INDUSTRIAL HYGIENE REPORT

Homestake Mining Company Lead, South Dakota

> DATE OF SURVEY: July 12-23, 1977

REPORT WRITTEN BY: Ralph D. Zumwalde-Howard R. Ludwig John M. Dement

FINAL REPORT January 30, 1981

Industrial Hygiene Section
Industry-wide Studies Branch
Division of Surveillance, Hazard Evaluations and Field Studies
National Institute for Occupational Safety and Health
Cincinnati, Ohio 45226

SURVEY CONDUCTED BY:

Mark Boeniger Linda Bowman Jane Brown John Dement Mary Dinkel Alice Greife Paul Johnson Steve Lenhart Howard Ludwig Cindy Murphy Robert Phillips Ken Wallingford Dennis Zaebst John Zey Ralph Zumwalde

EMPLOYER REPRESENTATIVE:

Langan Swent, Vice President, Engineering Donald Delicate, Manager

EMPLOYEE REPRESENTATIVE:

Dallas Tinnell, President, Local 7084 United Steel Workers of America

STANDARD INDUSTRIAL CLASSIFICATION OF PLANT:

1041

DISCLAIMER

Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health.

ABSTRACT

In 1976, the National Institute for Occupational Safety and Health (NIOSH) reported on a retrospective cohort mortality study of individuals who had worked at the Homestake Gold Mine in Lead, South Dakota. The study indicated an excess of both normalignant and malignant respiratory diseases. To determine the possible etiologic agents responsible for the observed excess in mortality, NIOSH initiated a comprehensive environmental assessment of this mining population.

An industrial hygiene study was conducted to assess both current environmental conditions, and also attempt to determine the magnitude of previous underground exposures. Approximately 170 workers encompassing 90% of the various job titles were sampled for an entire work shift to determine time-weighted average (TWA) exposures. Industrial hygiene survey methods included breathing-zone air sampling for airborne fibrous minerals with analyses to determine fiber identification, concentration and fiber size distributions (optical and electron microscopy), and airborne arsenic and trace metal concentrations (atomic absorption). Likewise, a general airborne area sample was collected at each worksite for the determination of radon daughter levels. In addition to the environmental evaluation, samples of crushed ore were collected from the mills for analyses of free silica, arsenic, fibers, and trace metals. To assist in the evaluation of past exposures, midget impinger samples were collected to compare the current dustiness with similar historic exposure data collected by the company.

Exposure data was grouped by job title, for areas underground, and within the ore crushing mills. TWA exposures to arsenic for all underground workers ranged from 0.10 to 11.62 $\mu g/m$, and for workers in the crushing mills 0.60 to 6.45 $\mu g/m$. Airborne exposures to trace metals for all workers were found only in trace amounts. When airborne samples were evaluated by optical microscopy for asbestos, TWA fiber concentrations for all underground workers ranged from 0.02 to 4.01 fibers >5 μm in length/cm , and for workers in the crushing mills ranged from 0.12 to 5.34 fibers >5 μm in length/cm . Electron microscopy characterization of airborne fiber samples indicated that 84% of the fibers observed were amphibole asbestos while the remaining 16% were either unidentified or non-asbestos minerals. Most of the fibers observed (70 to 80%) were shorter than 5 μm with a geometric mean fiber length of 3.2 μm and a geometric mean diameter of 0.4 μm . Radon daughter levels varied within the mine depending on the source of make-up air; levels ranged from non-detected to 0.169 working level.

Impinger dust sampling data collected during the study was correlated with the fiber and arsenic exposure data; this extrapolation was used with the Company's past impinger data for estimation of past arsenic and fiber concentrations. Likewise, free silica exposure data collected in past years by the

Bureau of Mines and the Mine Enforcement and Safety Administration was correlated with impinger data for estimation of past exposures. When assessing exposures during the past 25 years, exposure to asbestos fibers would have the greater potential for exceeding current health standards. However, before approximately 1952 there was an additional risk of over exposure to free silica because of elevated dust concentrations caused by underground blasting procedures and the lack of efficient dust suppressive techniques. Based on current exposure data collected during this study, mean exposures for free silica, radon daughter, arsenic, and asbestos fibers are within Occupational SaFety and Health Administration and Mine Safety and Health Administration health standards for most of the job classifications.

CONTENTS

<u>.</u>	ge
Abstract	iv
Figures	
Tables	
Acknowledgments	
Introduction	
History of Homestake Mine	
Mining Methods	
Current	.13
Past	
Ventilation	
Description of Survey Methods	-
Approach (Rationale)	20
Air Sample Analysis	21
Bulk Ore Sample Analysis	22
Survey Results	
Arsenic	.24
Trace Metals	28
Fibers	28
Radon Daughters	
Dust	
Bulk Ore Samples	
Comparison of Present and Past Exposures	
Radon Daughters	
Other Exposures	
Discussion	
Quartz	
Arsenic	.72
Asbestos	
Radon'Daughters	
Conclusion	
Recommendations	78
References	.79
Appendix	
A. Job dictionary for the Homestake Gold Mine	
B. Sample locations for the NIOSH survey	
C. Results of arsenic analysis	
D. Results of optical microscopy fiber analysis	
E. Results of impinger dust counting	E-1

FIGURES

	Page
1.	Cross section of Homestake Gold Mine 6
2.	Selective mining of ledges
3.	Electron microscopy data sheet
4.	Fibrous cummingtonite-grunerite electron microscopy analysis
	Fibrous tremolite-actinolite electron microscopy analysis
	Regression analysis for dust and arsenic
	Regression analysis for dust and asbestos 69

TABLES

	Page
1.	Observed and expected deaths due to malignant and
	nonmalignant respiratory disease among white males who
	achieved 5 or more years of underground mining
	experience by April 1960
2.	Number of observed and expected deaths by cause
	according to South Dakota rates for various causes
з.	Tonnage of ore mined by ledge from 1937 to 1976
	Employment and average number of hours worked
	from 1920 to 1974
5.	Ventilation and average dust concentrations
-	from 1923 to 1975
6.	Time-weighted average (TWA) airborne arsenic
	exposures of underground employees with job titles
	of Miner lst, 2nd, 3rd, or 4th
7.	Time-weighted average (TWA) airborne arsenic
	exposures of underground employees (excluding Miner
	classification)
8.	Time-weighted average (TWA) airborne arsenic
	exposures of surface employees in crushing department 27
9.	One-way analysis of variance (ANOVA) comparing
	geometric mean TWA exposures of Miners 1st, 2nd,
	3rd, and 4th to arsenic on the six ledges
	Time-weighted average airborne trace metal exposures 30
11.	Time-weighted average (TWA) airborne fiber
	exposures (optical microscopy) of underground.
	employees with job titles of Miner 1st, 2nd, 3rd
	or 4th
12.	Time-weighted average (TWA) airborne fiber
	exposures (optical microscopy) of underground employees
	(excluding Miner classification)
1.3.	Time-weighted average (TWA) airborne fiber
	exposures (optical microscopy) of surface employees
1 /	in crushing department
14.	geometric mean TWA exposures of Miners 1st, 2nd,
	3rd, and 4th to asbestos on the six ledges
1 5	Comparison of NIOSH and Homestake optical microscopy
1 J •	fiber counting
16	Fiber size determination by diameter analysis (electron
10.	microscopy) analysis
דו	Fiber size determination by length analysis (electron
114	microscopy)
18	Percentage of fiber greater than 5 micrometers (m)
10.	in length by electron microscopy
10	Electron microscopy identification of airborne fibers
171	by selected area electron diffraction and energy dispersive
	X-ray analysis · · · · · · · · · · · · · · · · · ·
20-	Fiber size distribution by aspect ratio (length to
	diameter) electron microscopy analysis

TABLES (continued)

	<u>Page</u>
-	Comparison of optical and transmission electron microscopic (TEM) fiber concentrations
22.	Radon daughter measurements grouped by ventilation systems
23.	Airborne dust exposures as determined by impinger
- 1	samples
24.	Time-weighted average (TWA) airborne dust exposures (impinger samples) of underground employees with job titles
	of Miner 1st, 2nd, 3rd, or 4th
25.	Time-weighted average (TWA) airborne dust exposures (impinger samples) of underground employees (excluding
	Miner classification)
26.	Time-weighted average (TWA) airborne dust exposures
	(impinger samples) of surface employees
	Comparison of NIOSH and Homestake impinger counts
	Composite ore sample analysis
29.	Radiometrically determined Radium-226 content of
	different rock types
30.	Approximate exposures to dust by type of work for
	surface and underground workers from 1937 through 1974 63
31.	Approximate exposures to dust by type of mining
	operation from 1939 through 1974

ACKNOWLEDGMENTS

Collection of samples for airborne particulates used for this study and the laboratory fiber identification and characterization are the results of many hours of effort from NIOSH personnel with the Industrial Hygiene Section, Industry-wide Studies Branch, Division of Surveillance, Hazard Evaluations and Field Studies. Special appreciation is extended to Terry Boyle and Robert Phillips for their help with the optical microscopy analyses, Dennis Roberts who performed optical and electron microscopy analyses, and James Carter who completed the majority of the electron microscopy fiber characterization.

The authors wish to express their gratitude to Dr. Aurel Goodwin of MSHA who helped in coordinating the survey at the Homestake Mine, and to Shiu Lee and Jeanne Burg of NIOSH for their assistance in the development of the statistical parameters used in estimating historic exposures. Finally, a very special thanks is due to Patricia Johnson for typing the many revisions of this report.

The funding for this study was provided by the Division of Cancer Cause and Prevention, National Cancer Institute, through the Interagency Agreement on Research on Occupational Carcinogenesis (Y-01-CP-60605).

INTRODUCTION

In 1976, the National Institute for Occupational Safety and Health (NIOSH) reported on a retrospective cohort mortality study of 440 individuals who, in 1960, had worked underground at least 5 years at the Homestake Gold Mine in Lead, South Dakota (1). The study indicated an excess of both normalignant and malignant respiratory diseases. The mortality pattern (see Table 1) showed a significant excess of normalignant respiratory disease in general (8 observed vs. 2.56 expected, p<0.01), and of pneumoconiotic disease specifically (5 observed vs. 1.57 expected, p<0.05), to have occurred after 20 years since onset of underground mining. No such excess of normalignant respiratory disease risk was noted during the first 19 years after beginning underground mining. However, a significant excess of respiratory tract cancer was demonstrated at each of the time intervals since onset of underground mining: 3 observed vs. 0.56 expected (p<0.05) at less than 20 years, and 7 observed vs. 2.18 expected (p<0.01) at 20 or more years since onset of such employment.

In assessing what possible etiologic agent(s) contributed to the observed excess of deaths due to malignant and normalignant respiratory disease in this population, the environmental exposures of these miners were examined. Using the results of three previous environmental studies at the mine--Bureau of Mines in 1960 (2), Mining Enforcement and Safety Administration (MESA) in 1973 (3), and MESA in 1974 (4) -- it was concluded that exposures did not exceed ambient residential levels for radon daughters and were negligible for the three other known carcinogens in the mine; arsenic, chromium, and nickel. In addition, asbestos exposures were studied during the 1974 MESA survey (4). The average fiber concentration of the 200 personal samples collected was 0.25 fibers greater than 5 micrometers (um) in length per cubic centimeter of air (fibers/cm'); the highest concentration found was 2.8 fibers/cm'. NIOSH analyzed 25 of the MESA air samples using electron microscopy (5). This analysis indicated that 80 to 90% of the observed fibers were amphiboles. Of these fibrous amphiboles, 61 to 72% were in the cummingtonite-grunerite series (e.g., amosite asbestos). In addition, 94% of the total fibers observed were less than 5 µm in length. Based on the three previous environmental studies and the NIOSH electron microscopy analysis, the 1976 mortality study attributed the observed excess of malignant respiratory disease to asbestos, singly or in combination with cigarette smoke; the excess of normalignant respiratory disease was attributed to asbestos, with a possible additive role from low-level exposures to free silica dust (1).

Subsequent to the NIOSH mortality study, McDonald et.al., in 1978, reported a mortality study of 1321 men (underground and surface workers) who were members of the Homestake Veterans Association (HVA), which was founded in 1905 (6). All employees automatically became members of the HVA after completing 21 years of service with the Homestake Mining Company. Therefore, the entire cohort had at least 21 years of employment; the cutoff date for the study was 1973. The impetus of this study was to determine whether long-term exposure to cummingtonite-grunerite carried a carcinogenic risk. The mortality pattern (see Table 2) showed an excess in overall deaths (631)

Table 1. Observed and expected deaths due to malignant and nonmalignant respiratory disease among white males who achieved 5 or more years of underground mining experience by April 1960 at Homestake Gold Mine, Lead, South Dakota.

			•	s since onset d employment					
	5	-19 Years		> 20 Years					
Cause of death	Observed (O)	Expected (E)	0/E	Observed (O)	Expected (E)	O/E			
Malignant neoplasms	4	2.14	1.87	11	7.59	1.45			
Respiratory system	3	0.56	5.36*	7	2.18	3.21**			
Other	1	1.58	0.63	4	5.41	0.74			
Nonmalignant respiratory diseases	0	0.59		8	2.56	3.13**			
Influenza and pneumonia	0	0.31		3	€0.99	3.03*			
Other respiratory diseases	. 0	0.28		5	1.57	3.18*			

^{*} Significant difference between observed and expected deaths at p<0.05.

From: Mortality patterns among hard rock gold miners exposed to an asbestiform mineral.

Gillam, J.D., J.M. Dement, R.A. Lemen, J.K. Wagoner, V.E. Archer, and H.P. Blejer.

Annals of the New York Academy of Sciences. 271:336-344, May 1976.

^{**} Significant difference between observed and expected deaths at p<0.01.

w

Table 2. Number of observed and expected deaths by cause according to South Dakota rates for various causes at the Homestake Gold Mine, Lead, South Dakota from 1937-1973.

		1937-1973	
Cause of death	e	Ε'	O/E
Malignant neoplasms	1		
Total	93	90.5	1.03
Respiratory	17	16.5	1.03
Gastrointestinal	39	35.1	1.11
Other	37	38.9	0.95
Vascular lesions of the CNS	64	63.0	1.02
Diseases of the heart	264	232.5	1.14
Pneumoconiosis	37	-	; -
Respiratory tuberculosis (including silico-tuberculosis)	39	3.6	10.83
Accidents	19	28.3	0.67
All other causes	115	131.8	0.87
Total	631	549.7	1.15

Definition of abbreviations: 0 = observed; E = expected

From: Mortality after long exposure to cummingtonite-grunerite. McDonald, J.C., G.W. Gibbs, F.D.K. Liddell, and A.D. McDonald. American Review of Respiratory Disease. 118:271-277, August 1978.

observed vs. 549.7 expected). For specific causes of death, the highest excesses were found for pneumoconiosis (37 observed), respiratory tuberaculosis (39 observed vs. 3.6 expected), diseases of the heart (264 observed vs. 232.5 expected), and gastrointestinal tract cancer (39 observed vs. 35.1 expected). It was concluded that the pattern of mortality found was characteristic of hard rock mining with a severe silicotic risk (6). The differences in the findings between the mortality studies could be explained by the different criteria used for inclusion in the two cohorts and/or other differences in study design.

Since the original NIOSH study was limited to 440 workers, and there was a need for a more comprehensive environmental assessment for this mining population, NIOSH initiated a more definitive study of the Homestake Gold Mine in 1977. This new investigation included an expanded retrospective mortality study, a sputum cytology study among a selected group of current or retired underground workers, and a comprehensive industrial hygiene survey. This report describes the industrial hygiene survey and discusses the results. In addition, a model for extrapolating previous underground exposure levels is derived.

HISTORY OF THE HOMESTAKE MINE (7.8,9)

In 1876, mining for gold started in Lead, South Dakota, at a small surface working site. In 1877, the Homestake Mining Company was incorporated and, by the end of 1878, the first underground levels were being opened using the square-set method of mining with large timbers. The mining at that time was done by hand; it was not until the early 1900's that pneumatic drills began replacing hand-drilling operations and compressed-air locomotives replaced horses and mules underground. All pneumatic drilling was performed dry until about 1915; all drilling was done wet by 1926. Primary crushing of the ore was done underground until the mid-1930's when the operation was transferred to the surface. As underground mining became more extensive with increasing mining depths, the installation of the Ross Shaft in 1934 and the Yates Shaft in 1941 increased the mining capabilities down to the 4850-foot level. Between 1955 and 1970, deeper level mine development began with a winze (underground shaft) sunk from the 4850-foot level to the 6800-foot level, and a new ventilating shaft sunk from the surface extending down to the 6200-foot level. Deeper level mining development has continued to the present with two new winzes: one from the 4550-foot level to the 8000-foot level, and the other from the 6800-foot level to the 8000-foot level. A schematic cross-section of the mine is illustrated in Figure 1.

In the geologic formation at Lead, South Dakota, gold ore occurs in a number of different ore bodies contained in a folded rock strata called the Homestake Formation. This formation was originally a sedimentary rock containing the mineral sideroplesite, an iron-magnesium carbonate. The metamorphism of this rock has converted some of the formation to the iron-magnesium silicate minerals of the cummingtonite— grunerite series (e.g., amosite asbestos). This highly folded and cross-folded rock stratum is further intertwined with deposits of igneous rock in a series of rhyolite dikes. The ore formation also contains quartz and arsenopyrite. Since most of the gold ore is heterogeneously deposited in certain folds in the Homestake Formation, the gold is selectively mined in stopes located in ledges or major folds which are traversed by the mining levels. This is illustrated in Figure 2. In some instances, two or more ledges may occur and be ore-bearing on a given level.

The total amount of ore mined has remained fairly constant since 1937, with between 1 and 2 million tons mined each year except for 1943 to 1948 (see Table 3). The percentage of ore production from each ledge continues to change as the older ore bodies (9 and Main Ledges) are mined out, along with the opening of new ledges (11, 12, 19, and 21 Ledges). However, except for 1945, at least 55% of the ore milled since 1937 has come from the 9 and Main Ledges.

