoming Dept.</u>									
13&44b	Cement Bottoms	12.8	0.47	ND	6.5	3.6	0.16	ND	ND
<u>Making Dept.</u>									
26	Cement Heels	30.5	ND	15.0	33.0	30.0	ND	51.0	22.0
27	Cement Heels	4.0	0.112	3.4	13.6	3.0	ND	0.5	0.2
32	Slugger	ND	0.04	8.7	18.6	13.3	0.53	ND	ND
35	Edge Trimming, Heel roughing	16.5	0.18	ND	11.4	4.4	0.2	13.0	8.5
36	Repairing-Packing Area sample, heel	0.12	0.3	ND	ND	ND	0.7	0.2	0.17
38	cement area	0.01	0.05	ND	10.3	13.4	0.4	ND	ND
40	Area sample, Heel inking	4.33	0.03	8.4	8.6	0.2	0.2	ND	ND

Table 8. Personal and area 8-hour (200 ml/min) time weighted average concentrations (ppm)
at Plant A, 11/28-11/30/79

SAMPLE NUMBER	LOCATION AND/OR JOB TITLE	CONTAMINANT CONCENTRATION, PPM						CUMULATIVE EXPOSURES a		
		TOLUENE	BENZENE	MEK	ACETONE	ETHYL ACETATE	XYLENE	HEXANE	HEPTANE	
29	Ink Heels	5.3	0.046	0.35	3.4	2.0	1.06	ND	ND	0.04
	Packing Dept.									
24	Finish, spraying (second coat)	2.8	0.081	0.1	0.2	0.4	0.6	3.2	2.2	0.03
30	Packing-Repair Hood	0.41	0.075	0.3	0.6	ND	ND	0.8	0.2	0.04
31	Treeing	6.0	0.09	5.7	6.2	2.5	0.4	ND	ND	0.08
33	Treeing	12.0	2.29	6.0	11.4	0.05	0.15	16	10.6	0.30
34	Treeing	13.0	0.525	6.9	7.2	4.3	0.6	ND	ND	
39	Area sample, repair area	2.2	0.5	0.65	2.0	1.4	0.14	ND	ND	0.07
48	Solvent Spray OSHA Standard (PEL)	3.7	ND	15.0	ND	ND	ND	2.6	4.93	0.10
49		200	10	200	1000	400	100	500	500	1.000

LEGEND:

a Cumulative Exposure = Fraction of Permissible Exposure
ND = not detectable within limits of sampling and analytical methods used

b TWA for charcoal tube samples 13 and 44 $\frac{C_{13} T_{13} + C_{44} T_{44}}{8}$ levels reported in table

Table 9 . Range of 8 hr TWA Exposures at Plant A for the 45 samples reported in Table 12.

Contaminant	Range (ppm)	Geometric Mean (ppm)
Toluene	0.01-62.0	3.11
Benzene	0.03-2.29	0.164
Methyl Ethyl Ketone	ND-29	1.56
Acetone	ND-164	6.32
Ethyl Acetate	ND-30	3.14
Xylene	ND-3	1.48
Hexane	ND-65.0	2.8
Heptane	ND-46.2	3.3

Table 10 Personal and area 8-hour, time weighted average concentrations (ppm)
at Plant B, December 10-13, 1979.

SAMPLE NUMBER	LOCATION AND/OR JOB TITLE	CONTAMINANT CONCENTRATION, ppm						CUMULATIVE EXPOSURES b		
		TOLUENE	BENZENE	MEK	ACETONE	ETHYL ACETATE	XYLENE	HEXANE	HEPTANE	
<u>FITTING DEPT.</u>										
105	Cement Linings	22.9	1.9	11.6	56.8	ND	0.6	ND	ND	0.43
106	Seal box toes and cradle vamps	15.0	ND	24.8	48.6	9.3	1.0	ND	ND	0.28
107	Cement Linings and counter pockers	19.6	ND	53.6	2.1	0.1	ND	30.0	20.4	0.46
131	Area Sample-Central area	11.9	0.1	16.0	32.9	10.3	1.4	ND	ND	0.22
<u>SOLE DEPT.</u>										
109	Cement Soles	28.2	ND	ND	17.6	0.1	ND	38.0	12.1	0.26
132	Area Sample-West side of ME0054 Torit	11.7	ND	14.0	26.4	9.3	2.0	ND	ND	0.20
<u>LASTING DEPT.</u>										
129	Hand Lasting and Hand Cement Uppers	15.1	ND	20.5	42.8	7.3	0.4	ND	21.9	0.28
130	Heel Lasting (back part molding)	16.7	ND	13.8	41.6	8.3	0.6	ND	26.8	0.27
133	Area Sample-between roller conveyors and adjacent to router	10.7	ND	12.7	25.0	8.0	1.0	ND	ND	0.17
134	Area sample-center area adjacent to floor conveyor	11.8	ND	18.1	31.8	10.2	1.2	ND	ND	0.22
<u>HEEL DEPT.</u>										
110	Heel dipper - sandal	17.6	ND	7.4	9.8	0.1	7.9	ND	ND	0.21

Table 10 Personal and area 8-hour time weighted average concentrations (ppm)
at Plant B, December 10 13, 1979.

