Tick-borne Encephalitis from Eating Goat Cheese in a Mountain Region of Austria

Heidemarie Holzmann, Stephan W. Aberle, Karin Stiasny, Philipp Werner, Andreas Mischak, Bernhard Zainer, Markus Netzer, Stefan Koppi, Elmar Bechter, and Franz X. Heinz

We report transmission of tick-borne encephalitis virus (TBEV) in July 2008 through nonpasteurized goat milk to 6 humans and 4 domestic pigs in an alpine pasture 1,500 m above sea level. This outbreak indicates the emergence of ticks and TBEV at increasing altitudes in central Europe and the efficiency of oral transmission of TBEV.

Tick-borne encephalitis virus (TBEV) is a human pathogenic flavivirus that is endemic to many European countries and to parts of central and eastern Asia (1). Even though vaccination can effectively prevent TBE (2), >10,000 cases are reported annually for hospitalized persons in areas of Europe and Asia to which TBE is endemic. TBEV occurs in natural foci characterized by ecologic habitats favorable for ticks, especially in wooded areas within the 7°C isotherm (3). The major route of virus transmission is tick bites, but TBEV also can be transmitted during consumption of nonpasteurized milk and milk products from infected animals, primarily goats (3). Outbreaks resulting from oral virus transmission are rare in central Europe but more common in eastern Europe and the Baltic states (3). Our investigation of TBEV transmitted by milk from a goat in an alpine pasture in a mountainous region provides evidence for a changing TBEV epidemiology in central Europe and the expansion of ticks and TBEV to higher regions.

The Study

We investigated a TBE outbreak, comprising 6 cases, in a mountain region in western Austria in July 2008. The index case occurred in a 43-year-old shepherd who had stayed for 24 days at his alpine pasture (1,564 m above sea level) before he was hospitalized for nonbacterial urethritis and nonspecific influenza-like symptoms (including pain in the lower abdomen and legs), followed by clinical signs of meningitis. TBEV infection was confirmed serologically by ELISA demonstration of specific immunoglobulin (Ig) M and IgG in serum and cerebrospinal fluid. The patient did not remember a tick bite but had eaten self-made cheese prepared from a mixture of nonpasteurized goat milk and cow milk 8–11 days before illness onset; further investigation found 6 additional persons who had eaten the same cheese (Figure). For 5 of them, recent TBEV infection was serologically proven (Table). For 3 of these persons (2 men, 44 and 65 years of age; and 1 woman, 60 years of age), similar to the index patient, a typical biphasic course and symptoms of TBE (nonspecific flu-like symptoms followed by fever, cephalgia, meningism, and ataxia after 4–10 days) developed and they were hospitalized. The 2 other persons who had eaten the cheese (female, 37 and 7 years of age) were clinically asymptomatic. The noninfected person had vomited shortly after eating the cheese because of a gastric banding. None of the infected persons had been vaccinated against TBEV.

The cheese was prepared from a mixture of fresh milk from 1 goat and 3 cows and was eaten shortly after production. Detection of TBEV-specific hemagglutination inhibiting (HI) and neutralizing antibodies in the goat’s serum proved infection in the goat; the 3 cows were seronegative for TBEV. At the time of this investigation (1 month after cheese production), TBEV was already undetectable by PCR in serum and milk of the goat. Cheese from the 3 batches produced after the contaminated batch was TBEV negative by PCR. The original cheese was no longer available for testing.