The number of workers underground has fluctuated greatly since 1920, with a low of 151 during 1943 to 1945, when no active mining took place, to a high of 1138 workers in 1941. However, the percentage of workers in each job

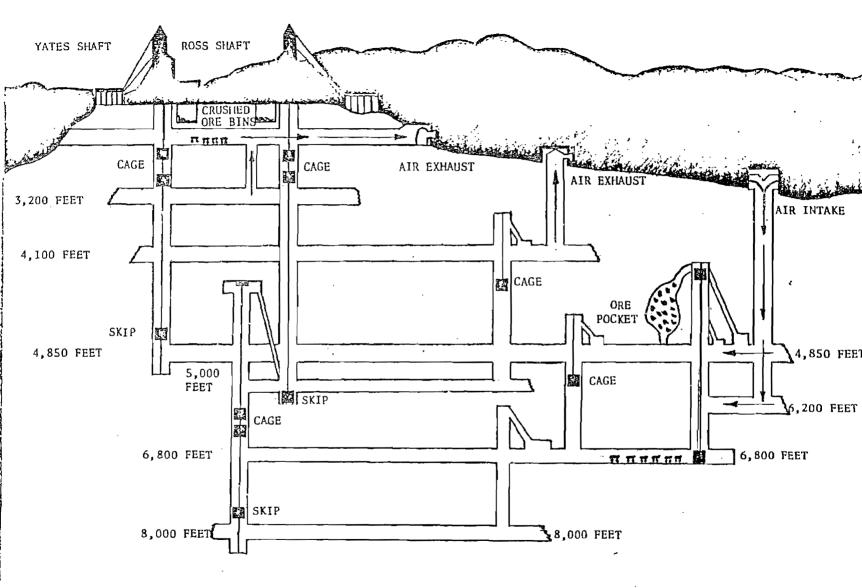


Figure 1. Cross section of Homestake Gold Mine, Lead, South Dakota

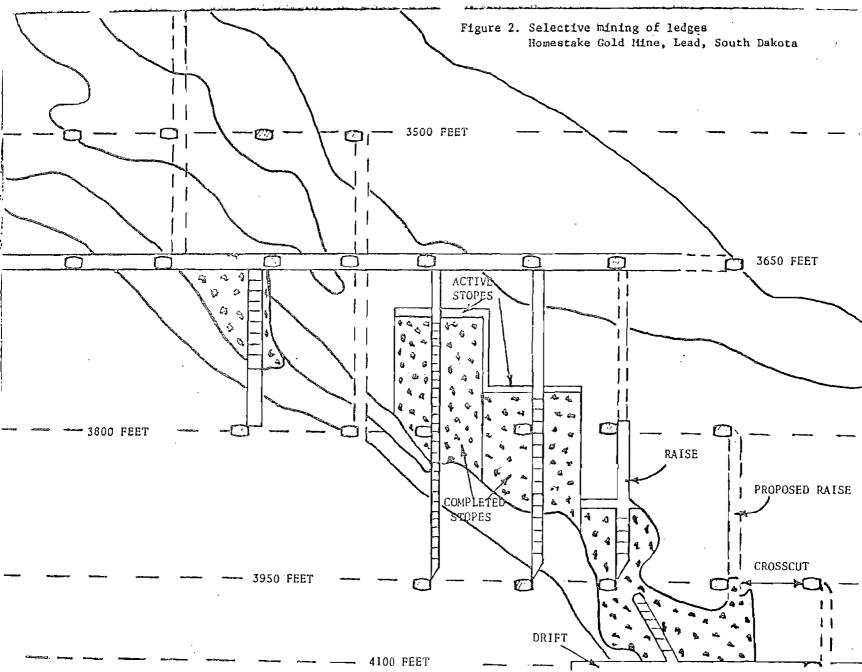


Table J. Tonnage of ore mined by ledge from 1937 to 1976 Romestake Gold Hine, Lead, South Dakota

47.44

50.25

71.50

73.55

68.63

64.64

61.39

1 Tonnage

11 Ledge

494,204

399,502

13 Ledge

36,858

29.482

1 Tonnage

30.00

26.85

19 Lodge

179,310

113,456

* Tonnage

2.24

1.98

21 Ledge

1

1 Tonnage

10.86

7.62

Draw Eole

I

Tonnake

Total

Tonnage

1,650,442

1,488,072

1,865,533

1,780,335

1,767,917

1,747,358

1,723,127

9 Ledge

782,895

747,694

Younge

12.40 1,333,908

10.18 1,309,517

9.69 1,213,252

9.77 1,129,554

6.59 1,057,823

0.78

2.50

Hain Ledge

8,6B

10.80

143,287

160,551

Year Tonnage

1976

1975

1962

1961

1960

1959

1958

300,261

789,593

383,253

447,131

551,686 32.02

16.10

16.27

21.69

25.59

5 Ledge

Tonnage

7 Ledge

Топпаде

12,888

37,273

231,364

181,225

171,412

170,673

113,618

· --

1974	231,984	14.87			39,438	2.53	712,450	45,68	450,334	25.99	38,425	2.46	132,139	8.47				<u>-</u>	1,559,770
1973	242,341	15,36			5,642	0.36	785,488	49.78	347 ₌ 237	22.00	62,846	3.95	134,450	8.52					1,578,021
1972	287,796	19.76			13,370	0.92	718,940	49.35	233,383	16.02	47,133	3.23	156,093	10.72				-	1,456,715
1971	347,290	19.56		-	£6,787	2.63	946,804	53, 32	262,314	14.77	53,035	2.99	119,470	6.73					1,775,700
1970	318, 834	16.11			48,151	2.43	1,119,663	56.55	766, 710	13,47	83,176	4,20	143,423	7.24					1,980,007
1969	359,925	18.83			74,313	3. 39	1,131,776	59.70	195,084	10,20	65,754	3.44	85,073	4.44			-		1,911,925
1968	496,279	25.05			131,195	6.42	1,128,194	56,94	150,596	7.60	23,742	1.20	51,246	2.59		<u> </u>			1,981,252
1967	498,310	26.25	598	0.02	118,536	6. 4	1,152,972	60.72	88,890	4.68	1,535	0.08	38,168	2.01					1,598,699
1966	412,656	20.99	8,654	0.44	195,837	9,96	1,264,813	64.32	74,906	3.81	82		9,425	0.48					1,966,375
1965	541,598	26.60			224,420	11.02	1,248,148	61.30	19,607	0.96			2,526	0.12					2,036,294
1964	480,963	23.59			201,146	9.87	1,344,778	65.95	11,435	0.56			645	0.03	_				2,038,972
1963	310,057	16.20	-		213,744	11.16	1,390,181	72.63					161	0.01					3,914,143

Table 3 (continued)

Vaar	Hein Lo Tonnage		S Le Tonnage	dga I	7 Lad Tonnage		9 Ledg Tonnage		11 Le Tonnage		13 E Tonnage	edgu T	19 t Tounage	ædge T	21 Tonnaga	Ledge I	Draw I	iole Z	Total
1601	Limage	· •	TORNIS		÷				******				10000		100.00		Tourist		Tonnage
1957	505,748	30.43			67,857	4.08	1,008,378	65,49								- _			1,661,98)
1956	_ 447,735	27.47			66,737	4.09	1,115,700	68.44										<u> </u>	1,610,172
1955	178,782	25.71			14,188	0.97	1,137,781	73,17											1,550,751
1954	483,492	32.46			18,836	1.27	956,836	66.27							-	-			1,449,184
1953	459,207	33.75					901,434	66.25											1,160,641
1952	452,025	37,00					770,370	63.00											1,222,195
1951	448,154	42,80					598, 167	57.20											1,046,521
1950	538,154	42.70					721,074	57.30											1,259,228
1949	531,135	47.60					585,467	52.40		-								-	1,116,597
1949	449,915	49.60					457,326	50.40										-	907,241
1947	458,647	54.00			- 1		390,001	46.00										_	848,675
1946	324,181	41.21					324,617	41.27									137,814	17.52	786,632
1945	40,587	12.56	-				61,651	19.09					-	-			220,781	68.35	
1944	_		-		-		_	- .	_	-	_	_	-	-	_	-	-	_	None
1943	~		_		_	-	_	_		-				_	_	_	_		None
1942	726,988	55.37	-	_	-	-	309,846	23.60	_		_		_	-	-		276,182	21.01	1,313,016
	1,015,841	67.29	_	-	_			20.58	_				_				183,058		1,509,713
	1,040,341	72.63	_		_	_	145,071	10,20	- 1		_			_	_		245,920		1,432,332
	1,090,525	74.83	_		_	_	-		- 1		- 1		_	-	_	-	366,797		1,457,332
									- 1					_	_		99,167		
	1,716,242		_																1.377,314
1771	.,,	57.20															1/8/331]	12.80	1,394,773

From: July 11, 1977, meno from J.K. Waterland to D.T. Delicate. Homestaku Mining Company, Lead, South Dakota

classification underground has remained fairly constant through the years. The working hours and average number of shifts worked per year are shown in Table 4. The amount of time per shift has been either 7 or 8 hours. These 7-or 8-hour shifts represent time spent at the worksite and do not take into account the 30 to 60 minutes spent before and after each shift in transic between the surface and the underground worksite. The average work week has ranged from a high of 52 hours from 1920 to 1933, to a current low of 40 hours. At the time of the survey, there were two 8½-hour shifts, including ½ hour for a meal underground.

Table 4. Employment and average number of hours worked from 1920 to 1974 at the Homestake Gold Mine, Lead, South Dakota.

	Average	Average no.	1	Average no.
	employees	shifts worked	Hours in	hours in
Year	underground	per employee year	shift	workweek
			J. 3.121	- WOZROCK
1920	641	333	8	52(a)
1921	852	326		32(4)
1922	842	327	j ,,	! !
1923	781	326	į ,,	,,
1924	790	318(b)] } 11	1
1925	723	336	i ,,	!
1926	695	330	,,	1
1927	665	333) 	1
1928	642	327		11
1929	723	320	; 17	
1930	810	306(c)		11
1931	780	322	'' ''	
1932	783	335	1 11) ''
1933	830	328(d)	,,	52 & 48(d)
1934	957	304	,,	48
1935	965	298	, ,,	1 11
1936	1,037	299	5,	11
1937	988	299	i .,	, ,
1938	1,044	299		71
1939	1,103	296	"	,,
1940	1,085	297	7 & 8(e)	48 & 42(e)
1941 -	1,138	293	7	42
1942	850(f)	306(£)	11	"
1943	162(f)	289(f)	"	
1944	151(f)	280(f)	j ,,	41
1945	267(f)	283(f)	"	,,
1946	614	276 .	. "	••
1947	676	279	**	11
1948	684	273	••	n'
1949	948	274	,,	(1
1950	993	286	71	"
1951	7.26	314	**	"
1952	739	290(g)	**	42 & 48(g)
1953	803	291	8	48
1954	887	291	"	"
1955	889	290	''	,,
1956	914	292 .	"	,,
1957	943	293	į n	i "
1958	925	294	,,	"
1959	890	294	••	''
1960	970	292	**	i "

Table 4 (continued)

	Average employees	Average no. shifts worked	Hours in	Average no. hours in
Year	underground	per employee year	shift	workweek
1961	892	294	8	48
1962	939	288	"	11
1963	1,036	28 9	") H
1964	1,046	290	"	<u>}</u>
1965	1,022	290	11	11
1966	983	288	j "	11
1967	1,006	280	j 11	"
1968	1,002	272	j 11	j "
1969	990	280	j »	į n
1970	993	282	0	"
1971	954	294	11	
1972	900	254	11	48 & 44(h)
1973	960	249	11	44 & 40(i)
1974	963	249	11	40
,				

Notes

- (a) Alternating 56- and 48-hour workweeks. Calculated from record of total hifts worked and assuming 333 shifts per employee from the 1920 figures.
- (b) Assumed figure. Data available for year are unreliable.
- (c) Fire in Ellison shaft headframe caused a short shutdown of underground mine operations.
- (d) Workweek changed from alternating 56- and 48-hour weeks to 48-hour weeks on September 1, 1933.
- (e) Workweek and workday changed to 42 and 7 hours respectively on October 20, 1940.
- (f) Production operations shut down during World War II from October 8, 1972, to July 1, 1945, by War Production Board Order L-208.
- (g) Workweek and workday changes to 48 and 8 hours, respectively, on March 2, 1952.
- (h) Workweek changed from 48-hour week to alternating 48- and 40-hour weeks on August 28, 1972.
- (i) Workweek changed from alternating 48- and 40-hour weeks to 40-hour week on April 20, 1973.

From: Swent, L.W., G.R. Herrin, J.K. Waterland, and R.F. Bell. Mortality patterns among hard rock gold miners exposed to an asbestiform mineral — A Critique. Amer. Ind. Hyg. Conf. New Orleans, LA., May 16-21, 1976.

CURRENT

Extractive operations in Lead, South Dakota, have always used hard rock mining methods, with gold and silver being recovered after milling, processing, and refining. At the time of the July 1977 survey, the Homestake Gold Mine employed 968 employees underground with about 900 working on the 35 levels spaced at 150-foot intervals from the 1700-foot level down to the 6800-foot level, inclusive. A few employees worked on the remaining levels down to the 8000-foot level.

There are over 200 miles of workings on the various ledges with small crews of one to three workers scattered throughout. These crews are mainly composed of workers with job classifications of Miner 1st, 2nd, 3rd, and 4th who are responsible for drilling and blasting in stopes, drifts, cross-cuts, and raises, as well as the removal of ore by mucking and slushing. About 70% of the underground workers are "Miners"; others are carpenters, motormen, mechanics, skippers, etc.

Prior to large-scale, systematic ore removal, development work is required to outline each of the ore bodies within the mine and to provide access. This consists of driving drifts and cross-cuts (horizontal openings 7' x 7' in cross-section, or 7½' x 7½' as found on the lower levels of the mine), driving or boring raises, and boring diamond drill holes, all to outline the gold-bearing rock, and cutting ditches to carry water to the pumps. Once the development work has been accomplished, the breaking down and withdrawal of the ore (called stoping) begins. Stoping starts at the bottom of an ore body and proceeds upward from level to level. Nearly all of the ore between levels is mined by horizontal cut-and-fill stoping. Most of the stopes mined are without timber and are called "open" cut-and-fill. In 1975, 83% of the ore was produced from open cut-and-fill stopes. The majority of the remaining stopes are mined with timber or square sets, which are also later filled, and are called "timbered" cut-and-fill stopes. Shrinkage stoping and blast-hole stoping techniques are also employed.

In cut-and-fill stoping, the ore body is mined in successive ll-foot slices. With this method of stoping, a sand fill is used as a floor from which the miners begin to drill and blast a new slice of ore 11 feet high. The broken ore is then removed by scraping or slushing into an ore pass and dropped through a chute to the level below, where it is then drawn and loaded into cars. After the ore is orawn from the stope chutes into the cars, it is hauled to the shaft ore raises into which it is dumped before being drawn off through a loading cartridge of measured capacity (9 to 10 tons) into the ore skips (rectangular buckets). The ore is then hoisted to the surface where it is crushed to 1-inch size and conveyed to the mill bins.

After a "slice" of ore has been removed, most of the stope is back-filled with sand obtained from the tailings of the mill. This sand base provides both support and a floor upon which the next slice is broken. To prepare the stope for the next slice, air-powered drilling machines are set up and holes about 12 feet deep are drilled into the walls and roof. When drilling is completed, the holes are packed with explosives and blasted at the end of the work shift. On the following workday, the ore is slushed to a chute on the level below and the mining process is repeated.

PAST

In contrast to current mining methods, dry drilling techniques were employed until 1919 when wet drilling was initiated. Up until about the late 1930's, the practice was to blast the blockholes (secondary drilling) in large boulders with dynamite after miners temporarily left the work area. Miners would then return to the work area through the smoke and dust and charge the primary blast holes drilled during their shift. This primary blasting was normally done at the end of the work shift so that the dust could be allowed to clear. The boulder blockhole blasting procedure was changed in 1939 to blast them at the same time as the primary blast holes.

Prior to 1950, blasting was permitted at any time throughout the mine. This practice probably contributed greatly to the amount of dust and smoke present at the worksites during the shift. Procedures were changed in 1950 to permit blasting only at lunchtime and quitting time in square set (timbered) stopes and only at quitting time in open (untimbered) stopes, drifts, and raises. These changes helped to reduce the dust and smoke during working hours.

Until the early 1950's, the holes drilled to advance a "drift" (a horizontal tunnel-like excavation) or a "raise" (a vertical tunnel-like excavation) were both blasted in a two-step sequence. The first holes to be blasted were the "cut holes" (the holes which determine how far from the face the rock will be broken by the blast). A few minutes after blasting with dynamite, the miners re-entered the work area to inspect the results of the blast. If the cut holes had not broken to the desired depth, they were reblasted until the desired depth was achieved. This practice of multiple blasting in drifts and raises was changed in 1951-1952 so that all blasting was accomplished with single blasting step at the end of the work shift using electric delay blasting caps.

In 1950, drills began being equipped with automatic water valves that turned the water on when the compressed air was turned on. Older drills had separate air and water valves and miners tended to begin most of the holes they drilled by using only the compressed air without using any water for dust suppression. The conversion of drills was completed in 1953.

In 1963, wheeled carriage mounts for drills were developed for use in ore-breaking areas. Their use resulted in a much longer drilling cycle enabling miners to drill over a period of a week and then blast all the holes at once. Previously, the miners on each shift blasted the holes they drilled that shift. Using a single large blast helped to reduce the workers' exposure time to dust and smoke.

VENTILATION (8,9)

Ventilation in the mine, as measured by the exhaust air rate, was estimated at 77,000 cubic feet per minute (cfm) from 1918 to 1923, and was increased to 225,000 cfm in 1923 when a fan was installed in the No. 1 air raise (see Table 5). An additional fan was installed in 1933 at the No. 2 air raise, increasing the total ventilation to 475,000 cfm. The amount of air exhausted increased with the addition of more fans until a maximum of 867,000 cfm was attained in 1966. In 1975, the exhaust ventilation rate was 720,000 cfm.

Before 1945, small fans and ventilation ducts were used only to a minor extent to deliver clean air to the worksites within the mine and to help carry the airborne dust into the main exhaust ventilation systems. From 1945 to 1963, this secondary ventilation system consisted primarily of 5-horse-power (hp) distribution fans with a capacity of 2500 cfm and 12-inch diameter ventilation ducts. After 1963, 10- or 15-hp fans using 16-, 20-, or 30-inch diameter ventilation ducts gradually replaced the smaller fans; the change-over was completed in 1975. The larger fans delivered 2 to 3 times as much air to the worksite and, consequently, provided a greater potential for reducing airborne dust exposures. As shown in Table 5, the use of ventilation has proved to be important in the control of dust underground as reflected by the decline in dust concentrations (mppcf) observed since 1937. However, irrespective of the volume of air exhausted from the mine, a contributing factor in reducing worker exposures would be the proper positioning of the ventilation duct openings at the worksites.

Table 5. Ventilation and average dust concentrations from 1923-1975 at the Homestake Gold Mine, Lead, South Dakota.

· ·	Average dust	Ventilation
Ì	concentration	into
Year	(mppcf)	mine (cfm)
Í		, , , , , , , , , , , , , , , , , , , ,
1923	ND	225,000 - Installed #1 air raise Fan
1924	Ир	225,000
1925	סא	225,000
1926	ND	225,000
1927	ND	225,000
1928	ND	225,000
1929	סא	225,000
1930	ND	225,000
1931	ND	225,000
1932	מא	225,000
1933	ND	475,000 - Installed #2 air raise fan
1934	ND.	475,000 - Installed #2 all raise ran
1935	ND	475,000
1936	ND	475,000
1937	11.0	475,000
1938	25.5	475,000
1939	15.3	475,000
1940	11.1	475,000
1941	13.3	547,000 - Installed Oro Hondo fan & shut
1		down #1 air raise fon
1942	24.6	547,000
1943	ND	547,000
1944	ра	547,000
1945	D D	547,000
1946	24.3	547,000
1947	24.3	547,000
1948	12.0	547,000
1949	15.5	547,000
1950	12.6	547,000
1951	18.4	547,000
1952	9.7	547,000
1953	6.9	547,000
1954	5.9	547,000
1955	5.1	547,000
1956	5.2	547,000
1957	4.1	547,000
1958	4.3	547,000
1959	4.0	600,000 - Ellison shaft fan inscalled
1960	4.4	600,000 - Oro Hondo shaft stripped and
1	1	#5 shaft completed.
1961	3.3	600,000
1962	ND	619,000
1963	ND	650,000
i	i	,
'		

Table 5 (continued)

	Average dust	Ventilation
1	concentration	into
Year	(mppcf)	mine (cfm)
[1964 	ND	800,000 - Two 750 hp fans on Oro Hondo Crosscut to Ellison Shaft
1965	4.2	829,000
1966	3.5	867,000
1967	3.1	864,000
1968	5.0	830,000
1969	4.0	802,000
1970	4.4	800,000
1971	2.4	815,000
1972	2.8	780,000 - Change to 1250 hp fan on
ĺ		Oro Hondo Shaft.
1973	2.5	780,000
1974	2. 0	775,000
1975	ND	720,000 - Ellison Shaft caved
İ	<u> </u>	

mppcf = millions of particles per cubic foot of air.