SAMPLE NUMBER	LOCATION AND/OR JOB TITLE	CONTAMINANT CONCENTRATION, PPM						CUMULATIVE EXPOSURES b		
		TOluene	BENZENE	MEK	ACETONE	ETHYL ACETATE	XYLENE	HEXANE	HEPTANE	
<u>BOTTOMING DEPT.</u>										
101	Bottom cementing	15.7	ND	31.9	34.7	8.4	1.9	ND	ND	0.31
102	Bottom cementing	23.8	ND	54.5	69.7	8.1	0.7	ND	ND	0.54
103	Bottom cementing	28.5	ND	31.1	71.3	6.8	0.2	ND	ND	0.46
104	Cement wedges and heels	30.0	ND	77.8	104.7	11.2	ND	ND	ND	0.68
130	Blank	ND	ND	ND	ND	ND	ND	ND	ND	
<u>BOTTOMING DEPT. CONT.</u>										
121	Shanking	24.3	ND	9.6	38.3	ND	0.3	66.4	32.4	0.41
128	Cement Outsoles	19.1	ND	ND	69.8	74.4	1.3	ND	ND	0.36
135	Area Sample-Adjacent to west side of conveyor dryer	11.5	ND	16.4	29.0	9.5	1.1	ND	ND	0.22
52										
136	Area sample-at cement outsoles on east side of conveyor(cement machine #LE136)	14.6	ND	11.0	24.4	14.6	0.9	ND	ND	0.22
	<u>SANDAL DEPT.</u>									
111	Cement heel covers	0.1	lost	0.2	ND	ND	lost	ND	ND	
112	Covering heels	55.8	ND	27.2	16.2	0.2	13.7	123.3	89.4	0.99
113	Rough heels	24.4	ND	2.6	7.4	3.7	1.3	70.9	22.1	0.35
114	Cement insole and outsole, shanking	35.6	ND	ND	0.3	21.4	.7	ND	ND	
115	spot press	ND	ND	ND	ND	ND	ND	ND	ND	
116	Blank	7.2	ND	1.25	2.98	1.4	1.5	ND	ND	
117	Assembler	8.1	ND	ND	2.0	ND	1.5	21.1	5.2	0.11
	Assembler & Heel cover	20.4	5.0	5.3	41.0	23.5	4.9	ND	ND	0.78
118	Wash heels	39.8	1.6	10.7	48.3	18.6	3.2	ND	ND	
119	Heel cover and wash									
	heels									

Table 10 Personal and area 8-hour time weighted average concentrations (ppm)
at Plant B, December 10-13, 1979

SAMPLE NUMBER	LOCATION AND/OR JOB TITLE	CONTAMINANT CONCENTRATION, PPM						CUMULATIVE EXPOSURES ^b		
		TOLUENE	BENZENE	MEK	ACETONE	ETHYL ACETATE	XYLENE	HEXANE	HEPTANE	
138	Area sample-on roller conveyor in wash and heel cover area	12.5	0.1	2.6	9.1	4.2	4.7	ND	ND	0.15
139	Blank	ND	ND	ND	ND	ND	ND	ND	ND	
	<u>PACKING DEPT.</u>									
122	Spray repair	14.6	ND	3.6	10.4	5.5	0.1	ND	18.1	0.16
123	Spot repair and cementing	20.5	ND	5.5	17.7	5.7	0.2	ND	32.1	0.22
124	Vinyl spray	14.5	.7	2.5	18.9	5.8	0.3	ND	ND	0.19
125	Treeing	14.3	ND	4.2	17.0	5.3	0.4	ND	29.3	0.18
126	Treeing	30.9	ND	1.4	46.9	4.7	0.3	ND	ND	0.22
127	Treeing	14.0	1.3	10.2	32.8	10.9	0.6	ND	ND	0.31
137	Area sample-adjacent to boxing line and treeing operators OSHA	8.0	ND	7.4	20.0	8.7	0.4	ND	ND	0.12
		200	1.0	200	.1000	400	100	500	500	1.000

LEGEND:

^b Cumulative Exposure = Fraction of permissible exposure
ND Not detectable

Stocks may be on hand that contain benzene as a higher fraction, but this was not apparent at the time of the survey.

Table 15 lists the ranges of exposure to the solvents discussed here and the geometric mean of the levels encountered.

The last column of Table 14 is the cumulative exposure computed for the mixture of solvents determined from the charcoal tubes in terms of fraction of the permissible daily exposure.

Local exhaust ventilation is applied to the majority of abrasives operations at Plant B, but several manual adhesives application operations are not vented. There are fluctuations in transient vapor levels as shown by instrument survey readings, but lingering elevated concentrations are moderated by good air exchange within the building. From a subjective standpoint, particulate generation from the wide variety of abrasives operations did not appear to be a problem. This was borne out by limited sampling at Plant C where "worst conditions" typical of all the plants were monitored for total dust. Projection back to Plant B indicates that particulate generation is minimal.

Although conditions may vary somewhat according to meteorological behavior, it appears that Plant B has a workplace that generates light to moderate concentrations of toluene. The scope of exposure to other chemical and physical agents was defined as best as could be done in this study and may not include materials of significantly confounding character.

Table 11. Range of exposure at Plant B for 35 samples

Contaminant	Range (ppm)	Geometric Mean (ppm)
TOLUENE	0.1-55.8	14.2
BENZENE	ND-5	0.201
METHYL ETHYL KETONE	ND-77.8	5.64
ACETONE	ND-104.7	18.2
ETHYLACETATE	ND-74.4	3.2
XYLENE	ND-13.7	0.791
HEXANE	ND-123.3	0.38
HEPTANE	ND-89.4	1.5

RESULTS OF SURVEY - PLANT C

Full-shift, time weighted average exposure levels and short-term exposure levels to personnel at Plant C are presented in Table 16, together with results of area sampling. Charcoal tube sampling results for toluene, the main contaminant of interest, were well below the OSHA TWA permissible exposure limit of 200 ppm, and in fact none exceeded the level of 136 ppm encountered during sampling at a bottom filler operation in the cement room (Bottoming). As indicated in the table, two samples were collected on the same date at two bottom filler operations in the same area of the plant. Although the one bottom filling operation showed a TWA of 136 ppm during 5 hours and 16 minutes of sampling, sample No. 205 revealed only 6.8 ppm toluene during more than 6-1/2 hours of sampling. The reason for the wide variation in exposure levels cannot be clearly established, but there were differences in the types of shoes being filled, the amount of filler being applied, and the extent of exposed filler on completed shoes in adjacent drying racks. A technique to reduce solvent vapor levels at a variety of the operations in Plant C would be to move filled racks of drying shoes or pieces promptly to a ventilated area away from the fill area.