Author affiliations: Medical University of Vienna, Vienna, Austria (H. Holzmann, S.W. Aberle, K. Stiasny, F.X. Heinz); Regional Hospital, Rankweil, Austria (P. Werner, S. Koppi); and Austrian Public Health Authorities, Vorarlberg, Austria (A. Mischak, B. Zainer, M. Netzer, E. Bechter)

DOI: 10.3201/eid1510.090743

Figure. Time course and series of events of a tick-borne encephalitis (TBE) outbreak from cheese made with goat milk. Week 0, transport of goat to high altitude; ➔, onset of disease; O—I, hospitalization period; TBEV, tick-borne encephalitis virus; ME, meningoencephalitis.
is found in the Czech Republic gradually moved upward
demonstrated that the maximum altitude at which TBEV,
titude in 2001–2005 (\(\approx 1 \)). Likewise, Zeman and Beneš
- ticks and TBEV, from 700 m in 1981–1983 to 1,100 m al
- conditions of Austria, showed a shift in
- infection to higher altitudes in cen
- alpine pasture at an altitude of 1,564 m. Indeed, some ticks
- second or third day postinfection (\(\approx 1 \)). In addition, al
- TBEV into milk for domestic animals (i.e., goats, sheep, and cows) can excrete
- cheese. Experiments have demonstrated that infected do
- 12 days before production of the TBEV-contaminated
- 6–9
- at least as early as the second or third day postinfection (6–9). In addition, al
- cheese was produced once or twice each week, only
- approximately 3–7 days, beginning as early as the
- herpesvirus, hepatitis C virus, and antiviral vaccines.

The 4 domestic pigs kept at the alpine pasture and fed
with the whey and goat milk, however, were seropositive
(TBEV HI- and neutralizing antibodies detected), which
indicated TBEV infection, but no clinical signs were ob-
erved. Infection with TBEV has been reported in wild
boars (4,5). Serum samples from 105 goats from pastures
in the neighborhood also were investigated for TBEV-spe-
cific antibodies; all goats were seronegative.

Conclusions
Our analyses showed that the 6 humans and the 4 pigs
were infected through the milk of 1 goat, which had been
transported by car from a TBE–nonendemic valley to the
alp 12 days before production of the TBEV-contaminated
cheese. Experiments have demonstrated that infected do-

cational assistance and Gabriel O’Riordain for critical reading of the

Our findings provide further evidence for the expan-
dition of TBEV-endemic regions to higher altitudes in cen-
tral Europe. For example, longitudinal studies in the Czech
Republic, a country with similar climatic and ecologic con-
tions to those of Austria, showed a shift in
* TBEV, tick-borne encephalitis virus; NT, neutralization test; CSF, cerebrospinal fluid; Ig, immunoglobulin; ME, meningioencephalitis; pos, positive;
bor, borderline; NA, not applicable; neg, negative.

Acknowledgments
We thank Jutta Hutecek and Cornelia Stöckl for expert tech-
nical assistance and Gabriel O’Riordain for critical reading of the

Dr Holzmann is a virologist at the Clinical Institute of Virol-
yogy, Medical University of Vienna, Austria. Her research interests
focus on flaviviruses, hepatitis C virus, and antiviral vaccines.

References
2008;371:1861–71. DOI: 10.1016/S0140-6736(08)60800-4
2. Heinz FX, Holzmann H, Essl A, Kundi M. Field effectiveness of
vaccination against tick-borne encephalitis. Vaccine. 2007;25:7559–
67. DOI: 10.1016/j.vaccine.2007.08.024
3. Süss J. Epidemiology and ecology of TBE relevant to the produc-
tion of effective vaccines. Vaccine. 2003;21(Suppl 1):S19–35. DOI:
10.1016/S0264-410X(02)00812-5
4. Borcic B, Raos B, Kranzelčik D, Abu Eldan J, Filipović V. The role of
large wildlife in the maintenance of natural foci of tick-borne menin-
406.

9. Gresiková M, Rehacek J. Isolation of the tick encephalitis virus from the blood and milk of domestic animals (sheep and cow) after infection by ticks of the family Ixodes ricinus L. Arch Gesamte Virusforsch. 1959;9:360–4. DOI: 10.1007/BF01248828

Address for correspondence: Heidemarie Holzmann, Clinical Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095, Vienna, Austria; email: heidemarie.holzmann@meduniwien.ac.at