ND = No Data

cfm = cubic feet per minute

From: May 27, 1976, memo from J.K. Waterland to D.T.Delicate.

Homestake Mining Company, Lead, South Dakota.

DESCRIPTION OF SURVEY METHODS

APPROACH (RATIONALE)

Since the purpose of the comprehensive industrial hygiene survey was to support the retrospective mortality study, not only was a current environmental assessment performed, but, in addition, an attempt was made to determine the magnitude of previous underground exposures. To this end, past exposure data compiled by the Homestake Mining Company and from inspection surveys by the U.S. Bureau of Mines and MESA were incorporated into the overall assessment of occupational exposures.

The sampling strategy was developed from information on the mineral composition of the geologic formation as well as exposure data previously collected during past surveys by the Bureau of Mines and MESA. Personal airborne samples (filters) were collected for analysis of fibrous minerals, arsenic, and trace metals including beryllium (Be), chromium (Cr), cobalt (Co), iron (Fe), lead (Pb), manganese (Mn), molybdenum (Mo), nickel (Ni), vanadium (V), and zinc (Zn). Each personal filter sample collected was cut in half. One of the halves was counted optically for fibers and further analyzed for fiber identification and characterization using electron microscopy techniques. The other half of each filter was used to determine trace metal and arsenic exposures. Since trace metals and arsenic were known to be present in small quantities, it was decided to combine the various personal airborne samples from a worksite to increase the probability of detecting them during analysis; one half were analyzed for trace metals, and the other half for arsenic. The combined filter halves for arsenic and trace metals were assigned an appropriate Job Code and a new sample number. A general airborne area sample was collected at each worksite and radon daughter concentrations were determined. Bulk ore samples collected from a composite mixture of ore coming from the crushing mills were analyzed for asbestos, arsenic, trace metals, and free silica. Personal air samples for free silica were not collected since there were data available from a 1976 MESA survey (10) and ' because of difficulties in collecting simultaneous samples. Because of the heavy physical demands normally encountered underground (drilling operations, climbing into and out of stopes, etc.) and the fact that a battery pack for the mining light and a self-rescuer were already strapped to the worker's belt, it was felt that two sampling trains would have been burdensome.

Since there was a work force of about 1000, including a small number involved with the crushing of ore on the surface, an attempt was made to collect samples from a representative group of employees. Therefore, approximately 170 employees encompassing 90% of the job titles were sampled for the entire work shift to determine short-term and time-weighted average (TWA) exposures. The different job titles that had exposures determined were representative of 95% of the mine employees.

About 70% of the samples were collected on workers who had a job title of Miner 1st, 2nd, 3rd, or 4th, with the remaining samples being collected on other underground workers or those employed in the surface crushing mills. In addition, most of the sampling was done on the Main Ledge and 9 Ledge since these were the oldest and most active ore ledges (see Table 3).

The sampling results were statistically analyzed to ascertain any differences in exposures between job titles and to determine if exposures varied significantly from ledge to ledge. To aid in this data treatment, a "Job Dictionary" was developed that consisted of current job titles with accompanying job descriptions. All job titles were assigned a four digit job code (see Appendix A). The first two digits using the following nomenclature represent the areas in which samples were collected: O1 - all underground operations, O2 - surface ore crushing, O9 - 9 Ledge, 10 - Main Ledge, 11 - 11 Ledge, 13 - 13 Ledge, 19 - 19 Ledge, and 21 - 21 Ledge. The last two digits of the job code correspond to the specific job title and job description such as Miner 1st, 2nd, 3rd, or 4th, Carpenter 1st, 2nd, or 3rd, Skipper, etc. Although each job title has a different job description, potential exposures within a job title grouping (i.e., Miner 1st and Miner 2nd) would be similar.

All locations within the mine where samples were collected are shown in Appendix B. The type of sample collected along with the appropriate sample numbers are indicated at each sampling site.

Since there were past dust exposure data, available from the Homestake Mining Company, which were determined with midget impingers midget impinger samples were also collected during the survey to compare the current "dustiness" with past exposures. Assuming a relationship could be found, it would thus be possible to make an estimate of the magnitude of other environmental contaminants such as arsenic and asbestos that had not been documented historically.

SAMPLING

Five or six teams of one or two NIOSH industrial hygienists spent an entire work shift with different mine crews each day for 2 consecutive weeks collecting samples and documenting work practices. Full-shift personal airborne samples for arsenic, trace metals, and asbestos were collected on each worker monitored. An open-face filter collection method was utilized with a Millipore AA cellulose ester C.8-micrometer (µm) pore size filter at a flow rate of 2.0 liters per minute (lpm) using calibrated Mine Safety Appliance Model G pumps. The filters were changed periodically four to six times during the work shift to prevent overloading of dust for asbestos counting and to determine exposure levels for specific operations during a shift. At the end of each work shift, a radon daughter sample was collected by each team at the worksite on an open-face Millipore AA cellulose ester C.8-µm pore size filter

for 5 minutes at a flow rate of 2.5 to 3.0 lpm using calibrated Bendix Model C-115 pumps. During a work shift, four to six midget impinger samples were collected at random intervals near the breathing zone of a worker and the type of work being performed was documented. Impinger samples were collected in 10 milliliters of ethyl alcohol at a flow rate of 2.8 lpm for 20 to 30 minutes using calibrated Bendix Model C-115 pumps.

AIR SAMPLE ANALYSIS

Arsenic and Trace Metals

Airborne samples for arsenic were analyzed by neutron activation using a germanium-lithium detector with a neutron flux of about 10⁻⁴ neutrons/cm/second with a detection limit of 1.0 nanogram per sample (11). Airborne samples for trace metals were analyzed by air-acetylene atomic absorption for the metals Co, Cr, Fe, Mn, Ni, Pb, and Zn; by nitrous oxide-acetylene atomic absorption for Be; and by flame emission spectroscopy for V and Mo (12).

Radon Daughters

Radon daughter samples were analyzed for alpha radiation using a Millipore Scintillation Counter Model SPA-1 and an Eberline Portable Scaler Model PS-1. Alpha counts were made on the filters 40-90 minutes from the time of sample collection. Filters were checked for self-absorption by counting alpha activity on the filter face, counting the back side of the filter, and covering the face with an unused filter of the same type, and recounting the front side (13).

Fibers

All 448 personal airborne samples collected were analyzed for fibers using the NIOSH phase-contrast optical microscopy counting technique for asbestos (14). Fibers greater than 5 μm in length were counted at 450X magnification utilizing 45X (0.65 NA) phase contrast objective and 10X Huygenian eyepieces. A fiber was defined as any particle which had a length to diameter aspect ratio of 3:1 or greater. Fiber concentrations were reported as fibers >5 μm in length per cubic centimeter of air sampled (fibers/cm).

Fifty-one samples from the 448 were chosen for transmission electron microscopy (TEM) to characterize and identify the fibers (15). These 51 samples were randomly selected from two groups, samples with fiber concentrations as determined by optical microscopy that were >2.0 fiber/cm and those <2.0 fiber/cm. This selection procedure was to assure that a representative number of both high and low fiber concentrations were characterized by TEM.

Duplicate sample preparations were made for TEM from each of the 51 filter samples to ascertain if particulate loss had occurred during the preparation method. If no particulate loss was observed, then one of the sample preparations was chosen for analysis. All fibers were sized by diameter and length and identified utilizing selected area electron diffraction (SAED) and energy dispersive spectroscopy X-ray analysis (EDS) and tabulated on a data sheet as illustrated in Figure 3. A maximum of 100 fibers or a minimum of 10 fields (grid openings) were analyzed on each filter sample at magnifications of 10,000-17,000X. The deposited particulates on the filter were assumed to be Poisson distributed.

To determine an "index" of dust exposures, 25 to 30 impinger samples were collected daily and counted the following day by two NIOSH counters using bright field optical microscopy at 100X magnification (16). A sample preparation was made for each counter from each impinger and allowed to stand for 30 minutes before counting. If particle counts, in millions of particles per cubic foot of air (mppcf), from each impinger sample preparation differed more than 10% between the two counters, another sample preparation was made and recounted.

BULK ORE SAMPLE ANALYSIS

The composite ore samples that were collected from the crushing mills on 3 different days were analyzed for trace metals, arsenic, free silica (quartz and cristobalite), and fibers. Trace metals and arsenic were analyzed as previously described. The percentage of free silica was determined by weighing out a portion of each ore sample and performing X-ray diffraction analysis (17). Fibrous amphiboles were identified and characterized by TEM (SAED and EDS) and compared to reference minerals obtained from the Smithsonian Institution.

Sample Data	
Sample #:_	
Study:_	
Date:_	
Analyst:_	

Filter Type:

Mounting Tech:

Operating	Conditi	ons
	Мо	de:
Beam	Current	A:

Mode:	
Beam Current A:	
Sample Tilt 0:	
No. 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	

Magnification:____ Av. Grid Area, mm²:___

No. of Grids Counted:

	Diffraction Pattern						Fiber	Size, mm		
Fiber	Positive	Positive	Non .	Ambiguous.	No SAED	EDXRA			Picture	
#	Amphibole	Chrysotile	Asbestos	Pattern	Pattern	ID	Dia.	Length	Taken?	
1										
2										
3										
4										
5										
6										
7								ļ		
8								•		
9										
10										
11										
12										
13										
14										
15										
16		•								
17										
18										
19						}				
20		4								
21										
22										
23									:	
24.						<u> </u>				
25										
	ļ									
Total			<u> </u>			Comments:				

SURVEY RESULTS -

ARSENIC

The arsenic concentrations for the combined filter halves from the various worksites are reported in Appendix C. In addition, samples are grouped in Appendix C, to give exposure results by job classification and to indicate exposures within the various ore ledges and the surface crushing mills. All Miner job classifications are grouped in Table 6 to observe possible differences in TWA exposures between ledges. The geometric mean TWA exposures to arsenic for the six ledges ranged from 0.24 micrograms per cubic meter (μ g/m) for the 21 Ledge to 1.86 μ g/m for the 11 Ledge. When Miners from all ledges were grouped together, a geometric mean TWA exposure of 1.17 μ g/m resulted with lower and upper 95% confidence levels of 0.77 and 1.77 μ g/m, respectively.

A summary of arsenic results is presented in Table 7 for all other job classifications underground (excluding Miners). The lowest concentration was observed for a Hoist Operator (0.10 $\mu g/m^3$) and the highest for a Boring Machine Helper (5.79 $\mu g/m^3$). A geometric mean TWA concentration of 0.81 $\mu g/m^3$ was determined for these non-Miner job classifications underground with 95% confidence levels of 0.42 and 1.57 $\mu g/m^3$.

A summary of TWA arsenic exposures for the four employees monitored in the surface crushing mills is presented in Table 8; the arseni, exposures ranged from 0.60 to 6.45 $\mu g/m^3$. A geometric mean TWA arsenic concentration of 1.33 $\mu g/m^3$ with 95% confidence levels of 0.24 and 7.42 $\mu g/m^3$ was determined for these surface employees.

The average (arithmetic mean) arsenic exposure calculated from the 47 TWA samples (grouped by worksite) for all underground employees was 2.03 $\mu g/m^2$ (see Table C-3, Appendix C), which is approximately half of the average exposure previously found in the 1974 MESA survey (93 samples with an average concentration of 4.4 $\mu g/m^2$). This finding is possible since the NIOSH results present samples collected during the entire work shift, during periods of both peak and minimal work activity; whereas the samples collected by MESA represent individual short-term samples collected during specific work activities. In most instances, the MESA samples did not take into account the lower concentrations expected to be found away from the active worksites.

Based on the NIOSH sampling, only one worksite had a concentration above the OSHA TWA arsenic standard of 10 $\mu g/m^2$ (18). The NIOSH-recommended arsenic standard of 2 $\mu g/m^2$ for any 15-minute period (19) was exceeded in 16 of the 51 composite samples (31%); however, comparing full-shift time-weighted data to a 15-minute standard will tend to underestimate short-term exposure levels.

Table 6. Time-weighted average (TWA) airborne arsenic exposures of underground employees with job titles of Miner 1st, 2nd, 3rd, or 4th at the Homostake Gold Mine, Lead, South Dakota.

	Number		Arsenic ug/m							
,	of TWA samples*	Range	Arith. mean	Std. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL**	UCL**	
9 Ledge	16	0.22-11.62	3.18	3.54	0.89	1.58	3.76	0.78	3.21	
Main (10) Ledge	7	0.36- 1.80	0.83	0.50	0.19	0.72	1.72	0.44	1.20	
Il Ledge	3	0.48- 7.25	3.19	3.58	2.07	1.86	3.89	0.06	54.34	
13 Ledge	2	0.29- 4.62	2.46	3.06	2.17	1.16	7.08	0.00	1000	
19 Ledge	4	0.50- 1.86	0.97	0.61	0.31	0.85	1.76	0.35	2.08	
21 Ledge	1	0.24	0.24		_	0.24	_	· -	-	
Total	33	0.22-11.62	2.28	2.89	0.50	1.17	3.20	0.77	1.77	

^{*} I to 10 filter halves from personal samples collected at a work site during a shift were combined (see Appendix C).

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

Table 7. Time-weighted average (TWA) airborne arsenic exposures of underground employees (excluding Miner classification) at the Homestake Gold Mine, Lead, South Dakota.

	Number	Arsenic μg/m							
Job title underground	of TWA samples*	Range	Mean	Srd. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL**	UCL**
Motorman	2	0.53-2.11	1.32	1.12	0.79	1.06	2.66	0.00	1000
Skipper & Skipper Head	3	0.43-2.13	1.42	0.88	0.51	1.16	2.37	0.13	9.91
Cager	1	0.85	0.85	-	-	0.85	-	-	-
Hoist Operator	2	0.10-0.53	0.32	0.30	0.22	0.23	3.25	0.58	1000
Carpenter	1	0.26	0.26	-		0.26	-		-
Shaftman '	į į	0.47	0.47	-	_	0.47	-	-	-
Sandman	1	0.55	0.55	-	-	0.55	-	-	_
Diamond Drill Helper	1	2.33	2.33	_	-	2.33	-	-	-
Boring Machine Helper	1	- 5.79	5.79	_	-	5.79	-	-	 -
Total	13	0.10~5.79	1.37	1.54	0.43	0.81	2.98	0.42	1,57

^{* 1} to 7 filter halves from personal samples collected from worker(s) with the same job title were combined (see Appendix C).

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

Table 8. Time-weighted average (TWA) airborne arsenic exposures of surface employees in crushing department, at the Homestake Gold Mine, Lead, South Dakota.

	Number			Ar	senic µg	/m ³			
Job title	of TWA samples*	Range	Mean	Std. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL**	UCL**
Surface Workers Crushing (i.e. Crusher/ Feeder, Laborer, Mechanic, Belt/Chip Picker)	3	0.77-6.45	2.76	3.20	1.88	1.75	3.13	0.10	 29.88
Motorman (Surface)	1	0.60	0.60		-	0.60	_	-	
Total	4	0.60-6.45	2.22	. 2.83	1.41	1.33	2.94	0.24	7.42

^{* 1} to 7 filter halves from personal samples collected from worker(s) with the same job title were combined (see Appendix C).

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

To determine if differences in exposure levels existed within and between ledges, an analysis of variance (ANOVA) was used to compare geometric mean exposures to airborne arsenic by ledge for all Miners (20). The results shown in Table 9 indicate a fluctuation of exposure levels in which the concentration variance within ledges was just as great as the concentration variance between ledges. Based on the samples collected, it could not be concluded that differences in exposures to arsenic existed between ledges for the Miners 1st, 2nd, 3rd, and 4th.

TRACE METALS

The remaining filter halves from the personal airborne samples, which were combined in the same manner (i.e., by worksite) as those for arsenic, were analyzed for trace metals, and are reported in Table 10. All TWA concentrations were within both NIOSH-recommended and current OSHA standards. The metals Be, Co, Ni, V, Pb, and Mo were not detected. The metals Fe, Zn, Cr, and Mn were detected in trace amounts with TWA concentrations ranging from 1.6 to 567.4 $\mu g/m^{-}$ for Fe, 0.2 to 19.5 $\mu g/m^{-}$ for Zn, 0.4 to 3.4 $\mu g/m^{-}$ for Cr, and 0.2 to 13.5 µg/m for Mn.

FIBERS

Optical Microscopy

Concentrations of fibers >5 µm in length (fibers/cm) were determined for all personal air samples and are reported in Appendix D. Alı fibers >5 um in length and with an aspect ratio > 3:1 were counted and assumed to be asbestos. TWA asbestos fiber exposures in excess of the current OSHA TWA standard of 2.0 fibers/cm (21) were observed for individual workers in the following job categories:

- (1) Boring Machine Operator (2.44 fibers/cm³)
- (2) Boring Machine Helper (2.57 fibers/cm²)
- (3) Miner lst drilling (2.78 fibers/cm²)
- (4) Miner 2nd drilling (3.42 fibers/cm³)
 (5) Miner 4th ore removal (4.01 fibers/cm³)
- (6) Mechanic 3rd Mill (2.48 fibers/cm)
- (7) Belt/Chip Picker Mill (2.03 fibers/cm³)
 (8) Laborer 2nd Mill cleanup (3.09 fibers/cm₃)
- (9) Laborer 1st Mill cleanup (5.34 fibers/cm)

These elevated fiber exposures represented 5 percent (5 of 96) of the underground employees studied and 33 percent (4 of 12) of the surface employees monitored.

Table 9. One-way analysis of variance (ANOVA) comparing geometric mean TWA exposures of Miners 1st, 2nd, 3rd, and 4th to arsenic on the six ledges at the Homestake Gold Mine, Lead, South Dakota.

Source of variation	Degrees of freedom (df)	Sum of the squares (SS)	Mean of the squares (MS)	Fs
Among the Ledges	5	412,463	82,493	0.99
 Within the Ledges	27	2,275,317	82,604	
 Total 	 32 	2,669,780		
F.50(5, 27) = 0.	89	F.25 (5, 27) = 1.41	

Note: There is no significant added variance component among ledges for exposures to arsenic. Based on the number of samples collected, it could not be concluded that differences in exposures to arsenic existed between ledges.

Table 10. Time-weighted average (TWA) airborne trace metal exposures at the Homestake Gold Mine, Lead, South Dakota.