When compared to the photoionization instrument readings in Table A-5, TWA exposure levels derived from charcoal tube monitoring are relatively low. This difference is primarily due to the relative nonspecificity of the photoionization analyzer, but is also due in part to the wide excursions in vapor concentrations that can occur during various phases of the operations.

As was observed at Plant A and B, unexpected high benzene levels were seen at one operation in Plant C. The level encountered was 4.5 ppm at a bottom-wash soles operation in the packing room. As with the other plants, there is no ready explana-

tion for the presence of this high benzene level. Toluene stocks may be expected to contain small traces of benzene, but the resulting atmospheric concentrations should remain well below the standard of 10.0 ppm.

Varying levels of methyl ethyl ketone were found at all sampled locations throughout Plant C due to the widespread use of urethane adhesives containing the compound as a solvent vehicle. Concentrations ranged from 1.1 ppm to 161 ppm. The highest level was found at an inspection and washing station in the Making Department where solvent is used routinely to wash shoes. One confounding aspect applied to the production operator wearing the pump. This person spent several hours in different parts of the plant and was at the washing station less than half the time.

Due to the low levels observed at Plants A and B (as related to the respective permissible exposure limits) and for reasons of costs, the charcoal tubes collected at Plant C were not analyzed for acetone, ethyl acetate, xylene, hexane, and heptane.

Table 13 shows the ranges of exposure to toluene, benzene, and methyl ethyl ketone, and the geometric mean.

To verify the impression formed during the surveys at Plants A and B that airborne dust levels were not of significance, two total dust samples were taken in two major abrasive areas (refer to Table 18). Sample No. 233 was a personal sample collected at an edge roughing operation in Stock-Fitting. Total dust was minimal at 0.35 mg/m^3 . The second total dust sample was collected in the Cement Room adjacent to four roughing and pounding machines. The level encountered was 0.11 mg/m^3 . The dust generated in this area was mostly non-respirable dust of natural or synthetic leather sole material with untreated minimal health hazard protection.

The last column of Table 16 is the cumulative exposure computed for the mixture of solvents as determined from charcoal tubes in terms of the fraction of the permissible daily exposure.

Local exhaust ventilation at Plant C is applied exclusively to spray hoods, finish hoods, and the intermittently used chlorinating hood in the Packing Department. Exhaust ventilation is applied to none of the bottom filler, bottom cementing, sole cementing, and cement lining operations.

There are wide fluctuations in transient toluene levels which are generally moderated by good air exchange within the plant.

The majority of all abrasives operations are provided with hoods, and as a result, particulate generation is not a significant industrial hygiene problem.

As with Plant A and B, conditions relating to vapor exposure levels may tend to vary according to the weather, but it is apparent that the work force is exposed to light toluene concentrations at most adhesives and cleaning operations. Plant C is typical of other shoe manufacturing facilities, and the scope of exposure to chemical and physical agents is well defined. No materials of significantly confounding character were present in the work environment.

GENERAL RESULTS AND RECOMMENDATIONS

GENERAL RESULTS

A summary of sampling results for toluene, benzene, and methyl ethyl ketone are presented in Table 19. The upper and lower levels of TWA personal exposure to tolu-

Table 16. Personal and Area Time Weighted Average Concentrations (ppm)
at Plant C, January 15-18, 1980.

CONTAMINANT CONCENTRATION, PPM						CUMULATIVE EXPOSURE
SAMPLE NUMBER	LOCATION AND/OR JOB TITLE	TOLUENE	BENZENE	MEK	ACETONE	
<u>CUTTING</u>						
229	Area Sample - center location	6.1	ND		11.6	.089
<u>Pre-Fit</u>						
230	Area sample - center location	5.6	ND		10.6	.081
<u>FITTING</u>						
231	Area sample - center location on ceiling suspended blackboard	6.13	ND		1.96	.040
<u>STOCK - FITTING</u>						
207	Sole cementer	0.09	ND		4.5	0.23
208	Sole cementer	22.0	ND		65.0	.435
209	Cementing half forms	21.6	ND		15.0	.183
210	Cementing half forms	30.7	ND		11.4	.211
211	Edge Spray at Hood	13.0	ND		8.0	.105
221	Edge Binder	15.7	ND		4.3	.100
222	Cement heels	7.0	ND		20.0	.135
223	Cement heels	16.2	ND		41.0	.286
224	Outsole Printing	ND	ND		12.0	.060
225	Heel Spotter	9.8	ND		8.0	.089
<u>LASTING</u>						
227	Cement Soles	27.0	ND		12.0	.195
228	Area Sample Adjacent to side laster (Machine #11395)	5.7	ND		4.6	.052

TABLE 16 (Continued)