Composite				7	
sample		Tr	ace meta	1s ug/m ³	
number	Samples combined*	Fe	Zn	Cr	Mn
		_, _			
600	79,75,89,87	74.9	2.9	0.5	2.7
601	49,40,45	124.6	3.9	0.7	2.6
602	53	68.8	2.5	1.3	0.6
603	61,69,70,67	87.0	4.6	0.4	1.8
604	28,32,93,50	188.3	4.5	0.6	4.2
605	83,84,120,119,33,16,37	256.0	6.4	2.0	4.0
606	110,62,116,106	108.3	1.7	0.4	3.8
607 1	23,13,9,76,12	22.5	1.3	1.2	0.8
608	189,152,179,177,191,170	90.3	3.5	2.6	2.6
609	138,135,136,128,125,129,	91.4	4.8	2.0	2.0
İ	143				
610	155,139,132,108,105,154	87.1	7.6	2.8	2.2
611	242,224,238,240,230,241	192.5	6.7	2.7	4.0
612	169,166,156,172,183	15.7	6.5	1.1	0.2
613	20,24,57,207	7.0	2.3	1.2	0.2
614	261, 265, 268, 266, 255	. 278.9	0.2	1.1	2.9
615	38,21,11,19	81.3	1.4	0.5	2.4
616	221,216,203,197	314.4	7.8	1.2	4.7
517	284,319	24.3	3.4	1.0	0.5
618	325,313,277,335	26.3	3.3	1.1	0.2
619	334,320,309	57.9	4.5	0.8	1.2
620	46,64,74,59,35	52.9	3.3	0.5	1.3
621	194,178,185,193	151.0	4.3	0.6	3.7
622	114,118	90.0	8.1	0.9	2.4
623	297,298,296	104.4	2.4	0.5	3.2
624	314,200,317	88.9	4.8	0.6	2.5
625	259,247,254,258,270	174.3	5.1	0.5	4.8
626	71,187,184,196	325.8	2.7	1.1	6.7
627	153,211,174,160	208.8	2.6	1.8	4.0
628	1 95	137.3	2.0	1.3	2.0
629	329,322,141,130,99,324	272.9	4.5	1.2	4.8
029	256,333,338,126	1 2/2.9	1 4.5	1.2	1 4.0
630	204,229,55,245,73	49.6	2.6	0.5	1.9
631	377,369,345,367,362	244.3	8.6	3.4	6.7
1 021	355,370,379,376	1 244.3	0.0] 3.4	0.7
632	140,175,195,200,281,212	218.9	3.2	0.7	1] 4.9
1 032		410.9	1 3.4	U . /	4.9
622	269,199	1112	1 6 0	1 , ,	1 2 2
633	408,411,404,412	113.6	6.9	1.2	3.2
634	306,282,278,305,217,225	89.3	2.5	1.2	2.6
635	399,394,384,392,393,332	68.3	3.5	1.2	1.9
		1	1		

Table IC (continued)

Composite sample		T	race meta	als 11g/m ³	
number	Samples combined*	Fe	Zn	Cr	Mn
636 637	425,426,300 354	66.3 113.0	5.C 7.8	1.1	1.7
638	479,453,474,437,480,459,	567.4	4.0	1.5	13.5
639 640 641	430,367,481,475 455,457,458 235,341,358,368,210 477,491,490,489,486,487,	1.6 197.9 62.4	3.8	1.4 2.1 1.2	0.3 3.5 1.2
642	438,432,440,434,431,442	58.7	5.7	0.9	1.4
643	421,415	91.4	2.9	1.1	1.7
644	365,447,443,435	42.1	4.0	1.8	1.1
645	417,90,405,205,418	254.4	19.5	1.8	5.5
646	41,343,228,347	88.6	3.9	1.4	1.4
647	403,316,381,414	254.9	3.9	1.2	8.5
648	253,398,371,360,397	88.8	2.2	0.8	2.0
649	380,390,427	. 72.2	3.5	0.6	1.5
650	299,407,465	3.2	0.3	0.6	9.6
651	436,201,94	79.4	0.3	0.6	1.5

^{* 1} to 10 filter halves from personal samples collected at a work site during a shift were combined.

Note: Be, Co, Mo, Ni, Pb, and V were not detected in any composite sample. The lower limits of detection were:

Beryllium (Be)	0.3	µg/sample
Cobalt (Co)	1.0	ug/sample
Molybdenum (Mo)	5.0	ug/sample
Nickel (Ni)	1.0	µg/sample
Lead. (Pb)	3.0	µg/sample
Vanadium (V)	0.5	µg/sample

The following two job classifications had individual worker exposures in excess of the current OSHA allowable ceiling value of 10 fibers >5 µm in length/cm³:

- (1) Miner 1st putting in track (15.48, 12.77 fibers/cm³)
- (2) Laborer 1st cleanup in Mill (10.07, 15.72, 16.20 fibers/cm³)

These concentrations were determined from individual samples collected from 3 employees (2 Miners and 1 Laborer) over time periods of 12 to 36 minutes. The samples in excess of the current OSHA ceiling standard represented about one percent of all the samples collected.

Individual samples were grouped to observe differences in exposures between job classifications as well as between the various ore ledges and the surface crushing mills. As shown in Table 11, when all Miner job classifications were grouped by ledge; the geometric mean TWA exposures ranged from 0.17 fibers/cm (21 Ledge) to 0.54 fibers/cm (Main Ledge). When Miners from all ledges were grouped together, a geometric mean TWA exposure of 0.44 fibers/cm resulted with 95% confidence levels of 0.35 and 0.53 fibers/cm.

A summary of TWA fiber exposures is presented in Table 12 for all job classifications underground excluding Miners. The lowest geometric mean TWA concentrations were observed for the Diamond Drill Operators and Hoist Operators (both 0.05 fibers/cm³) and the highest for Boring Machine Operator/Helpers (2.50 fibers/cm³). The geometric mean TWA concentration for all these job classifications was 0.24 fibers/cm³ with 95% confidence levels of 0.14 and 0.45 fibers/cm³.

A summary of TWA exposures for employees in the surface crushing, mills is presented in Table 13; concentrations ranged from 0.12 fibers/cm (Motorman) to 5.34 fibers/cm (Laborer 1st). A geometric mean TWA concentration of 1.16 fibers/cm with confidence levels of 0.59 and 2.28 fibers/cm resulted after combining the data from all job classifications in the crushing mills.

To determine if differences in exposure levels existed within and between ledges, ANOVA was used to compage geometric mean TWA concentrations of airborne fibers >5 μm in length/cm by ledge for all Miners. The results of the analysis shown in Table 14 indicate a fluctuation of fiber exposure levels in which the concentration variance within ledges was just as great as the concentration variance between ledges. Based on the samples collected, it could not be concluded that differences in exposures to fibers >5 μm in length existed between ledges.

Portions of 61 randomly chosen filters were shared with the Homestake Mining Company for a comparison of counting techniques; from these, five samples were subsequently voided by NIOSH due to filter loss, being used more than

ω

Table 11. Time-weighted average (TWA) airborne fiber exposures (optical microscopy) of underground employees with job titles of Miner 1st, 2nd, 3rd, or 4th at the Homestake Gold Mine, Lead, South Dakota.

Number of	Number			Fiber	s greater	than 5 µm is	length/cm		
samples counted	of TWA exposures*	Range	Mean	Std. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL**	UCL**
168	38	0.08-4.01	0.68	0.80	0.13	0.47	2.22	0.36	0.62
49	13	0.10-2.79	0.73	0.69	0.19	0.54	2.23	0.33	0.87
40	9	0.08-1.46	0.63	0.48	0.16	0.45	2.58	0.22	0.93
16	4	0.17-0.98	0.64	0.38	0.19	0.52	2.26	0.14	1.91
31	7	0.09-0.97	0.31	0.31	0.12	0.22	2.38	0.10	0.49
6	2 .	0.11-0.25	0.18	0.10	. 0.07	0.17	1.79	0.00	30.55
310	73	0.08-4.01	0.63	0.68	0.08	0.44	2.33	0.35	0.53
	168 49 40 16 31	samples counted of TWA exposures* 168 38 49 13 40 9 16 4 31 7 6 2	samples counted of TWA exposures* Range 168 38 0.08-4.01 49 13 0.10-2.79 40 9 0.08-1.46 16 4 0.17-0.98 31 7 0.09-0.97 6 2 0.11-0.25	samples counted of TWA exposures* Range Mean 168 38 0.08-4.01 0.68 49 13 0.10-2.79 0.73 40 9 0.08-1.46 0.63 16 4 0.17-0.98 0.64 31 7 0.09-0.97 0.31 6 2 0.11-0.25 0.18	samples counted of TWA exposures* Range Mean dev. 168 38 0.08-4.01 0.68 0.80 49 13 0.10-2.79 0.73 0.69 40 9 0.08-1.46 0.63 0.48 16 4 0.17-0.98 0.64 0.38 31 7 0.09-0.97 0.31 0.31 6 2 0.11-0.25 0.18 0.10	samples counted of TWA exposures* Range Mean dev. error 168 38 0.08-4.01 0.68 0.80 0.13 49 13 0.10-2.79 0.73 0.69 0.19 40 9 0.08-1.46 0.63 0.48 0.16 16 4 0.17-0.98 0.64 0.38 0.19 31 7 0.09-0.97 0.31 0.31 0.12 6 2 0.11-0.25 0.18 0.10 0.07	samples counted of TWA exposures* Range Mean dev. error mean Geometric mean 168 38 0.08-4.01 0.68 0.80 0.13 0.47 49 13 0.10-2.79 0.73 0.69 0.19 0.54 40 9 0.08-1.46 0.63 0.48 0.16 0.45 16 4 0.17-0.98 0.64 0.38 0.19 0.52 31 7 0.09-0.97 0.31 0.31 0.12 0.22 6 2 0.11-0.25 0.18 0.10 0.07 0.17	samples counted of TWA exposures* Range Mean Std. dev. error Geometric mean Geometric std. dev. 168 38 0.08-4.01 0.68 0.80 0.13 0.47 2.22 49 13 0.10-2.79 0.73 0.69 0.19 0.54 2.23 40 9 0.08-1.46 0.63 0.48 0.16 0.45 2.58 16 4 0.17-0.98 0.64 0.38 0.19 0.52 2.26 31 7 0.09-0.97 0.31 0.31 0.12 0.22 2.38 6 2 0.11-0.25 0.18 0.10 0.07 0.17 1.79	samples counted of TWA exposures* Range Mean Std. dev. error mean Geometric std. dev. ECL** 168 38 0.08-4.01 0.68 0.80 0.13 0.47 2.22 0.36 49 13 0.10-2.79 0.73 0.69 0.19 0.54 2.23 0.33 40 9 0.08-1.46 0.63 0.48 0.16 0.45 2.58 0.22 16 4 0.17-0.98 0.64 0.38 0.19 0.52 2.26 0.14 31 7 0.09-0.97 0.31 0.31 0.12 0.22 2.38 0.10 6 2 0.11-0.25 0.18 0.10 0.07 0.17 1.79 0.00

^{*} A TWA exposure was calculated for each miner from the 3'to 5 samples collected during a shift.

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

Table 12. Time-weighted average (TWA) airborne fiber exposures (optical microscopy) of underground employees (excluding Miner classification) at the Homestake Gold Mine, Lead, South Dakota.

7		T. W 5	Number	T		Cibava a			1		
		Number of samples	of TWA		F	Std.	Std.	han 5 µm in 1 Geometric	Geometric		
	Job title	counted	exposures*	Range	Mean	dev.	error	mean	std. dev.	LCL**	UCL**
	Diamond Drill Operator and Helper	10	2	0.04-0.06	0.05	0.01	0.01	0.05	1.33	0.00	0.64
	Boring Machine Operator and Helper	10	2	2.44-2.57	2.50	0.09	0.06	2.50	1.80	1.80	3.48
-	Motorman (Underground)	11	3	0.12-0.92	0.63	0.44	0.25	0.45	3.16	0.03	7.86
	Sandman	13	3	0.11-0.43	0.27	0.16	0.09	0.23	1.99	0.04	1.31
	Skipper and Skipper Head	12	3 .	0.23-0.91	0.55	0.34	0.20	0.47	1.99	0.08	2.61
	Shaftman	7	2	0.06-0.07	0.065	0.007	0.005	0.06	1.12	0.02	0.17
	Carpenter	13	3	0.52-1.06	1.18	0.29	0.17	1.03	1.47	0.31	2.11
]	Hoist Operator	12	3	0.02-0.11	0.06	0.05	0.03	0.05	2.37	0.01	0-44
ļ	Cager	4	1	0.08	0.08	1		'			
	Pipeman, Master	3	1	0.29	0.29			!		1	
	Total	95	23	0.02-2.57	0.55	0.71	0.15	0.24	3.94	0.14	0.45

^{*} A TWA exposure was calculated for each employee from the 3 to 5 samples collected during a shift.

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

Table 13. Time-weighted average (TWA) airborne fiber exposures (optical microscopy) of surface employees in crushing department at the Homestake Gold Mine, Lead, South Dakota.

	Number of	Number		Fibers greater than 5 ym in length/cm								
Job_title	samples counted	of TWA exposures*	Range	Hean	Std. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL**	UCL** 9.12 - 14.71 8.94 - 1000 2.28		
Crusher-Feeder	7	2	1.23-1.64	1.44	0.29	0.21	1.42	1.23	0.23	9.12		
 Hechanic 3rd	4	1	2.48	2.48	-	-	_	-	-	-		
 Belt/Chip Picker	11	3	0.24-2.03	1.21	0.91	0.52	0.87	3.12	0.05	14.71		
Laborer 2nd	11	3	0.74-3.09	1.78	1.28	0.69	1.51	2.04	0.26	8.94		
Laborer lst	7	1	5.34	5.34	5.34		_		<u> </u>	-		
Hotorman	6	2	0.12-0.83	0.48	0.50	0.36	0.32	3.93	0.00	1000		
Total Surface Workers Crushing	46	12	0.12-5.34	1.72	1.43	0.41	1.16	2.89	0.59	2.28		

^{*} A TWA exposure was calculated for each surface employee from the 3 to 7 samples collected during a shift.

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

Table 14. One-way analysis of variance (ANOVA) comparing geometric mean TWA exposures of Miners 1st, 2nd, 3rd, and 4th to asbestos on the six ledges in the Homestake Gold Mine, Lead, South Dakota.

Source of variation	Degrees of freedom (df)	Sum of the squares (SS)	Mean of the squares (MS)	Fs
Among Ledges	5	13,367	2,673	0.55
Within Ledges	66	l 319,232	4,837]
Total	71	332,599	 	
F.75(5, 66) = 0	.534 F	.50 (5, 66) =	0.870	

Note: There is no significant added variance component among ledges for exposures to asbestos fibers >5 µm in length. Based on the number of samples collected, it could not be concluded that differences in exposures to asbestos existed between ledges.

once for collection, or loss of data. The results of the comparisons presented in Table 15 indicate that sample concentrations determined by NIOSH exceeded those determined by the company in all but three of the samples. This observed difference could be attributed to the handling of the filter samples prior to counting, differences in counter experience, preparation of samples, and/or the optical microscope resolution.

Electron Microscopy

A total of 740 fibers from 51 filter samples were sized, identified, and then categorized using electron microscopy techniques at 17,000X magnification into one of the following four mineral groups:

- (1) Cummingtonite-Grunerite (asbestos amphibole)
- (2) Tremolite-Actinolite (asbestos amphibole)
- (3) Hornblends (nonasbestos amphiboles, aluminum detected in the elemental composition)
- (4) Ambiguous or Nonasbestos

The last group includes those fibrous minerals which did not give a discernible SAED or EDS spectrum for identification or were identified as nonasbestos fibrous minerals such as gypsum, brucite, calcite, etc. Results of airborne fiber size determinations (diameter and length) are shown in Tables 16 and 17 with appropriate summary statistics. For all four mineral types the median and geometric mean fiber dimensions were almost identical. Those fibers identified as the mineral cummingtonite-grunerite had a geometric mean diameter of 0.43 μm with a geometric mean length of 3.3 μm . In comparison, those fibers identified as tremolite-actinolite had a geometric mean diameter of 0.27 μm and a mean length of 4.1 μm . Combining the results of the analyses for all four mineral groups indicated a geometric mean fiber diameter of 0.40 μm and a geometric mean length of 3.2 μm . As indicated in Table 18, 24% of the identified cummingtonite-grunerite fibers and 32% of the tremolite-actinolite fibers had lengths >5 μm , and as a composite, they accounted for 83% of all fibers >5 μm in length.

A summary of airborne fiber types as determined by TEM (SAED and EDS) are shown in Table 19. Eighty-four percent of the airborne fibers were identified as amphibole asbestos, while the remaining 16% were either unidentified (ambiguous) or nonabestos minerals. Sixty-nine percent of the amphiboles were characterized as cummingtonite-grunerite, 15% as tremolite-actinolite, with the remaining 16% identified as fibrous hornblend minerals. Typical photomicrographs of airborne fibers, SAED patterns, and EDS spectrums for cummingtonite-grunerite and tremolite-actinolite are shown in Figures 4 and 5, respectively.

Table 15. Comparison of NIOSH and Homestake optical microscopy fiber counting (fibers greater than 5 μm in length per cubic centimeter of air).

1		Homescake
1 1 1 1		! ·
H4	0.11,	0.06
Н5	0.36	0.11
Н16	2.44	0.52
н18	0.05	0.01
Н28	0.06	0.08
нз2	0.81	0.17
H37	1.79	0.46
н39	2.44	0.06
н50	12.77	0.86
H55	0.24	0.01
н58	0.37	0.18
н63	0.17	0.01
н73	0.33	0.02
н80	0.26	0.06
н88	0.54	0.01
н93	0.01	0.01
н97	1.29	
H125	1.58	0.01
H128	0.29	0.05
H135		0.10
	0.13 .	0.01
H136	0.07	0.03
н138	0.21	0.05
H143	0.18	0.05
H173	0.72	0.04
H204	2.72 .	0.03
H205	0.21	0.01
H208	1.69	0.05
H219	3.15	0.53
н229	0.68	0.02
H235	0.19 '	0.04
H245	0.02	0.01
H247	0.64	0.07
H250	0.55	0.04
H254	0.05	0.02
H258	0.39	0.05
H259	0.05	0.06
н270	0.33	0.08
H274	0.28	0.01
H275	0.60	0.06
H294	0.08	0.08
н295	3.58	1.20
Н301	0.53	0.02
H3O2	0.17	0.01
н303	0.30	0.01
нзо6	0.67	0.02
1		0.02

Table 15 (continued)

Sample number	NIOSH	Homestake
н308	0.08	0.01
H320	0.35	0.03
н334	0.08	0.04
H341	2.01	0.04
н352	0.44	0.04
нз 57	0.48	0.04
нз 58	0.38	0.03
н381	0.25	0.28
H387	0.09	0.02
H414	1.36	0.31
н418	0.12	0.03

Table 16. Fiber size determination by diameter analysis (electron microscopy) of airborne samples collected at the Homestake Gold Mine, Lead, South Dakota.

					Micromet	erŝ (um)		-								
Type of fibrous mineral	Median	Range	Mean	Std. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL*	UCL*							
Cummingtonite-Grunerite	0.4	0.1-8.0	0.63	0.75	0.04	0.43	2.31	0.39	0.47							
Tremolite-Actinolite	0.3	0.1-1.1	0.33	0.21	0.03	0.27	1.82	0.23	0.32							
Hornblends	0.4	0.1-3.1	0.64	0.58	0.06	0.47	2.14	0.40	0.44							
Ambiguous Determination or Non-Asbestos	0.3	0.1-2.5	0.42	 - - 0.43	0.07	0.31	2.12	0.25	0.40							
Total	0.4	0.1-8.0	0.58	0.67	0.03	0.40	2.25	0.38	0.43							

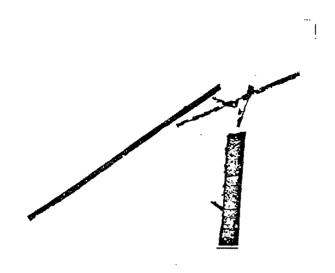
^{*} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual fiber diameters.

Table 17. Piber size determination by length analysis (electron microscopy) of airborne samples collected at the Homestake Gold Mine, Lead, South Dakota.

	Micrometers (μm)										
Type of fibrous mineral	Median	Range	Mean	Std. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL*	UCL*		
Cummingtonite-Grunerite	3.0	0.5-38.5	4.5	4.5	0.26	3.3	2.1	3.0	3.6		
Tremolite-Actinolite	3.8	1.3-23.8	4.9	3.6	0.47	4.1	1.8	3.5	4.8		
Hornblends	2.8	0.7-21.0	3.9	3.9	0.43	2.9	2.0	2.5	3.4		
Ambiguous Determination or Non-Asbestos	1.9	0.6- 7.0	2.3	1.4	0.21	1.9	1.8	1.6	2.3		
Fotal	3.0	0.5-38.5	4.2	4.2	0.19	3.2	2.1	3.0	3.4		

^{*} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual fiber lengths.

Table 18. Percentage of fibers greater than 5 micrometers (μm) in length by electron microscopy of airborne samples collected at the Homestake Gold Mine, Lead, South Dakota.


Type of fibrous mineral .	Mean diameter	Mean length µm	Percent fibers >5 µm in length
Cummingtonite-Grunerite	0.63	4.5	24
Tremolite-Actinolite	0.33	4 . 9	32
 Hornblends	0.64	3.9	23
Ambiguous Determination or Non-Asbestos	0.42	2.3	9
Total	0.58	4.2	23

Note: Cummingtonite-grunerite and tremolite-actinolite fibers $>\!\!5~\mu m$ in length accounted for 83% of all fibers $>\!\!5~\mu m$ in length.

Table 19. Electron microscopy identification of airborne fibers by selected area electron diffraction and energy dispersive x-ray analysis at the Homestake Gold Mine, Lead, South Dakota.

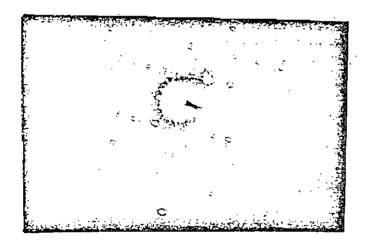
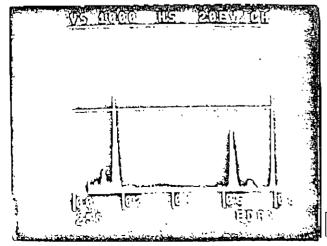

				· ·
Percentage of	total fibers identified	Percentage of am	phibole fibers	identified
	Ambiguous determination	Cummingtonite-	Tremolite-	1.
Amphiboles	or non-asbestos	grúnerite	actinolire	Hornblends
				1
84	16	69	15] 16
ĺ	_			1

Figure 4. Fibrous cummingtonite-grunerite electron microscopy analysis Homestake Gold Mine, Lead, South Dakota.



Photomicrograph

1 micrometer

Selected Area Electron Diffraction

Energy Dispersive X-Ray Spectrum Mg-Si-Fe (variation in elemental ratios observed)

Reproduced from best available copy.

To help characterize and identify the fibrous amphiboles observed on the airborne samples, composite ore samples collected from the surface mills were analyzed by TEM (SAED and EDS). Photomicrographs of SAED patterns were made of typical fibrous particulates (aspect ratio > 3:1) which were tilted into a preferred zone-axis orientation. Subsequently, d-spacings of the fiber's c-axis were measured from the photomicrographs. Likewise, EDS was also performed with elemental ratios tabulated for each of the fibrous mineral types. In addition, as a reference standard, minerals of cummingtonite, grunerite, tremolite, and actinolite were obtained from the Smithsonian Institution and were characterized in the same manner as the ore samples. Those fibers which demonstrated an amphibole electron diffraction pattern and indicated aluminum in their elemental composition were classified as hornblends.

To determine the relative aspect ratios (length to diameter) for each of the four fibrous mineral types, a frequency fiber size distribution was performed with each mineral type classified into three size groups (i.e., aspect ratios $\geq 10:1$, $\geq 5:1$, and $\geq 3:1$). As indicated in Table 20, the observed aspect ratios for all fiber types were basically the same, except for tremolite-actinolite, which demonstrated a greater portion (68%) of the fibers being $\geq 10:1$. As an average for all four mineral typee, 79% of the fibers had aspect ratios > 5:1 with 33% > 10:1.

Individual airborne sample results, as determined by TEM, were compared to their respective optical microscopy counts and are shown in Table 21. The fiber concentrations determined from TEM analysis for both total fibers and fibers >5 µm in length represent "positively identified asbestos" in which identification was confirmed by either SAED or EDS. Therefore, the reported TEM fiber concentrations represent minimum estimates of true total airborne asbestos concentrations since they do not take into account the number of asbestos fibers that gave ambiguous results.

The TEM concentration of asbestos fibers (>5 μ m in length) were higher than most of the respective optical microscopy determinations. As noted in Table 16, a significant portion of the observed fibers had diameters <0.3 μ m, and consequently would not have been observed using the standard optical microscopy method due to the presence of fiber sizes below the resolution capabilities of the microscope optical system. As expected, when all fibers (asbestos, hornblend, and unidentified) >5 μ m in length were counted by TEM, fiber concentrations exceeded those determined by optical microscopy.

RADON DAUGHTERS

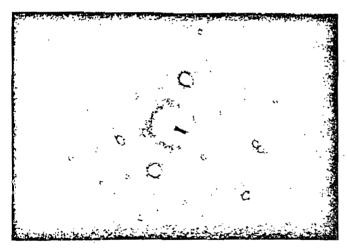
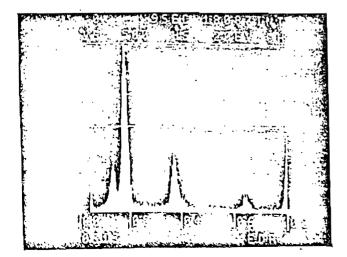

The radon daughter measurements (alpha decay), as shown in Table 22, were assigned to one of three different ventilation systems which supply air to the mine. The assignment of measurements to the three ventilation systems was

Figure 5. Fibrous tremolite-actinolite electron microscopy analysis Homestake Gold Mine, Lead, South Dakota.



Photomicrograph

1 micrometer

Selected Area Electron Diffraction

Energy Dispersive X-Ray Spectrum
Mg-Si-Ca-Fe
(variation in elemental ratios observed)

Table 20. Fiber size distribution by aspect ratio (length to diameter) electron microscopy analysis at 17,000X magnification of airborne samples collected at the Homestake Gold Mine, Lead, South Dakota.

Types	Cummulat	ive frequer	icy (%)
fibrous mineral	<u>></u> 10:1	<u>></u> 5:1	<u>≥</u> 3:1
Cummingtonite-Grunerite	30	77	100
Tremolite-Actinolite .	68	· 92	100
Hornblends	19	74	100
Ambiguous Determination or Non-Asbestos	26	83	100
Total	33	79	100

Table 21. Comparison of optical and transmission electron microscopic (TEM) fiber concentrations of air samples collected at the Homestake Gold Mine, Lead, South Dakota.

		,	Fibers/cm	
Sample		Optical	TEM	TEM
number_	Job title	fibers >5 µm	≠ficers >5 μm	*total fibers
H-003	Miner 4th	0.9	1.0	3.6
H-007	Miner 1st	2.8	17.6	78.3
H-016	Miner 1st	2.4	2.2	6.5
H-021	Miner 3rd	2.0	3.6	7.2
H-041	Miner 1st	0.8	1.3	6.5
H-042	Miner 1st	15.5	15.8	110.8
H-044	Miner 3rd	8.0	2.1	2.1
H-048	Miner 2nd	0.5	1.0	2.7
H-056	Miner 2nd	5.0	3.0	19.6
H-074	Miner 1st	0.6	0.5	1.0
H-086	Miner 2nd	1.6	0.7	4.8
H-109	Miner 1st	1.2	5.2	20.9
H-118	Motorman-Underground	0.2	0.6	1.3
H-139	Miner 1st	3.8	1.4	4.1
	Diamond Drill Operator	0.2	0.8	3.1
H-178	Miner 1st	0.2	0.0	0.0
H-187	Miner 1st	0.4	0.4	5.8
H-191	Miner 1st	3.3	0.6	1.2
H-204	Miner 1st	2.7	2.4	2.4
H-211	Miner 1st •	0.7	• 1.2	3.6
H-216	Miner 1st	1.7	2.1	25.6
H-217	Miner 4th	1.1	0.9	0.9
H-219	Miner 1st	3.1	4.1	46.8
H-239	Motorman-Underground	1.6	1.0	11.0
H-241	Miner 3rd	4.9	2.5	22.6
H-255	Boring Machine Operator	5.2	7.1	77.2
H-260	Miner 1st	1.5	1.2	3.8
H~269	Miner 4th	9.8	16.4	44.6
H-272	Miner 1st	0.5	1.1	3.1
H-295	Skipper Head	3.6	44.3	118.8
H-301	Miner 1st	0.5	0.5	0.9
H-304	Shaftman	0.1	0.5	0.9
H-318	Miner lst	2.1	2.6	11.2
H-327	Cager	0.2	1.1	3.6
H-336	Skipper	0.7	1.4	6.3
H-341	Miner 1st	2.0	1.3	10.8
H-335	Miner 1st	6.6	1.8	3.5
H-396	Crusher-Feeder	2.6	2.9	10.8
H-401	Crusher-Feeder	1.7	2.1	17.3
H-409	Miner 1st	0.9	1.1	2.2
H-415	Mine Shift Boss	1.1	1.6	6.9
H-416	Miner 1st	4.9	25.2	73.9
H-417	Miner 1st	1.5	0.6	6.9
H-425	Skipper	.0.4	0.7	2.9
]	

Table 21 (continued)

		Fibers/cm							
Sample number	Job title	Optical fibers >5 um	TEM *fibers >5 um	TEM *total fibers					
H-436	Motorman-Surface	1.9	0.7	11.3					
H-440	Miner 1st	0.6	0.9	2.3.					
H-443	Carpenter 1st	1.7	1.1	23.2					
H-455	Hoist Operator	0.1	0.8	1.6					
H-462	Miner 1st	l 1.1	3.7	11.8					
H-467	Laborer 2nd	4.3	2.0	5.4					
H-477	Sandman	0.8	0.5	5.5					

*Note: Includes only those fibers identified as asbestos using selected area electron diffraction and/or energy dispersive X-ray analyses.

Table 22. Radon daughter measurements grouped by ventilation systems at the Homestake Gold Mine, Lead, South Dakota.

Ventilation system	Sample number	Sample location	Working level (WL)
	- 1	6500, Main Ledge, 90 pillar, Drift north	0.000
	2	6050, 13 Ledge, 47c stope	0.004
	3	6800, 93 & 94c stopes	0.007
	4	6050, Main Ledge, 89e stope	0.003
	5	6050, 13 Ledges, 54 drift	0.000
	6	5450, 11 Ledge, 49 & 51 stopes	0.000
#1	8	5600, 11 Ledge, 55 pillar	0.000
	9	5750, 11 Ledge, 57c scope	0.000
	10	5750, 9 Ledge, 67 & 68d stopes	0.007
	11	5450, 9 Ledge, 66 & 67c stopes	0.000
	12	5750, 9 Ledge, 68c stope	0.000
	13	6050, Main Ledge, 90 pillar	0.001
	16	4850, #4 Hoist Room	0.004
	17	5450, 9 Ledge, 64 & 65d stopes	0.009
		Avg.	0.003
	14	6200, 19 Ledge, 27 chute	0.022
	15	5900, 19 Ledge, 28 & 29f stopes	0.041
	19	4850, 19 Ledge, 46 x cut	0.026
	21	#4 shaft	0.005
	22	6200, 21 Ledge, 50 & 52 stope	0.032
	28	4400, 9 Ledge, 31 & 32 stope	0.018
	29	4850, skip pocket, Yates	0.024
#2	30	4100, Main Ledge, 58e stope	0.022
# L	31	3650, 9 Ledge, 27d stope	0.044
	32	3800, 9 Ledge, 18b stope	0.045
	33	4850, Skip pocket	0.019
	35	4250, 9 Ledge, 36 & 37 stopes	0.014
	38	4550, #6 Hoist Room	0.007
	39		
	40	3950, 9 Ledge, 24 & 25 stopes	0.064
		4100-4250, Main Ledge	0.032
	41	4250, Main Ledge, 70 x cut	0.012
	42	4250, Main Ledge, 71c stope	0.034
	50	4700, 9 Ledge, 37F stope	0.036
	52	4100, Main Ledge, 61 x cut	0.020
	53	2000, Ross Station - Ross Shaft .	0.024
		Avg.	0.027
	18	1700, 9 Ledge, 24a stope	0.040
	24	2150, 9 Ledge, 51 stope	0.163
	25	2000, 9 Ledge, 45 & 51 stope	0.165
	26	2150, 9 Ledge, Motor Barn	0.142
	27	2150, 9 Ledge, 49 x cut	0.154
#3	34	1700, 8 x cut - air from open cut area	0.111
	54	1700, 8 x cut - air from open cut	0.101
	5.5	2000, 9 Ledge, 50 x cut	0.169
	56	4850, return air from bent drift	0.036
	57	4850, intake from vent drift - Yates	0.027
		Avg.	0.111

based on discussions with Homestake Mine personnel. The measurements are reported in terms of a working level (WL) which is defined as any combination of the short-lived radon daughters in 1.0 liter of air which will result in an ultimate 1.3 x 10 million electron volts of potential alpha energy (22). Radon daughter levels ranged from O (below level of detection) to 0.169 WL. As can be seen in Table 22, there is a significant difference in levels among the worksites supplied by the different ventilation systems. However, the assignment of the three ventilation systems to the various mine locations did not take into account possible air mixing between systems. Results of radon daughter sampling from a subsequent MESA survey in September 1977, appear to approximate these observed measurements (22). The results from that survey indicated a range of levels from 0.010 to 0.130 WL, with average exposures of 0.036 and 0.073 WL determined for ventilation systems #2 and #3, respecrively. No sampling was performed in the areas of the mine which were supplied air from the #1 ventilation system, since previous sampling had indicated negligible levels. Both the NIOSH and MESA 1977 surveys indicated higher levels in the areas of the mine which were supplied air from the #3 ventilation system which draws its intake air through old surface and underground workings, many of which are caved or cracked. These workings are in a part of the mine which was thought to have higher alpha activity due to the presence of rhyolite and phonolite dikes.

In the 1960 Bureau of Mines survey (2), five samples were collected for radon daughters with an average level of 0.006 WL found. Other surveys by MESA observed levels generally around 0.01 WL, with maximums of 0.015 WL in 1968 (23) and 0.02 WL in 1975 (24). These earlier surveys, which indicated levels lower than those observed by NIOSH and MESA in 1977 studies, did not attempt to identify levels by ventilation systems and, therefore, did not completely characterize the potential for exposure throughout the mine.

TRUG

Impinger dust sample concentrations in millions of particles per cubic foot of air (mppcf) were calculated by job type for each 15- to 30-minute sampling period. In addition, TWA values were calculated from the four to six samples collected in the breathing zone of the observed worker during a shift; average TWA values for the different ledges were also calculated. All impinger sample results are reported in Appendix E. A summary of the impinger results grouped by surface (crushing) and underground ledge is shown in Table 23 and indicates that the individual dust sample concentrations ranged from 0.0 to 16.6 mppcf. If the dust is assumed to be inert (i.e., <1% quartz), then the current OSHA standard for impinger samples would be 15 mppcf for the respirable fraction and 50 mppcf for total dust; likewise, if the quartz content is >1%, then the formula $\frac{250}{\sqrt{2} \cdot \sin 2} + \frac{250}{\sqrt{2} \cdot \cos 2} + \frac{250}$

Table 23. Airborne dust exposures as determined by impinger samples collected at the Homestake Gold Mine, Lead, South Dakota.

Location*	Number of individual samples collected	Range mppcf	Mean mppcf	Median mppcf	Time-weighted average (TWA)
Crushing (surface)	10	0.07- 5.96	2.0	1.3	2.1
9 Ledge	85	0.03-13.22	1.5	0.7	1.2
Main Ledge	37	0.04-16.60	1.9	1.0	1.3
ll Ledge	. 22	0.00- 4.12	1.1	0:8	1.1
13 Ledge	12	0.37-12.47	2.6	1.3	2.4
19 Ledge	15	0.04- 5.46	0.7	0.2	0.5
21 Ledge	6	0.13- 1.63	0.7	0.6	0.8
Total	187	0.00-16.60	1.5	0.9	1.3

^{*} Includes all job types working in these locations.

mppcf - millions of particles per cubic foot of air.

during impinger dust counting that over 95% of the dust particles observed were less than 10 µm in diameter and were therefore considered to be potentially respirable. In addition, it was determined by the analysis of ore samples and airborne collected samples that the quartz content was >1%.

The highest dust concentrations were found during the work activities of dumping waste (16.6 mppcf), filling ore cars (13.2 mppcf), putting in track (12.5 mppcf), and blast hole drilling (10.7 mppcf). These elevated concentrations were due mainly to inadequate local ventilation and/or lack of water as a dust suppressant. Moderate concentrations were observed during drilling in stopes (8.7 mppcf), blast hole slushing (8.1 mppcf), clean-up in the crushing mill (6.0 mppcf), pulling chute (5.1 mppcf), and borehole drilling (4.2 mppcf). Most of these activities, except for clean-up in the crushing mill, represented isolated instances where insufficient amounts of water were being used to suppress airborne dust. In most instances, the work practices utilized, such as amount of water used for dust suppression and positioning of ventilation ducts, determined the relative dustiness of the work environment.

Although individual sample results were sometimes high, average (arithmetic mean) TWA exposures by ledge or surface location were always substantially lower, as shown in Tables 24, 25, and 26. The geometric mean TWA exposures to dust for the six ledges ranged from 0.11 mppcf (19 Ledge) to 2.40 mppcf (13 Ledge), as shown in Table 24. When Miners from all ledges were grouped together, a geometric mean TWA exposure of 0.85 mppcf was calculated with 95% confidence levels of 0.55 and 1.34 mppcf. The lowest TWA exposure over a shift for a Miner was 0.06 mppcf; this particular Miner was involved in the installation of water pipes on the 4850 Level, 19 Ledge. The highest TWA exposure for a Miner was 6.03 mppcf during dumping waste, mucking, and unloading equipment on the 6500 Level, Main Ledge.

In Table 25, a summary of TWA exposures to dust is presented for all other underground job classifications (excluding Miners). Both the lowest (0.18 mppcf) and highest (2.68 mppcf) TWA exposures over a single shift were observed for the Skipper job classification, with a geometric mean concentration of 1.07 mppcf. The geometric mean TWA concentration for these norminer underground job classifications was 1.03 mppcf with 95% confidence levels of 0.57 and 1.86 mppcf.

A summary of TWA exposures to dust for the two workers monitored in the surface crushing mills (see Table 26) indicated mean concentrations of 0.27 mppcf for a Belt/Chip Picker and 3.82 mppcf for a Laborer 1st. Individual sample concentrations ranged from 0.07 to 5.96 mppcf, with the highest levels found for the Laborer 1st during cleanup in the crushing mill.