SAMPLE NUMBER	LOCATION AND/OR JOB TITLE	TOLUENE	BENZENE	MEK	ACETONE	CUMULATIVE EXPOSURE
<u>CEMENT BOTTOMING</u>						
201	Bottom Cementer	5.2	ND	13.2		.092
202	Bottom Cementer	13.7	ND	43.3		.285
203	Bottom Cementer	11.9	ND	33.0		.225
204	Shanker	6.8	ND	14.3		.1055
205	Bottom Filler	6.8	ND	13		.099
206	Bottom Filler	136	ND	36.5		.843
<u>MAKING</u>						
216	Finish spray at hood using lacquer and latex	10	ND	23		.165
217	Waxing joints, inking edging	7.8	ND	18.8		.133
218	Production operator, inspecting and washing Stock Lining	94	ND	161		1.275
60		2.3	ND	1.1		.017
<u>PACKING AND FINISHING</u>						
212	Bottom wash (wash soles)	16.54	ND	27.5		.220
213	Bottom wash (wash soles)	32.7		36		0.793
214	Bottom wash	57.1	ND	55.5		.563
215	Treeing	0.06	ND	67		.335
219	Treeing	38	ND	66		.520
220	Treeing	26.5	ND	17.4		.220
<u>ANALYTICAL CONTROL</u>						
232	Blank	ND	ND	ND		

LEGEND:

Cumulative Exposure = Fraction of permissible daily exposure

ND = Not detectable

Table 13. Range of Exposure at Plant C
For 32 Charcoal Tube Samples

Contaminant	Range (ppm)	Mean (\bar{X}_g)
Toluene	ND-136	9.42
Benzene	ND-4.5	
Methyl ethyl ketone	1.1-161	11.5

Table 14. Air Sampling Results for Airborne Dust - Plant C -
January 18, 1980

Sample Number	Job title - location	Date	Sampling time (minutes)	Air volume (liters)	Total dust (mg/m ³)
233	Edge rougher in Stock-fitting Department - Personal Sample	1/18/80	294	588	0.35
234	Area Sample in Cement Room adjacent to roughing and edging operations	1/18/80	295	501.5	0.11

Table 15. Exposure range and mean at similar operations
in Plants A, B, and C.

Contaminant process or work area	Range (ppm)	Mean (ppm)
<u>Toluene</u>		
Fitting, Prefit	4-52	12.45
Sole, Insole, Stockfitting	ND-124.0	3.73
Lasting	0.03-32.0	6.58
Welt, Bottoming, Cement	0.056-136.0	8.716
Making, Finishing, Packing	0.01-94.0	4.97
Sandal, Heel	0.1-55.8	11.8
<u>Benzene</u>		
Fitting, Prefit	ND-1.9	0.26
Sole, Insole, Stockfitting	ND-7.3	0.45
Lasting	ND-2.1	1.93
Welt, Bottoming, Cement	ND-4.34	0.302
Making, Finishing, Packing	ND-4.5	0.379
Sandal, Heel	0.1-5.0	0.338
<u>Methyl Ethyl Ketone</u>		
Fitting, Prefit	ND-53.6	5.01
Sole, Insole, Stockfitting	ND-65	2.16
Lasting	ND-20.5	2.01
Welt, Bottoming, Cement	ND-77.8	7.89
Making, Finishing, Packing	ND-161	5.2
Sandal, Heel	0.1-27.2	1.89

ND - non detected by sampling and analytical method

ene in Plants A, B, and C are reflected within the range of those encountered in Plant C (none detected to 136 ppm) with the levels in Plants A and B lying between these values. None of the chemicals sampled on the charcoal tubes approached the permissible exposure limits established for these compounds.

SUMMARY AND RECOMMENDATIONS

In-depth surveys at the three shoe manufacturing plants revealed similarities in operations processes, building design, and types of local exhaust hoods and collection devices utilized. Variations were apparent in work flow configurations and the names of similar departments or "rooms", but in general, production followed identifiable patterns from cutting to packaging. Of more importance, jobs and piecework tasks in the three facilities also displayed similarities that in conjunction with good air exchange, tended to exert a leveling effect on patterns and magnitudes of personal exposure to solvent vapors.

None of the major contaminants sampled in the three facilities displayed individual airborne levels equivalent to or in excess of established permissible exposure limits. In fact, only one long-term personal sample, No. 206 - Plant C at 136 ppm, reached an order of magnitude that placed it at the "action level" for toluene.

In regard to benzene exposure levels, all samples were below the existing standard of 10 ppm and 10 samples exceeded the controversial resended OSHA exposure limit of 1 ppm. This was an unanticipated finding because present day aromatic solvents are assumed to contain only traces of residual benzene that would be expected to maintain atmospheric concentrations below 1 ppm. As previously indicated, a majority of the elevated benzene concentrations were encountered at washing, cleaning, and antiquing activities in various finishing areas. This thesis tends

to show that benzene as a component of solvent-based cleaners, washes, or tinting solutions, may be present in sufficient quantities to result in air contamination. A smaller number of adhesive application operations also showed higher benzene levels. Both were manual operations where aside from the solvents in the adhesives, solvent mixtures were used for cleaning and wiping. These locations, consisting of the Insole Department in Plant A and the Fitting Department in Plant B, should be checked to determine if solvents peculiar to finishing operations are used at these work stations. A critical study of the substances used in the aforementioned categories appears to be the most logical approach to the verification of their unexpected potential hazard.

Particulate levels were monitored by the collection of total dust samples at representative locations in Plant C to verify the contention that dust exposures in all plants were not of industrial hygiene significance. Levels of 0.35 mg/m^3 and 0.11 mg/m^3 were found at roughing and edging operations which are well below the permissible exposure limit for nuisance dust of 10 mg/m^3 .

RECOMMENDATIONS FOR FURTHER STUDY

Plants A, B, and C can be considered highly representative of the shoe manufacturing industry in the United States with operations and equipment that are common to and typical of other facilities. Although the subject plants have shown a tendency toward relocation through the years, Plants A and C have been in their present geographical locations for 18 and 22 years, respectively, with plant B at its present site for only 10 years. Worker populations have remained fairly stable during these years of existence, with general trend toward increased personnel as production levels have increased.