Table 24. Time-weighted average (TWA) airborne dust exposures (impinger samples) of underground employees with job titles of Miner 1st, 2nd, 3rd, or 4th at the Homestake Gold Mine, Lead, South Dakota.

	Number of	Number		Hillions	of part	iclés per	cubic foot	of air (mppc	f)	
Location	samples counted	of TWA exposures*	Range	Mean	Std. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL**	UCL**
9 Ledge	80	14	0.12-4.06	1.48	1.25	0.33	0.95	2.91	0.51	1.77
Main (10) Ledge	27	6	0.29-6.03	1.71	2.23	0.91	0.91	3.34	0.26	3.23
l 11 Ledge	16	3	0.42-1.82	1.15	-0.70	0.41	0.98	2.13	0.15	6.42
13 Ledge	12	2 .	2.09-2.75	2.42.	0.47	0.33	2.40	1.21	0.42	13.71
19 Ledge	9	2	0.06-0.20	0.13	0.10	0,07	0.11	2.34	0.00	228.36
21 Ledge	6 -	1	0.75	Ω.75	_	-	0.75	-	 -	-
1	1	1	1	1		1	1	I		1

1.42

1 1.40

0.26

0.85

3.12

0.55

1.34

28

150

0.06-6.03

Total

All Miners Underground

^{*} A TWA exposure was calculated for each miner from the 3 to 7 samples collected during a shift.

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

Table 25. Time-weighted average (TWA) airborne dust exposures (impinger samples) of underground employees (excluding Miner classification) at the Homestake Gold Mine, Lead, South Dakota.

	Number of	Number	1	Millions	of part	icles per	cubic foot	of air (mppc	E)	
	samples	of TWA			Std.	Std.	Geometric	Geometric		
Job title	counted	exposures*	Range	Mean	dev.	error	mean	std. dev.	LCL**	UCT**
Skipper and Skipper Head	17	3	0.18-2.68	1.81	1.41	0.81	1.07	4.69	0.02	 49.97
Carpenter	10	2	0.61-0.71	0.66	0.07	0.05	0.66	1.11	0.25	1.73
Hoist Operator	12	2	0.85-0.95	0.90	0.07	0.05	0.90	1.08	0.44	1 1.82
Motorman	6	1	1.46	1.46	-	_	1.46	-	-	<u> </u> –
Diamond Drill Operator	6	1	0.82	0.82	-	-	0.82	- -	-	_
Boring Machine Operator	6	1 .	2.53	2.53	-	_	2.53	-	-	
Total All Non-miners Underground	57	10	0.18-2.68	1.34	0.92	0.29	1.03	2.30	0.57	1.86

^{*} A TWA exposure was calculated for each underground employee from the 3 to 6 samples collected during a shift.

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

Table 26. Time-weighted average (TWA) airborne dust exposures (impinger samples) of surface employees in crushing department at the Homestake Gold Mine, Lead, South Dakota.

	Number of	Number		Millions	of part	icles per	cubic foot	of air (mppc	:£)	
Job title	samples counted	of TWA exposures*	Range	Mean	Std. dev.	Std. error	Geometric mean	Geometric std. dev.	LCL**	UCL**
Belt/Chip Picker	i 5	1	0.27	0.27	 -	-	0.27	_	-	 -
Laborer 1st	5	1	3.82	3.82	-	-	3.82	- -	-	
Total Surface Workers Crushing	10	2	0.27-3.82	2.05	2.51	1.78	1.02	6.51	0.00	1000

^{*} A TWA exposure was calculated from the 5 samples collected on each of the Crushing Department employees monitored.

^{**} LCL and UCL are the lower and upper 95% confidence limits based on the geometric mean and geometric standard deviation of the individual estimates of daily TWA concentrations.

Nineteen impinger samples were randomly chosen from those collected during the survey and were simultaneously counted by the Homestake Mining Company as a comparison of counting methodologies. These sample comparisons are presented in Table 27 and indicate no significant difference (p<0.05) between NIOSH and Homestake counts.

BULK ORE SAMPLES

Three composite ore samples collected from the crushing mills during the survey were analyzed for trace metals, free silica (quartz and cristobalite), arsenic, and asbestos in an effort to help substantiate the characterization of airborne contaminants in the mine. The trace metal, arsenic, quartz, cristobalite results are presented in Table 28. All trace metals except for iron (14-15%) were either not detectable or were found in negligible quantities. Quantities of arsenic ranged from 0.26 to 0.31% using both atomic absorption and neutron activation analysis techniques, and free silica determinations indicated the presence of 22-24% quartz and 0.9% cristobalite. Asbestos fiber characterization was performed by TEM as previously described; this analysis confirmed the types of fibers observed in the airborne sample exposure data collected in both the mine and mill.

Table 27. Comparison of NIOSH and Homestake impinger counts.

	Concentration	(mppcf)
Sample number	Homestake count	NIOSH count
1		
H2 .	1.33	1.44
H5	0.69	1.02
H12	2.91	3.67
н16	0.35	1.27
H18	0.47	0.29
H20	0.22	0.37
H21	2.22	3.73
H26	0.83	1.40
H27	0.89	. 1.30
H119	0.83	0.13
H122	1.35	1.12
н123	1.91	1.05
H125	2.06	0.95
H126	0.59	0.25
H129	2.47	0.97
H131	3.19	1.48
H137	1.13	0.26
H141	0.89	0.76
H148	4.79	3.97
	İ	

No significant difference (p>0.05) between NIOSH and Homestake counts.

Table 28. Composite ore sample analysis.

Sample number	% Be	% Co	% Cr	% Fe	% Mn	% Mo	% Ni	% Pb	% V	Z _n	% Quartz	% Cristobalite	7. Arsenic*	% Arsenic**
1	N.D.	N.D.	N.D.	14	0.2	N.D.	N.D.	N.D.	N.D.	0.01	22	0.9	0.27	0.27
. 2	N.D.	N.D.	N.D.	15	0.3	и.р.	N.D.	N.D.	N.D.	0.01	24	0.9	0.27	`0.29
3	N.D.	N.D.	N.D.	15	0.3	N.D.	N.D.	 и.р.	.מ.א	0.01	23	0.9	0.26	0.31
Limit of Detection	0.01%	0.01%	0.005%	0.01%	0.01%	0.03%	0.01%	0.01%	0.01%	0.01%	0.03тд	0.03mg	 0.005% 	 0.001%

N.D. - None Detected

^{*} Atomic absorption spectrophotometry

^{**} Neutron activation

COMPARISON OF PRESENT AND PAST EXPOSURES

As part of the overall study at the Homestake Gold Mine, which includes the mortality study, the industrial hygiene survey was conducted not only to characterize current exposures but to be able to combine the current results with pertinent data such as historic exposures data, changes in work practices and mining techniques, etc., to postulate types and extent of prior exposures underground.

RADON DAUGHTERS

The first industrial hygiene survey conducted at this mine was by the Bureau of Mines in 1960 (2). During that survey, five radon daughter measurements were made and indicated an average exposure of 0.006 working level (WL). Since the radon daughter levels were considered to be low, no attempt was made to locate sources. Subsequently, other studies were conducted in 1968 (23) and 1975 (24) substantiating these low levels (<0.02 WL); likewise. identification of the sources of radon daughters was not attempted. It was not until this study and the MESA study in 1977 (22) that some sources were identified. As indicated in Table 22, substantial differences in exposure levels were observed for the different ventilation systems. The highest exposures were found in that part of the mine which had make-up air drawn through the old mine workings (designated as the #3 ventilation system), which was the major source of fresh air ventilation before 1941. To determine radon daughter sources, air samples were collected during the NIOSH survey near the air intake points of the #3 ventilation system, and near thyolite and phonolite dike formations which are found throughout the mine.

These air samples indicated the presence of alpha activity throughout the mine, and especially around the dikes and near the openings of the old mine workings. The alpha activity found near the rhyolite and phonolite dikes could account for the exposures found at the worksites that were supplied air from the #3 ventilation system since many of these dike formations are located in these areas of the mine. Sources of radon daughters around the air intakes of the old mine workings were impossible to locate since much of the air is drawn through numerous rock crevices which probably contain rock fragments from rhyolite and phonolite dikes dispersed throughout. The presence of alpha activity is assumed to be caused by Radium-226 based on MESA's radiometric analysis of different Homestake rock types. As shown in Table 29, radiometric determinations substantiated the results of the NIOSH survey which found higher airborne levels of alpha activity near rhyolite and phonolite dikes.

In assessing past exposures to radon daughters, a possible approach would be to assume that higher exposures occurred in the upper levels of the Main and 9 Ledges during the years in which fresh air was drawn from the old mine

Table 29. Radiometrically determined Radium-226 content of different rock types at the Homestake Gold Mine, Lead, South Dakota.

		Radium-226 content picocuries/gram of rock						
Formation	Level	Individual sample	Average					
· .	800	1.2						
Poorman	2000							
Poorman		3.4						
Poorman	2150							
Poorman	4850	1.0						
Poorman	6800	1.1						
Poorman	Average		1.8					
Homestake	800	0	•					
Homestake	2000	0						
Homestake	4850	0.5						
Homestake	6800	0.4						
Homestake	Average		0.2					
Ellison	800	0.2						
Ellison	2000	0.3						
Ellison	2000	0.4						
Ellison	4850	0.3						
Ellison	6800	2.9						
Ellison	6800	2.0						
Ellison	6800	1.5						
Ellison	Average	j	1.1					
Rhyolite dike	800	1 2.9						
Rhyolite dike	800	2.3						
Rhyolite dike	800	2.3						
Rhyolite dike	2000	3.1						
Rhyolite dike	2150	3.7						
Rhyolite dike	4850	3.3						
Rhyolice dike	6800	2.5						
Rhyolite dike	Average		2.9					
Phonolite dike	800	9.5	£ ♦ 9					
Phonolite dike	2000	5.9						
Phonolite dike	5450	4.2						
Phonolite dike	Average	7.2	6.5					
I monotite dike	Average	1	. 0.0					

Note: Collected samples were about 3 pounds each. All were pulverized to about 200 mesh, then blended and packaged in plastic bags for shipment to Technical Support Center of MSHA in Denver, Colorado, for radiometric determination of Radium-226. The lower limit of detection for Radium-226 is approximately 0:2 picocuries/gram and the accuracy for the levels measured is plus or minus 20%.

From: October 12, 1979 correspondance with L. Swent, Homestake Mining Company.

workings, and that average exposures have gradually decreased with the addition of the other two ventilation systems. With the addition of these systems, an average radon daughter exposure level could be calculated since work crews have always worked periodically in all areas of the mine. Another factor to take into account is the length of time spent underground (see Table 4). Work hours per week have steadily decreased from a high of 52 hours in 1920 to the present low of 40 hours, and should be factored in when determining employee working level months (WLM). When all these conditions are assessed, employee WLM's in the past would most probably be at least equivalent to, and most likely higher, than those observed for the current workforce.

In order to approximate previous radon daughter levels, the dust exposure data, as determined by the company since 1937 (see Tables 30 and 31), could possibly be extrapolated and used as an exposure index for underground operations. The predicted radon daughter levels would then directly relate to the effectiveness of the ventilation in controlling dust at the worksite and to the changes which have occurred in work practices and production. Although the exposure to radon daughters has been shown to be more closely related to air changes than any other control factor (26), the exhaust air volume (see Table 5) is not directly related to air changes per unit time due to the constant changes in the volume of open area in the mine. While the period of 1924 to 1932 may have had only one-third the volume of exhaust air, as compared to later years, the rate of air changes may have been equal due to the lesser volume of open area in the mine. Since the effectiveness of the ventilation cannot be estimated by the increases in the volume of air exhausted from the mine, dust exposure data may be the only reasonable means of estimating past radon daughter exposures. However, additional simultaneoussampling of .adon daughters and dusts is required to determine if a relationship exists between radon daughter measurements and changes in dust concentrations.

In the years prior to 1940, most of the mining was performed above the 3200-foot levels of the Main and 9 Ledges where radon daughter levels are currently found to be higher. In addition, dust exposures were a magnitude higher than those currently observed which could possibly reflect a similar increase in past radon daughter levels. It has been speculated that if radon daughter levels increase with respective dust exposures, the relationship would not be linear since radon daughters are constantly "growing in" even with an increase in air changes, and that the further one gets from radio-active equilibrium, the faster is the relative growth of the radon daughters (27).

OTHER EXPOSURES

If it is assumed that dust exposures (impinger samples) are acceptable indicators of relative exposures to other agents such as arsenic, asbestos.

Table 30. Approximate exposures to dust by type of work for surface and underground workers from 1937 through 1974 at the Homestake Gold Mine, Lead, South Dakota.

Millions of particles per cubic foot (mppcf)

т	Sill		Crusher				Diamond		Weighted yearly	
Year	(no mining)	Mining	crew	Motorman	Skipping	Caging	drill	Surface	# of samples	Conc.
rear	(110 mrnrig)	HILITAINE								
1937	8.1	6.6	32.1	25.0	95.1	Í -	-	_	107	11.0
1937	9.3	34.7	42.7	26.8	İ				216	25.5
	12.0	12.0	2.7	28.9	27.1	İ	· ·		748	15.3
1939	9.1	13.0	1	21.0		2.6	į	2.9	1,056	11.1
1940		10.2	31.7	22.0	3.4	1.9	į		498	13.3
1941	12.4	49.8	9.2	31.9	2.8	1.1	i		184	24.6
1942	12.8	49.0	7.2	3117		1	Í		ĺ	
1943			f 1	1		i	i			
1944					i		i		l.	İ
1945	!		-			İ	į		İ	į
1946	1 12 2	26.9	!	7.5	1	İ	ĺ		- 255	24.3
1947	12.3		17.9	18.7	23.6	i			178	12.0
1948	11.3	11.6		10.7	1 23.0				183	15.5
1949	22.1	12.3	29.3	10.0			i		297	12.6
1950	4.1	14.0	2.3	1 18.6		0.6			198	18.4
1951	6.3	6.7	128.9	9.2	9.5	1 0.0	i		247	9.7
1952	3.6	7.1	44.0		0.7		}		140	6.7
1953	1.5	5.5	9.3	15.9	0.7	1	}		22	5.9
1954	2.0	8.1		1.2	!	ł	ł	i	249	5.1
1955	3.2	5.4		1 1.2		! !	ĺ		104	5.2
1956	1.4	5.4		1		}	1		290	4.1
1957	2.6	5.0	ļ	•	!	i]	1		121	4.3
1958	2.2	4.7	5.7	!				!	74	4.0
1959	2.6	4.3			!				24	4.4
1960	2.4	4.2	5.7			[1			İ
1962	!		}			-	1	[[]	:
1963]			!		1	[
							-			

Table 30 (continued)

1	Sill		Crusher				Diamond		Weighted yearly	y average
Year	(no mining)	Mining	crew	Motorman	Skipping	Caging	drill	Surface	# of samples	Conc.
	}					ļ				
1964	0.9	3.4	1.8	5.3	1.8		1.2	2.4	247	3.3
1965	0.9	4.5	1	4.4		1			86	j 4.2
1966	2.0	3.3	6.5	7.1	3.8	1		1.2	311	3.5
1967	į	3.1	2.4						261	3.1
1968	1.5	3.2	İ	31.6	12.0	İ	1.	1.2	260	5.0
1969	1.5	2.9	2.5	6.7	9.8	Ì	į	ĺ	228	i 4.0
1970	1.4	3.0	1.5	25.5	4.8	Î	İ	İ	146	4.4
1971	0.7	2.5	1.8	2.1	į ·	İ	ĺ		195	2.4
1972		2.9	2.7	2.6			i	2.5	200	2.8
1973	0.8	2.9	3.7	İ	İ	Ì	i		180	2.5
1974	0.9	2.6	1.6	2.7	2.1	i	j	0.6	124	- 2.0
1975	J.,		i			ì	j		1	1
1,7,3		l	! 	i	i	İ	ì	İ	I 	!

Note: Air sampling was performed by impinger in areas expected to have high dust exposures so that dust control measures could be initiated. If all samples taken in a given year were averaged, the exposures would be biased on the high side. Only samples which represented exposures of employees were used in obtaining the averages in this Table. Repetitive sampling in high dust concentration areas were not used in obtaining the averages.

From: May 27, 1976, memo from J.K. Waterland to D.T. Delicate. Homestake Mining Company, Lead, South Dakota.

Table 31. Approximate exposures to dust by type of mining operation from 1939 through 1974 at the Homestake Gold Mine, Lead, South Dakota.

Millions of particles per cubic foot (mppcf)

Slusher Chute Stope shovel Drift Raise hole hole	Yearly average conc.
Year operator puller miner operator miner miner operator 1937 1938 30.8 <td></td>	
1937 1938 9.9 12.6 1940 1941 1941 1942 1943 1944 1945 1946 1947 6.5 5.8 52.7 26.5 26.5 1946 22.3 1948 7.7 10.6 30.8 22.3 18.4 22.3 1949 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 1952 18.2 7.6 1952 2.6 20.6 1953 10.8 10.3 2.6 2.5 20.0 1974 20.6 1954 20.6 1955 9.0 6.3 2.4 8.8 19.7 1956 11.8 3.0 1.6 21.0	Conce
1938 9.9 12.6 1940 1941 1942 1943 1944 1945 1946 5.8 1948 7.7 1949 7.9 1950 10.1 1951 11.7 1952 8.2 1953 10.8 1954 1.8 1955 9.0 11.8 3.0 1957 7.9 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	
1939 9.9 12.6 1940 1941 1942 1943 1944 1945 1946 52.7 1948 7.7 1949 7.9 1950 10.1 1951 11.7 1952 8.2 1953 10.8 1954 1.8 1955 9.0 11.8 3.0 1957 7.9 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	ľ
1940 1941 1942 1943 1944 1944 1945 1946 1947 6.5 5.8 52.7 26.5 1946 1947 6.5 5.8 52.7 26.5 1948 22.3 1949 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 1951 11.7 5.9 2.6 2.6 2.6 2.6 2.6 20.0 20.6 1953 10.8 10.3 2.6 2.5 20.0 20.6 1954 20.6 1955 9.0 6.3 2.4 8.8 19.7 19.7 1956 11.8 3.0 1.6 21.0	
1941 1942 1943 1944 1945 1946 1947 6.5 5.8 52.7 26.5 1948 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 2.6 2.6 1952 8.2 7.6 20.6 20.6 20.6 20.6 19.7 1953 10.8 10.3 2.6 2.5 20.6 20.6 19.7 20.6 19.7 21.0 <td< td=""><td>12.2</td></td<>	12.2
1942 1943 1944 1945 1946 1947 6.5 5.8 52.7 26.5 1948 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 1952 2.6 1952 18.2 7.6 1953 10.8 10.3 2.6 2.5 20.0 20.6 1954 1.8 19.7 20.6 19.7 1956 11.8 3.0 1.6 21.0 19.7 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	1
1943 1944 1945 1946 1947 6.5 5.8 1948 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 2.5 20.0 1952 8.2 7.6 20.6 2.5 20.0 20.6 1953 10.8 10.3 2.6 2.5 20.0 20.6 20.6 20.6 19.7 20.6 19.7 21.0 <t< td=""><td></td></t<>	
1944 1945 1946 1947 6.5 5.8 52.7 26.5 1948 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 1952 2.6 1953 10.8 10.3 2.6 2.5 20.0 20.6 1954 20.6 1955 9.0 6.3 2.4 8.8 19.7 1956 11.8 3.0 1.6 21.0 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	ľ
1945 1946 1947 6.5 5.8 52.7 26.5 1948 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 1952 2.6 2.5 20.0 1953 10.8 10.3 2.6 2.5 20.0 20.6 1954 20.6 1.8 19.7 1956 11.8 3.0 1.6 21.0 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6 11.4 1959 7.5 2.6 3.6 10.8 11.4 10.8 11.4 10.8 11.4 10.8 10.8 11.8 11.4 10.8 <td></td>	
1946 1947 6.5 5.8 52.7 26.5 1948 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 2.6 1952 8.2 7.6 2.6 2.5 20.0 1953 10.8 10.3 2.6 2.5 20.0 20.6 1954 1.8 1.8 19.7 20.6 19.7 19.7 1956 11.8 3.0 1.6 21.0 21	ĺ
1947 6.5 5.8 52.7 26.5 1948 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 1952 8.2 7.6 2.6 1953 10.8 10.3 2.6 2.5 20.0 1954 1.8 20.6 20.6 1955 9.0 6.3 2.4 8.8 19.7 1956 11.8 3.0 1.6 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	
1948 7.7 10.6 30.8 22.3 1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 2.6 1952 8.2 7.6 2.6 2.5 20.0 1953 10.8 10.3 2.6 2.5 20.0 20.6 1954 1.8 1.8 19.7 20.6 19.7 1956 11.8 21.0 21.0 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	i
1949 7.9 9.2 18.4 1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 2.6 1952 8.2 7.6 2.6 2.5 20.0 1953 10.8 10.3 2.6 2.5 20.0 20.6 20.6 20.6 1954 20.6 1955 19.7 20.6 19.7 20.6 19.7 1956 11.8 3.0 1.6 21.0 21.0 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.	26.3
1950 10.1 9.1 7.3 22.4 1951 11.7 5.9 2.6 2.6 1952 8.2 7.6 2.6 2.5 20.0 1953 10.8 10.3 2.6 2.5 20.0 20.6 20.6 20.6 1954 1.8 19.7 20.6 1955 19.7 1956 11.8 3.0 1.6 21.0 21.0 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6 </td <td>14.8</td>	14.8
1951 11.7 5.9 2.6 1952 8.2 7.6 2.5 1953 10.8 10.3 2.6 2.5 20.0 1954 1.8 20.6 20.6 20.6 1955 9.0 6.3 2.4 8.8 19.7 1956 11.8 3.0 1.6 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	9.8
1952 8.2 7.6 1953 10.8 10.3 2.6 2.5 1954 1.8 20.6 1955 9.0 6.3 2.4 8.8 19.7 1956 11.8 3.0 1.6 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	11.3
1953 10.8 10.3 2.6 2.5 20.0 1954 1.8 20.6 1955 9.0 6.3 2.4 8.8 19.7 1956 11.8 3.0 1.6 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	7.3
1954 1.8 20.6 1955 9.0 6.3 2.4 8.8 19.7 1956 11.8 3.0 1.6 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	7.7
1955 9.0 6.3 2.4 8.8 19.7 1956 11.8 3.0 1.6 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	10.9
1956 11.8 3.0 1.6 21.0 1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	11.6
1957 7.9 3.2 3.4 2.2 1958 10.8 1.8 11.4 1959 7.5 2.6 3.6	8.1
1958 10.8 1.8 11.4	9.2
1959 7.5 2.6 3.6	5.6
	9.6
	5.9
1961	2.3
1962	•
1963	
1964 8.2 2.4 1.5 6.1	3.6
1965 6.2 2.7 1.7 2.0	4.8
1966 6.3 3.8 1.4 3.4 1.8	
1967 6.4 2.6 1.2 3.9 1.0	2.1
1968 6.6 4.7 1.5 6.3 1.6 22.9	3.9
1969 6.5 3.0 1.2 1.2 31.1	8.7
1970 7.3 3.1 1.0 2.6 2.4 14.6	6.0
1971 6.9 4.4 1.2 0.8 14.5	6.0
1972 6.3 4.4 1.2 3.9 1.7 6.8 8.6	4.4
1973 6.3 4.8 1.3 2.9 3.0	4.4
1974 6.5 5.5 1.4 2.9	5.2
	1 3.2

From: May 27, 1976, memo from J.K. Waterland to D.T. Delicate. Homestake Mining Company, Lead, South Dakota.

etc., then historic concentrations can be predicted. This assumption can be supported by the statistical analyses performed on the arsenic and asbestos samples (Tables 9 and 14) in which exposures were not found to be statistically different between the mine ledges. Based on the uniformity found in the mine for arsenic and asbestos, it could be concluded that quartz is also uniformly dispersed throughout the mine and that concentrations would also be related to the observed dust exposure levels.

Although airborne samples for quartz were not collected during this study, analysis of composite ore samples from the mill indicated a consistent quartz content of 22-24%. Personal respirable airborne dust samples for quartz were, however, collected on 80 underground workers by MESA in 1976 (10). The results indicated that 80% of the exposures were within the current OSHA standard of $\frac{10}{7 \cdot \text{SiO}_0 + 5} \text{mg/m}^3 \cdot (25) \text{ and that 60% were within the NIOSH-recom-}$

mended standard of 50 $\mu g/m^3$ (28). The percent quartz found in these samples ranged from none detected to 48%, with an average of 13%. Similarly, in the 1973 Bureau of Mines survey, the results from personal respirable samples showed an average quartz content of 13.1% (3). This consistent average (\sim 13%) in quartz content appears to be a logical choice in determining average exposures since it represents the respirable quartz fraction detected in the airborne dust. By assuming a 13% quartz content, and using the formula $\frac{250}{7}$, dust exposures below 14 mppcf would be considered within the $\frac{250}{7}$ SiO_{a+5}

current OSHA standard as expressed in mppcf. As determined by the Homestake Mining Company (see Table 30), yearly average dust exposures by type of work have been considerably less than 14 mppcf since 1952, and have been exceeded only on six occasions between 1937 and 1952. Likewise, when compared to the yearly averages calculated by the Homestake Mining Company for mining operations (see Table 31), only during the years 1947 and 1948 was 14 mppcf exceeded.

To determine if a difference existed between NIOSH dust counting methodologies and those historically and still used by the Homestake Mining Company, impinger samples collected during this study were shared with the company. As indicated in Table 27, no significant difference was observed and it was concluded that dust exposure data collected in previous years by the company represented a good indicator of the relative dustiness of exposures by job type. However, air sampling data were collected by the company in the past for purposes of identifying "dusty" operations; consequently, the reported mean dust exposure concentrations in Table 30 and 31 could be biased on the high side.

Since company average dust exposure data were available for underground workers, an attempt was made to predict past exposures to arsenic and asbestos. The arithmetic mean of the TWA dust exposure data for all under-

ground workers (see Tables 24 and 25) collected during this study were used with the respective arsenic (see Tables 6 and 7) and asbestos (see Tables 11 and 12) data to develop an exposure relationship. This included a total of 7 data points comprising the job types of Miner (total), Skipper, Carpenter, Noist Operator, Motorman, Diamond Drill Operator, and Boring Machine Operator. The arithmetic mean of the TWA concentrations for each job type were used and weighted with respect to the total number of samples collected. A regression analysis was performed and prediction equations were developed for arsenic and asbestos.

As illustrated in Figure 6, a correlation of $R^2 = 0.84$ was achieved for arsenic with the prediction equation:

Exp. Arsenic $\overline{X} = -94.77 + 30.17$ (Exp. Dust \overline{X})

Exp. Arsenic \overline{X} = Exponential transformation of the arsenic mean Exp. Dust \overline{X} = Exponential transformation of the dust mean

Likewise, for asbestos (see Figure 7), a correlation of $R^2 = 0.85$ was achieved with the prediction equation:

Exp. Asbestos $\overline{X} = -1.72 + 1.00$ (Exp. Dust \overline{X})

Exp. Asbestos \overline{X} = Exponential transformation of the asbestos mean Exp. Dust \overline{X} = Exponential transformation of the dust mean

By using the average dust exposure data collected by the company (Tables 30 and 31), the estimation equations can be used to determine approximate exposures to arsenic and asbestos. As an example, if the mean dust concentration determined for all underground workers in 1971 (2.4 mppcf from Table 30), is selected an arsenic concentration can be determined as follows: since the exponential value of 2.4 is 11.0, using the arsenic estimation equation yields a value of 1810.6. By taking the natural log of 1810.6, a mean concentration of 7.5 µg/m for arsenic is predicted. Likewise for asbestos, again using 2.4 mppcf as an example, using the asbestos estimation equation yields a value of 7.9. By taking the natural log, a mean concentration of 2.1 fibers >5 µm in length/cm is predicted for asbestos.

Based on the data presented and the assumptions made, average exposure levels to quartz, arsenic, and radon daughters for the past 25-30 years probably have been within the current OSHA standards. However, average exposures to asbestos fibers (>5 µm in length) appear to have had a greater probability of exceeding the OSHA standard of 2.0 fibers/cm on numerous occasions during this same time period. In fact, from the derived asbestos estimation equation, dust exposures which exceeded 2.2 mppcf had the potential for exceeding

Figure 6. Regression analysis 1. dust and arsenic Homestake Gold Mine, Lead, South Dakota

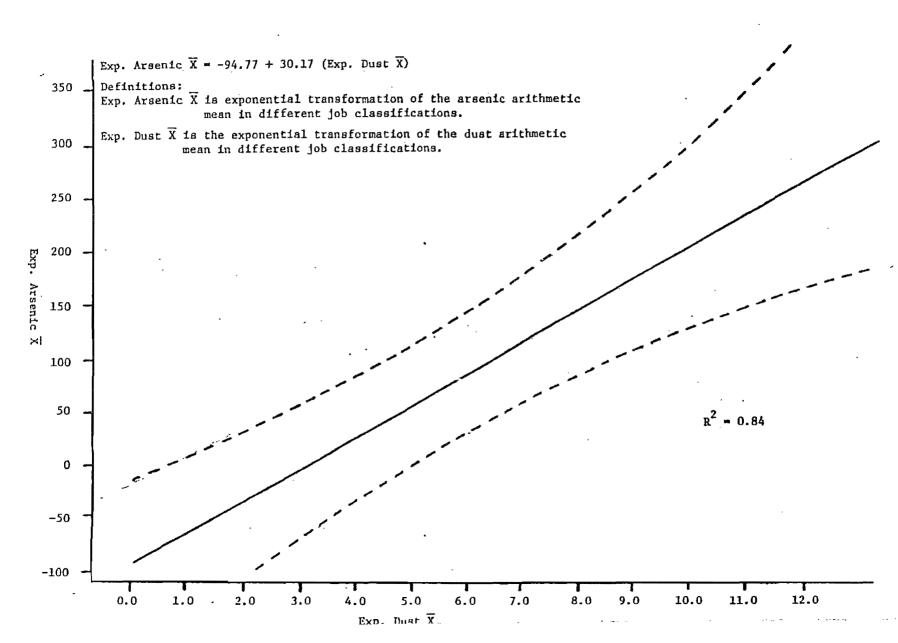
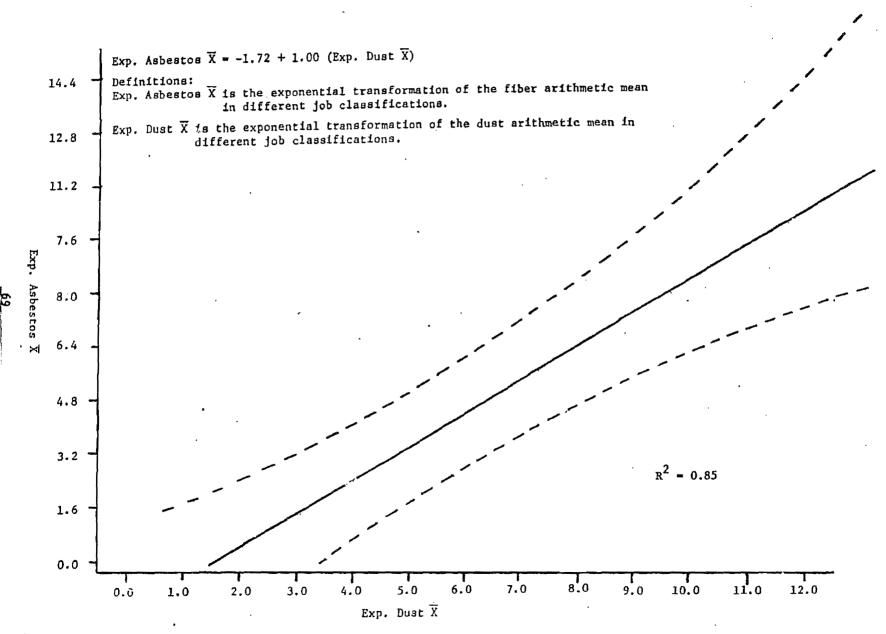



Figure 7. Regression analysis for dust and asbestos Homestake Gold Mine, Lead, South Dakota

2.0 fiber/cm³. It should be noted that when determining past arsenic and asbestos exposures using the estimation equations, that the 95% confidence interval increases with the respective increase in exposure. Therefore, it is prudent to use only those exposure values which fit the regression equation plot in Figures 6 and 7.

DISCUSSION

The results of the present industrial hygiene study and past Bureau of Mines and MESA surveys have demonstrated multiple environmental contaminants in both the mine and the mill. The observed exposures to quartz, arsenic, asbestos, and radon daughters are thought to have the greatest potential for causing adverse health effects. However, other airborne contaminants such as trace metals, carbon monoxide, carbon dioxide, methane, nitrogen dioxide, hydrocarbons, benzo(a)pyrene, and aldehydes have been identified, but were detected in negligible quantities (10).

QUARTZ

Epidemiological studies demonstrating adverse health effects of airborne free silica (quartz) have been compiled since the early 1900's. Most of these studies, including those conducted in the hard rock mining industry (29, 30,31), have shown an excess of respiratory disease in workers exposed to airborne dust containing >30% quartz. The documentation of silicosis in the Barre, Vermont granite sheds has been a major source of data for establishing permissible dust exposure levels since the types of operations observed have been typical of other uncontrolled operations found in the mining, foundry, and ceramic industries (32,33, 34). Based on the impinger-count dust concentration data, the granite shed studies have indicated an exposure limit of 5 mppcf to be an effective control for the prevention of silicosis in workers exposed to airborne dust containing 25-35% quartz. A recent medical study performed in the Vermont granite industry (35) reported no cases of silicosis among workers whose span of employment began after the implementation of dust controls in 1937, resulting in an average exposure of about 3 mppcf. These findings confirmed an earlier medical study which showed a similar absence of silicosis in granite workers exposed over an 18-year span from 1937 to 1955 to an average concentration of 5 mppcf (36). Quartz content of the airborne granite dust in both studies was reported to be approximately 25%.

In view of the epidemiological data available for workers exposed to mineral dust containing <25% quartz, the occurrence of silicosis in the Homestake Mine for underground workers who started employment within the past 25 years would not be expected. This assumption is based on an average quartz content of 13% found in the airborne dust and from the use of yearly average dust exposure data tabulated by the company. Even if a higher free silica content of up to 25% is assumed, silicosis probably would not have manifested itself during the last 25 years since most of the average dust exposures for underground mining have not exceeded 8.3 mppcf (see Table 30). However, these assumptions are based on the absence of other environmental contaminants which are found in this mine and may act in an additive or synergistic manner with quartz.

ARSENIC

There have been numerous reports on arsenic-induced occupational cancer, with most of the epidemiological data collected from smelter workers exposed to arsenic trioxide (37.38.39.40). Other studies have shown an increase in respiratory cancer mortality of workers in sheep-dip factories (41,42), and among workers exposed to arsenates and arsenites in pesticide plants (43). There is one reported epidemiological study of workers exposed to arsenopyrite which demonstrated a high degree of association of skin arsenism and lung cancer (44,45). These study data, which were collected from a group of Rhodesian gold miners, identified 37 cases of lung cancer during the period from 1957 to 1963. This represented a six-fold increase in lung cancer for adult males when matched to the population in the Gwanda region of Rhodesia. Although no exposure data or quantification of arsenic content were documented for this mine. there was, however, a reported increase of skin keratoses in the mine workers. Similar studies on vineyard and sheep-dip workers have reported characteristic hyperpigmentation and keratoses with chronic arsenic exposure (46,47). It was reported that a high risk of lung cancer exists when the exposure to inorganic arsenic dust is high enough to cause keratoses. No documented cases of skin hyperpigmentation or keratoses have been observed for employees at the Homestake Gold Mine.

ASBESTOS

Asbestos is the generic name used for a group of naturally occurring mineral silicate fibers of the serpentine and amphibole series. The most common types found in occupational environments are the fibrous serpentine mineral chrysotile and the fibrous amphiboles which include crocidolite, anthophyllite, the tremolite-actinolite group, and amosite (part of the cummingtonite-grunerite group).

Approximately 50 years after the introduction of asbestos into industry, the first suspicion of an association between asbestosis and lung cancer was recognized in 1935 (48,49). Since then, mortality studies of workers employed in the manufacturing of asbestos products, and the installation and removal of asbestos in shippards have provided the most concrete evidence concerning an association between lung cancer, pleural, and peritoneal mesotheliomas and exposure to asbestos. Although most of the epidemiological data have been collected on workers exposed to chrysotile, other studies on workers exposed to fibrous asbestos amphiboles have demonstrated similar malignant respiratory diseases (50,51,52,53,54).

The predominant type of asbestos observed in the Homestake Gold Mine in Lead, South Dakota is the cummingtonite-grunerite mineral group. One particular fiber type in this mineral group, commercially referred to as amosite, has

been documented in two epidemiological studies to cause lung cancer. In a study of workers exposed to amosite while making insulation materials, 10 mesotheliomas were found along with an increased risk of lung cancer after 20 years from onset of exposure (55). The excess lung cancer risk in the amosite workers was shown to increase with duration of employment. In addition, there was a 3.87-fold increase in lung cancer among those workers with less than 3 months employment. In another study, 914 men who worked for various periods of time during 1940 in a plant manufacturing amosite insulation materials, including 65 men who had worked for less than 1 month, had an excess mortality from lung cancer but not from all cancers or from all causes (56). This observed excess became discernible only after 30 years from onset of exposure. An excess of mortality from lung and from all cancers showed up after progressively shorter intervals from onset of exposure when the duration of exposure increased.

The type of amosite used by the workers in these two studies, which is typically found in other industrial applications, is considered fibrous both on a macroscopic and a microscopic scale. This differs from the amosite observed in the Homestake Gold Mine since it forms in a nonfibrous mineral habit, but through attrition by the various mining processes, fragments into respirable fibers. Most of these fibers, as demonstrated by the electron microscopy characterization, are identical to airborne fibers observed in the industrial environment.

It has been demonstrated that fibrous particulates with the morphology (\geq 3:1 aspect ratio) like those observed in this study have the potential for producing tumorigenic effects in animal injection and inhalation studies (57). These studies concluded that the physical morphology (size dimensions), and to a lesser degree chemical and surface characteristics of a fiber are the determining factor for inducing a biological effect. The precise fiber dimensional characteristics required for these observed pathologic responses have been difficult to determine experimentally because of the difficulties encountered in producing fibers of specific size dimensions. However, the results from some of the studies suggest that long, thin fibers play an important role in eliciting a biological response. In one particular fiber implantation study, it was concluded that fibers less than 1.5 µm in diameter and longer than 8.0 µm in length may be the most important for production of pleural sarcomas (58).