Although the three plants do not represent "pure" exposures to toluene or even exclusive exposure to commercial grade or "impure" toluene, the scope and extent of exposure to other chemical and physical agents are well defined and except for benzene as a contaminant, does not include materials present at higher levels or which are of a significantly confounding character. Toluene-exposed populations cannot be considered high in any single plant, but considering the numbers of similar facilities in the country, the potential exists for an adequate epidemiological cohort.

Records retention was found to be a problem only in Plant C where it was reported that records of terminated employees are kept only for a period of 5 years. Records at Plant A date back to 1932, and at Plant B records dating back to 1946 are maintained in a small storage warehouse on site.

It is our premise that despite those factors relating to multiple exposures, the shoe manufacturing industry is the industry of choice for a retrospective mortality study. The chemical industry, furniture and adhesives manufacturing, printing industry, and a variety of other industries have been evaluated but all have exhibited deficiencies from the standpoint of cohort qualification, records retention, or confounding chemical factors. Because there are no meaningful populations in the country exposed solely to toluene, further study would be best served by selecting an industry with a finite number of controllable chemical factors and one that reflects similarities in processes, equipment, and work procedures.

The presence of benzene in several samples indicates the need for a systematic search for this chemical in the raw materials used by the industry and a concerted effort for its eradication.

The industry is currently taking steps for the control of airborne contaminants through the installation of exhaust ventilation systems, and air cleaners. Because most companies do not have industrial hygiene services directly available, the industry through its trade associations should take steps in improving the design of its tooling to ensure better worker protection. It should also sponsor education and information of manufacturers and workers on the potential hazards of its processes and the most practical controlling measures.

REFERENCES

- 1) Curtis, J P, Le Marec, M, Guerin, D., Mi Chaux, P:1973. Chronic Myeloid Leukemia of Toxic Origin. J Eur Tox 6 (6):306-8.
- 2) Dobrokhotov, V B: The Mutagenic Effects of Benzal and Toluol Under Experimental Conditions. Gig Sanit 10:36-9 (Rus, English Abstract). 1972
- 3) Dobrokhotov, V. B., Enikeev, M I: Mutagenic Effect of Benzene, Toluene, and a Mixture of these Hydrocarbons in a Chronic Test. Gig Sanit (1):32-4 (Rus, English Abstract). 1977
- 4) Ehrenrech, T: Renal Disease From Exposure to Solvents. Ann Clin Lab Sci 7 (1):6-16. 1977
- 5) Greenburn, L., Mayers, M R, Heimann, H, Moskowitz, S, The Effects of Exposure to Toluene in Industry. JAMA 118 (8):573-8. 1942
- 6) International Labour Office. Encl. of Occupational Safety and Health. McGraw Hill, New York. pp. 1414. 1971
- 7) Keplinger, M L, Lanier, G E, Deichmann, W B, Effects of Environmental Temperature on the Acute Toxicity of a Number of Compounds in Rats. Tox Appl Pharm 1(2):156-61. 1959
- 8) McLaughlin, R S, Chemical burns of the human cornea: Am J Ophthalmol. 29:1355-62. 1946
- 9) National Institute of Occupational Safety and Health. Criteria for a Recommended Standard...Occupational Exposure to Toluene, NIOSH Pub. # , 1973
- 10) Nomi Yama, K, Nomi Yama, H: Respiratory Retention, Uptake and Excretion of Organic Solvents in Man. Int Arch Arbestsmed 32:75-83. 1974
- 11) Nomi Yama, K., Nomi Yama, H., Respiratory Elimination of Organic Solvents in Man. Int Arch Arbechtsmed. 32:85-91. 1974
- 12) O'Brien, E T, Yoemon, W B, Hobby, J A E, Hepatorenal Damage from Toluene in a Glue Sniffer. Br Med J 2:29-30. 1971
- 13) Von Oettingen, W F, Neal, P A, Donahue, D D, Svirbely, J L Baernstein, H D, Monaco, A R, Valaer, P J, Mitchell J L, The Toxicity and Potential Danger of Toluene with Special Reference to its maximal Permissible Concentration. Public Health Service Bull. # 279. 1942
- 14) Von Oettingen, W F, Neal, P A, Donahue, D D, The Toxicity and Potential Dangers of Toluene--Preliminary Report. JAMA 118:579-84. 1942
- 15) Sax, N I, Dangerous Properties of Industrial Materials. Von Nostrand Reinhold Co., New York 1975.
- 16) Taher, S M, Anderson, R J, McCortney, R, Popvtzer, M M, Schrier, RW, Renal Tubular Oridosis Associated with Toluene Sniffing. N Eng J Med 290 (14):765-8. 1974

- 17) Takeuchi, Y. Experimental Studies on the Toluene Poisoning--Chiefly on the Findings of Peripheral Blood and Adrenal Gland. Ind Health 7:31-45. 1969
- 18) Windholz, M, The Merck Index, (9th Ed.) Merck and Company, Rahway, New Jersey. 1976

APPENDIX A - SHORT TERM SAMPLING DATA

Table A-1. Plant A - Air sampling results (Draeger Pump and Detector Tubes) 11/28/79.

Measurement Number	Sample Location	Toluene Draeger Tube Reading (ppm)
1	Cement insole operations - Insole Department	70 - 75
2	Cement heels - Making Department	50
3	Cement outsoles - Insole Department	70 - 80
4	Insole cementing - (sock line to insole) - Insole Department	100
5	Cement outsoles - Insole Department	250
6	Between cement insole (manual and machine cementing) - Insole Department	70 - 75
7	Cement heels - Making Department	50
8	Automatic shanking machine - Welt Department	40
9	Hand cement uppers - Fitting Department	25

Table A-2. Plant A - Air sampling results (Century Organic Vapor Analyzer) 11/28/79.

Reading Number	Sample Location	Century Reading Total Organic Vapor (ppm)	Century Reading G. C. Shunt Toluene, (ppm)
1	Cement insoles - Insole Department	25	<10
2	Cement bottoms - Bottoming Department	15	none detected
3	Cement heels - Making Department	36	< 2
4	Cement outsoles - Insole Department	22	none detected

Table A-3. Air sampling results (h-nu Photoionization Analyzer).

Reading Number	Date	Sample Location	*hnu Reading Toluene, (ppm)
1	11/28/79	Cement bottoms - Bottoming Dept.	75-150
2	11/28/79	Center exit to office area (adjacent to cement bottoms)	70
3	11/28/79	Side & heel laster - Lasting Dept.	65
4	11/28/79	Cement insoles - Insole Dept. -no activity	45
		-cleaning adhesive applicator	75
		-insole cementing (full table)	50-150
5	11/28/79	Cement insoles - Insole Dept. at 10:00 a.m.	80
6		Cement insoles - Insole Dept. at 2:00 p.m.	70-90
7	11/28/79	Adhesive & solvent store room	11.5
8	11/29/79	Shanking machine - Welt Dept.	45
9	11/29/79	Cement bottom machine no. 41977 Bottoming Dept. -at dispenser nozzle	60-150
		-in breathing zone	80
10	11/29/79	Side and heel laster - Lasting Dept.	60
11	11/29/79	Puller-laster machine - Lasting Dept.	60-70
12	11/29/79	Antiquing - Finishing Dept.	20
13	11/29/79	Heel inking - Finishing Dept.	20

(continued)

Table A-3. (Concluded)

Reading Number	Date	Sample Location	*hnu Reading Toluene, (ppm)
14	11/29/79	Cement heels - Making Dept. -no activity -cementing (average levels) -cementing (peak concentration)	50 70-80 100-150
15	11/29/79	Cement rans & bottoms - Welting Dept. -in breathing zone -adjacent to full drying rack	50 70-80
16	11/30/79	Cement insoles - Insole Dept.	70-100
17	11/30/79	Cement outsoles - Insole Dept. -in breathing zone -near drying rack	75-150 200

*Nonspecific-instrument responds to all vapors and gases with ionization potentials of 10eV or less, including toluene, benzene, zylene, MEK and acetone.

Table A-4. Plant B - Air sampling results - Dreager Pump and Toluene Detector Tubes.

Measurement Number	Sample Location	Dreager Tube Reading (ppm) Toluene
1	Bottoming Dept. - Cement Heels	25
2	Bottoming Dept. - Cement Outsoles (during chlorinating of soles with solution of solvent and hypochlorite)	35
3	Sandal Dept. - Heel Dip tanks at face of neoprene hood	50
4	Sole Dept. - Cement Sandals	45
5	Fitting Dept. - Cement Linings	25
6	Bottoming Dept. - Shanking	20
7	Packing Dept. - Treeing	15

Table A-5. Plant C - Air sampling results (h-nu Photoionization Analyzer) 11/17/80.

Reading Number	Sample Location	Toluene (ppm)
1	Packing Dept. - Bottom wash	30-40
2	Packing Dept. - Bottom wash station adjacent to laboratory	50
3	Packing Dept. - Bottom wash	110-140
4	Stockfitting - Outside priming	70
5	Stockfitting - Sole cementing	at sole rack - 250 operator breathing zone - 80
6	Stockfitting - Sole cement table at rear of dept.	70
7	Stockfitting - Spray hood during edge spraying	50
8	Rear of Lasting Dept.	15
9	Center of Lasting Dept.	25
10	Cementing - Center Area	10
11	Cementing - Bottom Cementer	60-70

Appendix B

COMPOSITION OF MATERIALS

A partial list of materials encountered in this study are tabulated here. Where the last column indicates MSDS (Material Safety Data Sheets), these were available, where not, data reported from manufacturers or users.

TABLE B-1. Summary of solvent materials encountered in study

Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor	Vapor	H ₂ O	Sp. Gr.	%	Evap.	Flash	I.E.L.	Other
Imperial Adhesives & Chemicals, Inc. - Cincinnati, OH												
310 Neoweld	Naphtha Methylene Chloride Ammonia	5% White liq. 5% Solv. odor 0.5% Ketone od.	215	-	>1	∞	1.06	58	<1	85	1.1	MSDS
527 Permagrip	Acetone Textile Spirits	25% Amber liq. 34% Ketone od.	140	-	>1	Sol.	.845	68	>1	<10	1.2	MSDS
608 Cleaner	Textile Spirits	96% Clear liq. Solvent od.	148	-	>1	Negl.	.675	100	>1	<10	1.2	MSDS
683 Thinner	Toluol Xylool 4-methyl 2-Pentanone	57% Clear liq. 16% Ketone odor 15%	190	-	>1	Sol.	.85	100	<1	38	1.2	MSDS
904 Leather Softener	Isopropanol	13% Clear liq. Sweet odor	212	-	>1	∞	.932	95	<1	76	2.0	MSDS
9410 Medium Bright Spray	Mineral Spirits Isopropanol M-Pyrot Ammonia Formaldehyde	<2% Off white liq.- <5% Amm. odor <3% <3% <1%	210	-	>1	∞	1.005	80	<1	98	-	MSDS
9505 Suede Spray	Toluol Textile Spirits	44% Pale yell. liq. 34% Solv. odor	148	-	>1	Negl.	.810	86	>1	<10	1.2	MSDS
9529 Urethane Spray	Toluol Isopropanol Diacetone alcohol Ethylene glycol mono ethyl ether acetate	29% Clear liq., 26% Solv. odor <15% <15%	179	-	>1	Sol.	.86	96	<1	40	1.2	MSDS
9531	2-Butanone	96% Brown liq., Ketone od.	174	-	>1	V. sol.	.81	99	>1	-10	1.8	MSDS

Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor Press.	Vapor Dens.	W_{20}^0 Solv.	Sp. Gr.	% Volut.	Evap. Rate	Flash	LEL	Other
131 Unitak	Toluol Ammonia Potassium hydroxide	8% White liq. <.5% Amm. odor <.5%	220	-	>1	∞	.995	52	<1	97	1.2	MSDS
Quinn Inc., Malden, MA												
Swadsticks Gracons Wax Cakes Super Cera	Pigment + binder Wax + pigment Wax + pigment Wax + pigment											
SS-1148 SS-1182 SS-1147 SS-1150 SS-1140 SS-1154 SW-1483	Brazilian Paste Brazilian Paste Brazilian Paste Brazilian Paste Brazilian Paste Brazilian Paste Paste Cleaner											
TR-13 Conditioner	Aromatic hydrocarb Ammonia Water		12%									48
A-Cetanize series	Aromatic hydrocarbons Aliphatics Water Dyes & Waxes		20%	Semi-paste Emulsions								
D-4869 Antique	Aromatic hydrocarbons Aliphatics Water Dyes & Waxes		20%	Semi-paste Emulsions								

Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor Dens.	H ₂ O Solv.	Sp. Gr.	% Volat.	Evap. Rate	Flash LEL	Other
(Quinn, Continued):										
D-151 Antique	Aromatic hydrocarbons Aliphatics Water Dyes & Waxes	20% Paste emulsion								
D-8199 Antique	Aromatic hydrocarbons Aliphatics Water Dyes & Waxes	20% Paste emulsion								
SS-1135 Brush Teak	Aliphatic/Aromatics Alcohols, Esters Ketones Plasticized nitrocellulose Dyes	30%					15			
QS-215 Thinner	Aliphatic/Aromatic hydrocarbon solvents	60%					<-14			
1291 X Cleaner	Ether & Aliphatic Solvents						<-40			
Q-4419 Cleaner	Aliphatic hydrocarbons	Water emulsion gel					<-14			
A-3902 Thinner	Ketone						61			
LL-20 Spray	Plasticized Nitrocellulose Ester, Aliphatic hydrocarb. Aromatic hydrocarbons Alcohols						<-30			
SA-7569 Polish	Silicone, ketones, aliphatics Aromatic hydrocarbons	15%					<-14			
SA-6968 Cleaner	Ketones & aliphatics Aromatic hydrocarbons	15%					<-14			

Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor Press.	Vapor Dens.	H_2O Solv.	Sp. Gr.	% Volat.	Evap. Rate	Flash LEL	Other
(Quinn, Continued):											
SS-1397 Dye	Alcohols, glycol ethers Water, dyes										65
BU-1026 Sole Finish	Dyes, Urethane resin in ketone solvent										25
BU-2221 Sole Finish	Dyes, Urethane resin in esters & ketone solvents										25
3003 Sponge Cleaner	Aromatic hydrocarbon	80%									110
7730 Sponge Cleaner	Alcohol, ketones aromatic hydrocarbons	40%									25
A-1813 Spray	Plasticized nitrocellulose alcohols, esters, aliphatics aromatic hydrocarbons	5%									<-14
A-4907 Shader	Dyes, ketone, alcohol, esters & resin binder										25
A-1453 Shader	Dyes, plasticized nitro- cellulose, esters, alcohols, ketones, glycol ethers aromatic hydrocarbons										25
A-5140 Shader	Dyes, plasticized nitro- cellulose, alcohols, esters, glycol ethers, aromatic hydrocarbons										60
SS-1339 Dye	Dyes, alcohol, glycol-ethers										65
PR-513 Pro-Teak	Dyes, alcohol, glycol-ethers										65
SA-7385 Heel Finish	Black dye, alcohol, esters, ketones, resin binder										25


Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor Press.	Vapor Dens.	H ₂ O Solv.	Sp. Gr.	% Evap.	Flash Rate	LEL	Other
Compo Industries, Inc., Waltham, MA											
4100 Urethane	Acetone MEK Toluene		31-38%	26-32	24-30						
4625 Urethane	Acetone MEK Toluene		28-35%	28-35	24-30						
4625A Urethane	Acetone MEK Toluene		28-35%	28-35	24-30						
9650 (9650B) Urethane	Acetone MEK Toluene		59-77%	12-15	6-8						
3174 Cleaner	Hydrocarbon mixture		100%								
3035 Primer	Toluene Methylene chloride		59-71%	25-29							
3914 Primer	Ethyl Acetate		97.5-100%								
3861 Primer	MEK Toluene		41-50%	41-50							
C-186	Toluene Ethyl Acetate		46.5-70%	20-30							
6-394	MEK Tetrahydrafuran		63-91.5%	6.5-8.5							

Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor Press.	Vapor Dens.	H ₂ O Soly.	Sp. Gr.	% Volat.	Evap. Rate	Flash	LEL	Other
(Compo Continued)												
5134 M Neoprene	Ethyl Acetate Toluene n-Hexane Xylene	8-10% 52-67 15-20 2-3										
5142 Neoprene	Toluene n-Hexane	51-75% 17-25										
6600 Neoprene	Ethyl Acetate Toluene n-Heptane	10-13% 37-50 18-30										
6602 (6612)	Ethyl Acetate Toluene n-Heptane	10-13% 28-36 38-51										
6700 Neoprene	Ethyl Acetate Toluene n-Hexane n-Heptane	10-14% 26-35 17-24 19-27										
6708 Neoprene	Ethyl Acetate Toluene n-Hexane n-Heptane	10-14% 26-38 18-25 17-23										
7704 Neoprene	Ethyl Acetate Toluene n-Hexane n-Heptane	10-14% 26-36 17-23 20-27										
7780 Neoprene	Acetone Toluene n-Hexane n-Heptane	4-5% 46-60 19-25 8-10										

Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor	Vapor	H ₂ O	Sp. Gr.	%	Evap.	Flash	LEL	Other
			Press.	Dens.	Spoly.		Volat.	Rate				
ANSO - Div. of Union Oil, Palatine, IL												
Solvent 1001	Petroleum hydrocarbon	Clear liq. Solvent odor	115- 235	155	3.5	Negl.	0.70	100	4.9	0	1	230 ppm TLV MSDS
General Adhesives & Chemical Co. Nashville, TN												
Formula 77-192	Aromatics Rubber resin	76% 24	Straw color adhesive, Of- fensive odor	229	22.4	3.14	Ins.	.867	80.6	2.1	45	1.3 200 ppm TLV MSDS
Formula 77-193	Vehicle Aromatic Aromatic	25% 27 48	Yellow	228				.875	81	1.9	0	200 ppm TLV MSDS
Formula 77-193LV	Aromatics Aromatic Rubber Resin	50.6% 31.0 18.4	Straw color adhesive, Of- fensive odor	110- 229	22.4		Ins.		86.4	2.1- 3.9	>0	1.3 200 ppm TLV MSDS
Formula 77-1440	Vehicle Aromatic Aromatic	20% 40 40		142				.837	86	3.4	-16	200 ppm TLV MSDS
COMPO Industries, Inc., Waltham, MA												
3035 Neoprene Solution	Solvents	94.5% Aromat. odor	Amber liq.	104	118	3.1	0.1%	.947	94.2	9	40	1.2 200 ppm TLV MSDS
8027	Solvents	89%	Clear liq. Sweet odor	133- 179	160	2.3	81%	.814	95	8.9	0	1.2 500 ppm TLV MSDS
9650 Urethane Solution	Solvents	76.5%		133- 231	160	2.3	62%	.869	83.3	9.7	0	1.3 200 ppm TLV MSDS
3844 Chlorinating Primer	Solvents	97.5%	Pale yell. liq. Chlorine od.	171	73	3	3.3%	.900	98	4.1	24	2.5 400 ppm TLV MSDS

Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor Press.	Vapor Dens.	H ₂ O Solv.	Sp. Gr.	% Volat.	Evap. Rate	Flash	LEL	Other
(Compo Continued)												
4100A Urethane Solution	Solvents	80.5% Translucent liq. Pungent	133-231	2.3	35.5%	.864	86	6.1	0	1.3	200 ppm TIV	MSDS
4100H Urethane Solution	Solvents	80.5% Translucent liq. Pungent	133-231	2.3	35.4%	.872	86	6.1	0	1.3	200 ppm TIV	MSDS
K. J. Quinn & Co. Inc. Malden, MA												
RF 205 Coating Thinner	Esters Alcohols Toluol	38% Thin Colorless liq. Butyl od.	30-32	-	-	Ins.	.84	100	-	43	-	MSDS
RF 212 Edge Finish	Alcohol Ester Glycol-Ether Xylool Pigments & Solids	23% Thin Liquid 9 Lacquer odor 6 25 37	20	-	-	Ins.	.89	63	-	58	-	MSDS
1291-X Cleaner	Aliphatic Hydrocarb Ether	30% Thin colorless liq., Ether od.	-	-	-	Ins.	.62	100	-	<14	-	MSDS
SS 185/7 Cleaner	Aliphatic Hydrocarb Ether	70% Thin colorless liq. Gasoline odor	30	-	-	Ins.	.74	100	-	<14	-	MSDS
VL 192) Spray	Esters Alcohol Toluol Solids	78% Thin colorless 14 liq., Ester od. 4 4	-	-	-	Ins.	.87	96	-	31	-	MSDS
3205 Thinner	Ketones	99% Thin colorless liq., ketone od.	-	-	-	Ins.	.80	100	-	25	-	MSDS

Trade Name	Hazardous ingredients	Appearance/odor	B.P.	Vapor Press.	Vapor Dens.	H ₂ O Solv.	Sp. Gr.	% Volat.	Rate	Evap.	Flash	LEL	Other
Markem Corporation, Keene, NH													
8895 Ink	Solvents	≤50% Waterwhite characteristic odor.	475	low	4.8	sl. sol.	1.1	100	<0.1	250	-	-	MSDS
Siocum Chemical Co., Lynchburg, VA													
207 Latex Counter Adhesive	2.5% Natural Latex Toluene 10% KOH Solution Resin emulsions & stabilizers	26% Milky, slight ammon. od Trace	<5	212	17.5	NA	.998	72.8	1	None	None	-	MSDS
320 Marking Ink Cleaner	Alcohol & Ester	100% Clear liq., Ester odor	171	76	3.04	33	.87	100	5.1	31	4.0	400 ppm TLV	MSDS
USM Corporation, Bostik Div., Middleton, MA													
Be Be Bond LR-55	Aliphatic Blend Denatured alcohol	86% Straw liq. 2 Naphtha odor	120	149	3.44	alight	.708	92	2.6 (ethr)	<8	1.3	516 ppm TLV	MSDS
American Finish & Chemical Co., Chelsea, MA													
C1347 Toe Lasting Adhesive	Water Ammonia	38% Clear liq. 0.2 Ammon. odor	212	-	-	∞	.974	38	1	NA	-	-	MSDS