When the Homestake fiber size data (see Table 16 and 17) are compared to the fiber dimensional characteristics which are thought to produce biological responses in animals, only the small diameter fibers (<1.5 μm) appear to match the criteria. Most of the observed fibers had lengths less than 5.0 μm and, when compared to the animal study results, they would be considered to have a lesser potential for creating a biological response. However, in a toxicologic study in which asbestos retention in the human respiratory system

was measured, it was concluded that smaller fibers (diameter and length) than those demonstrated in the animal studies had a greater probability of being retained (59). In this toxicologic study, size measurements of chrysotile and amphibole asbestos fibers were made from lung washing fluid obtained by broncho-alveolar lavage, sputum collected on alive individuals, and respiratory tissues (lung parenchyma, parietal pleura, and mediastinal lymph nodes) sampled at autopsy. All individuals studied had been diversely exposed to asbestos dusts and affected by various asbestos-related diseases. The results indicated that most of the fibers retained in lung tissues were less than 0.20 µm in diameter and shorter than 5 um. The intra-alveolar fibers were shorter (mean 3.3 µm) than fibers found in lung parenchyma (mean 4.9 µm). Fibers encountered in mediastinal lymph nodes were shorter (mean 2.5 µm) and of amphibole type, whereas fibers encountered in the parietal pleura were the shortest (mean 2.3 um) and had the smallest diameters (mean 0.06 µm). All fibers encountered in the different sites of the respiratory system were found to have diameters less than 0.25 µm and with mean lengths less than 8 µm. These data strongly suggest that the fibers observed in the Homestake Gold Mine would have a high probability of being transported within the body. Research to date has not been able to establish a fiber length below which there exists no carcinogenic potential by inhalation; this is true because of the unavailability of specifically sized fibers for study (60).

RADON DAUGHTERS

Radon and its daughter products, starting with Radon-222, have been documented to cause lung cancer in workers mining uranium ore (61). Typically, in mining operations, radon gas diffuses out from the rock into the mine atmosphere where it may be inhaled by the occupants of the mine. Some of the inhaled radon will decay in various parts of the respiratory system, producing its radioactive daughters there; some radon will pass the lung-blood barrier and enter the blood stream.

The primary radiation hazard arising from the inhalation of radon comes from the alpha-particle emission of the radon itself and its daughters. The daughter nuclides which are primarily involved are Po-218, Pb-214, Bi-214, and Po-214. Alpha emission from Bi-214 occurs in only 0.04% of the decays and can be neglected, as can the beta emissions from it and Pb-214. The buildup and decay of these nuclides are important, however, in determining the amount of the strong alpha emitter Po-214. The Po-214 daughter has a long half life and its concentration builds up slowly so that the subsequent alpha emissions from Po-210 need not be considered except for very long-term exposures (62).

Cancer risks from exposure to radon daughters are usually quantified relative to working level months (WLM), which is the cumulative exposure over a period of time. A WLM corresponds to 170 hours of exposure to a radon daughter concen-

tration of one working level. Although the lung cancers observed in uranium miners appear to have occurred most frequently at high levels (40-200 WLM), not all the clinical experience is based on heavily exposed persons. In particular, an epidemiological study of uranium miner populations in Czechoslovakia, where, on the average, radon daughter concentrations in mines are lower than the U.S.A., has provided a source for risk estimates at relatively low exposure levels. An excess mortality from lung cancer was observed for miners after exposure to less than 100 WLM (61,63). Some of these exposures extended over a 40-year period, indicating that effects may occur at exposure rates as low at 2.0 to 2.5 WLM per year.

Similarly, other studies have documented excass lung cancers for miners exposed to radon daughters in other hard rock mining operations. A study of miners who worked underground in fluorspar mines in Newfoundland, Canada has demonstrated a high risk of lung cancer (64). For those men who mined fluorspar for 5 to 10 years, the risk of lung cancer was only slightly higher than expected, whereas among those who mined fluorspar for more than 10 years, the risk was 9 times that of the general population. Based on the radon daughter measurements made in the fluorspar mine, it was estimated that levels probably ranged from 2.5 to 10.0 WL during the period when these miners were employed. Likewise, in an epidemiological study of cancer mortality among hematite miners, there was an observed excess of lung cancer (36 vs. 20.6 expected, p<0.001) among underground workers, but no excess was demonstrated for surface workers (65). Radon daughter concentrations were found to range from 0.15 to 3.2 WL underground.

A mortality analysis was performed on a group of hard rock metal miners who had completed a minimum of 15 years mining underground between January 1, 1937, and December 31, 1948. A total of 47 lung cancer deaths were found as compared with 16.1 expected (66). Measurements for radon daughters during the time of the study varied from 0.1 to 0.2 WL. Concentrations during the period of time when the deceased miners worked were estimated to be approximately 1.8 WL because of less effective ventilation. In addition, the ore from the mine was found to contain appreciable amounts of arsenic and traces of nickel, which were considered as possible contributors to the excess lung cancer.

In a recent study, exposure-response relationships were postulated by analysis of lung cancer among 15 different mining groups exposed to radiation from radon daughters (63). It was predicted that as the exposure rate of radon daughters (alpha) decreases, cancers per unit of radiation increase, and that the induction latent period (time from start of exposure to clinical cancer) is shortened by increased age at the start of mining, cigarette smoking, and by high exposure rates. In addition, the incidence increases with age at the start of mining, with the magnitude of exposure, and with the amount of cigarette smoking. However, it was speculated that the effect of cigarette smoking is primarily to accelerate the appearance of tumors and that low doses of radon

daughters increase the efficiency of alpha radiation to continually produce alterations in the chromosomal proteins (DNA) of the somatic cells. The more of these alterations there are in an individual's cells, the more likely it is that exposure to an additional carcinogen will result in a cancerous transformation.

CONCLUSION

Based on the data collected from the current industrial hygiene survey and past MESA and Bureau of Mines studies, mean exposures for free silica, radon daughters, arsenic, and asbestos fibers are within current OSHA and MSHA health standards for most of the job classifications. If the exposure estimation equations and the assumptions derived from the current exposure data are utilized, then exposures to asbestos for the past 25 years would have the greatest potential for exceeding current health standards. However, before approximately 1952 there is an additional risk of over exposure to free silica because of the elevated dust concentrations caused by underground blasting procedures and the lack of efficient dust suppressive techniques. Based on the current exposure data no one agent can be clearly implicated in promoting respiratory disease in the past 25 years. The potentiating effect of all or some of the observed contaminants may predispose workers to both malignant and nonmalignant diseases. Epidemiological evidence of exposures to arsenic, asbestos, and radon daughters has been documented to elicit pulmonary cancers, and although exposures to silica are not carcinogenic by themselves, a developed silicosis may be a temporal prelude to the development of malignant tumors in the presence of these other contaminants.

RECOMMENDATIONS

The results of the present industrial hygiene study indicate TWA exposures to arsenic and asbestos, for the most part, to be below current OSHA and MSHA standards. Likewise, exposures to quartz would probably be within the OSHA and MSHA standards if a 13% quartz content is assumed. There were, however, a few individual samples collected during underground work activities and at some ore milling operations which indicated exposures to arsenic and asbestos to be in excess of the OSHA standards. In particular, some of the underground operations, (e.g., filling ore cars, mucking, putting in track, and bore hole drilling) indicated periodic high asbestos fiber concentrations. In those instances where a concerted effort was made by the worker to keep the ore wet and maintain adequate ventilation directed to the worksite, exposure levels were kept to a minimum. However, a few of the operations do not lend themselves to these work practices and it would be advisable to furnish appropriate respiratory protection to those exposed employees.

Many of the employees in the surface crushing mills are subject to high dust concentrations during various work activities. At the time of the industrial hygiene survey, employees in the mills were wearing appropriate respiratory protection. To help reduce some of the dust exposures, it may be feasible to at least partially enclose some of the ore conveyor systems in the mill and install exhaust ventilation. In addition, an enclosed system would help to prevent spills and eliminate the need for subsequent clean-up.

A continuing educational program should be instituted to ensure that all employees have current knowledge of job hazards, proper maintenance procedures, and clean-up methods, and that they know how to correctly use respiratory protective equipment and protective clothing.

Even though radon daughter levels were relatively low, it would be appropriate to explore methods of reducing exposures. The reduction of dust levels at the worksites might help to alleviate radon daughter exposures. Also, the application of sealant materials to contain potential radioactive contaminants may be warranted. One method of utilizing sealant material is to apply it directly to the rock so that the radon transfer rate from the rock to the mine air is reduced. Another way would be to use the sealant as a coating on sealstoppings constructed to isolate radon and radon daughter contamination sources such as mined out stopes. Since the #3 ventilation system (designated by NIOSH) draws its intake air through the old surface mine workings, it may be worth exploring the possibility of using sealant materials for injection into the periphery of the mine openings; this would help to seal fractures and decrease rock permeability.

REFERENCES

- Gillam, J.D., J.M. Dement, R.A. Lemen, J.K. Wagoner, V.E. Archer, and H.P. Blejer: Mortality Patterns Among Hard Rock Gold Miners Exposed to an Asbestiform Mineral. Annals of the New York Academy of Sciences. 271:336-344, 1976.
- U.S. Department of the Interior, Bureau of Mines. Environmental study -Mine 30, Jan. 17 - Feb. 6, 1960. Internal Report, 1960.
- 3. U.S. Department of the Interior, Mining Enforcement and Safety Administration. Onsite dust assessment at the Homestake Gold Mine, Lead, South Dakota. Internal Report, 1973.
- 4. U.S. Department of the Interior, Mining Enforcement and Safety Administration. Fiber survey, Homestake Gold Mine, Homestake Mining Company, Lead, Lawrence County, South Dakota, Sept. 23 Oct. 3, 1974. Internal Report, 1974.
- 5. Dement, J.M., R.D. Zumwalde, and K.M. Wallingford: Discussion.Paper: Asbestos Fiber Exposures in a Hard Rock Gold Mine. Annals of the New York Academy of Sciences. 271:345-352, 1976.
- 6. McDonald, J.C., G.W. Gibbs, F.D.K. Liddell, and A.D. McDonald: Mortality After Long Exposure to Cummingtonite-Grunerite. American Review of Respiratory Disease 118:271-277, August, 1978.
- 7. Homestake Mining Company. 1876 Homestake Centenniel 1976. Lead, South Dakota. p. 97, 1976.
- 8. Swent, L.W., G.R. Herrin, J.K. Waterland, and R.F. Bell: Mortality Patterns Among Hard Rock Gold Miners Exposed to an Asbestiform Mineral A Critique. American Industrial Hygiene Conference, New Orleans, Louisiana. May 16-21, 1976.
 - Homestake Mining Company: Analysis of Dust Quantities Contained in the Air Inhaled by Employees Performing Various Duties in the Mine Department. Internal memo from J.K. Waterland to D.T. Delicate. May 27, 1976.
- 10. U.S. Department of the Interior, Mining Enforcement and Safety Administration: Mine Survey No. 8, Homestake Mine, Lead, Lawrence County, South Dakota, July 29 Aug. 12, 1976.
- 11. Environmental Trace Substances Research Center, University of Missouri (Analysis under NIOSH Contract) Nov. 1977.
- 12. U.S. Department of Health, Education, and Welfare, National Institute for Occupational Safety and Health: NIOSH Manual of Analytical Methods, Second Edition, Volume 1, P&CAM 173. DHEW (NIOSH) Publication No. 77-157-A, 1977.

- 13. U.S. Department of the Interior, Bureau of Mines: Controlling Employee Exposure to Alpha Radiation in Underground Uranium Mines. Volumes 1 and 2, 1970.
- 14. U.S. Department of Health, Education, and Welfare, National Institute for Occupational Safety and Health: NIOSH Manual of Analytical Methods, Second Edition, Volume 1, P&CAM 239. DHEW (NIOSH) Publication No. 77-157-A. 1977.
- 15. Zumwalde, R.D., and J.M. Dement: Review and Evaluation of Analytic Methods for Environmental Studies of Fibrous Particulate Exposures. DHEW (NIOSH) Publication No. 77-204, 1977.
- 16. U.S. Department of Health, Education, and Welfare, National Institute for Occupational Safety and Health: The Industrial Environment - its Evaluation and Control. p. 147, 1973.
- 17. U.S. Department of Health, Education, and Welfare, National Institute for Occupational Safety and Health: NIOSH Manual of Analytical Methods, Second Edition, Volume 1, P&CAM 109. DHEW (NIOSH) Publication No. 77-157-A. 1977.
- Occupational Safety and Health Standards for General Industry (29 CFR Part 1910.1018 Inorganic Arsenic). Occupational Safety and Health Administration, U.S. Department of Labor. p. 318-324, March 1979.
- 19. Criteria for a Recommended Standard . . . Occupational Exposure to Inorganic Arsenic. DHEW (NIOSH) Publication No. 75-149, 1975.
- Sokal, R.R., and F.J. Rohlf: Biometry. W.H. Freeman and Company. Chapter 9, 1969.
- 21. Occupational Safety and Health Standards for General Industry (29 CFR Part 1910.1001 Asbestos) Occupational Safety and Health Administration, U.S. Department of Labor, p.283-285, March 1979.
- 22. U.S. Department of the Interior, Mining Enforcement and Safety Administration. 1977. Radon Daughter Survey 527, Homestake Mining Company, Lead, Lawrence County, South Dakota, Sept. 22-28, 1977.
- 23. U.S. Department of the Interior, Bureau of Mines, 1968. Memorandum on Radon Daughter Sample Results.
- 24. U.S. Department of the Interior, Mining Enforcement and Safety Administration. 1975. Radon Daughter Survey, L11, Homestake Mining Company, Lead, Lawrence County, South Dakota, Oct. 29, 1975.

- 25. Occupational Safety and Health Standards for General Industry (29 CFR Part 1910.1000 1910.1017, Table Z-3 Mineral Dusts). Occupational Safety and Health Administration, U.S. Department of Labor, p. 282, March 1979.
- 26. Giever, P.M., Preliminary report "An Interpretation of Occupational Health Exposure". Homestake Mining Company, SRI International, Menlo Park, California, Sept. 6, 1978. NIOSH Contract Report.
- 27. Personnel Communication: V.D. Archer, M.D., NIOSH to P.M. Giever, SRI International, March 2, 1978.
- 28. Criteria for a Recommended Standard . . . Occupational Exposure to Crystalline Silica. DHEW (NIOSH) Publication No. 75-120, 1974.
- 29. Higgins, E., A.J. Lanza, F.B. Laney, G.S. Rice: Siliceous Dust in Relation to Pulmonary Disease Among Miners in the Joplin District, Missouri: Bulletin No. 132., U.S. Dept. Interior, Bureau of Mines, 1917.
- 30. Lanza, A.J., E. Higgins: Pulmonary Disease Among Miners in the Joplin District, Missouri and Its Relation to Rock Dust in the Mines A Preliminary Report, Technical Paper No. 105, U.S. Dept. Interior, Bureau of Mines. 1915.
- 31. Harrington, D. and A.J. Lanza: Miners Consumption in the Mines of Butte, Montana Preliminary Report of an Investigation Made in the Years 1916-1919, Technical Report 260, U.S. Dept. Interior Bureau of Mines, 1921.
- 32. Russell, A.E., R.H. Britten, L.R. Thompson, and J.J. Bloomfield: The Health of Workers in Dusty Trades II. Exposure to Siliceous Dust (Granite Industry), Public Health Bulletin No. 187. U.S. Treasury Department, Public Health Service, 1929.
- 33. Russell, A.E.: The Health of Workers in Dusty Trades VII. Restudy of a Group of Granite Workers, Public Health Bulletin No. 269, Federal Security Agency, U.S. Public Health Service, 1941.
- 34. Hosey, A.D., H.B. Ashe, and V.M. Trasko: Control of Silicosis in Vermont Granite Industry Progress Report, Public Health Publication 557. U.S. Department Health, Education, and Welfare, Public Health Service, 1957.
- 35. Ashe, H.B. and D.E. Bergstrom: Twenty-six Years' Experience with Dust Control in the Vermont Granite Industry. Ind. Med. Surg. 33:973-78, 1964.
 - 36. Ashe, N.B.: Silicosis and Dust Control Vermont's Granite Industry. Public Health Rep. 70:983-85, 1955.

- 37. Pinto, S.S. and B.M. Bennett: Effect of Arsenic Trioxide Exposure on Mortality. Arch. Environ. Health 7:583-91, 1963.
- 38. Lee, A.M. and J.F. Franumeni, Jr.: Arsenic and Respiratory Cancer in Man
 An Occupational Study. J. Natl. Cancer Inst. 42:1045-52, 1969.
- 39. Milham, S. Jr. and T. Strong: Human Arsenic Exposure in Relation to a Copper Smelter. Environ. Res. 7:176-82, 1974.
- 40. Kuratsone, M., S. Tokudome, T. Shirakusa, M. Yoshida, Y. Tokumitsu, T. Hayano, and M. Seita: Occupational Lung Cancer Among Copper Smelters: Int. J. Cancer, 13:552-58, 1974.
- 41. Hill, A.B. and E.L. Faning: Studies in the Incidence of Cancer in a Factory Handling Inorganic Compounds of Arsenic I. Mortality Experience in a Factory. Br. J. Ind. Med. 5:1-6, 1948.
- 42. Perry, K., R.G. Bowler, H.M. Buckell, H.A. Druett, and R.S.F. Schilling: Studies in the Incidence of Cancer in a Factory Handling Inorganic Compounds of Arsenic II. Clinical and Environmental Investigations. Br. J. Ind. Med. 5:6-15, 1948.
- 43. Ott, M.G., B.B. Holder, and H.L. Gordon: Respiratory Cancer and Occupational Exposure to Arsenicals. Arch. Environ. Health, 29:250-55, 1974.
- 44. Osburn, H.S.: Cancer of the Lung in Gwanda. Central African J. Med. 3:215-223, 1957.
- 45. Osburn, H.S.: Lung Cancer in a Mining District in Rhodesia. S. Afr. Med. J. 43:1307-1312, 1969.
- 46. Rosset, M.: Arsenical Keratosis Associated with Carcinomas of the Internal Organs. Can. Med. Assoc. J. 78:416-419, 1958.
- 47. Roth, F.: The Sequelae of Chronic Arsenic Poisoning in Moselle Vintners. German Med. Monthly 2:172-175, 1957.
- 48. Lynch, K.M. and W.A. Smith: Pulmonary Asbestosis III. Carcinoma of the Lung in Asbestos Silicosis. Amer. J. Cancer, 24:56-64, 1935.
- 49. Gloyne, S.F.: Two Cases of Squamous Carcinoma of the Lung Occurring in Asbestosis. Tubercle, 17:5-10, 1935.
- 50. Wagner, J.C., C.H. Sleggs, and P. Marchand: Diffuse Pleural Mesothelioma and Asbestos Exposure in the North Western Cape Province. Brit. J. Industr. Med. 17:260-271, 1960.

- 51. Harington, J.S., J.C. Gileon, and J.C. Wagner: Asbestos and Mesothelioma in Man. Nature. 232:54-55. 1971
- 52. Webster, I.: Asbestos and Malignancy. S. Afr. Med. J., 47:165-171, 1973.
- 53. Meurman, L.O., R. Kiviluoto, and M. Hakama: Mortality and Morbidity Among the Working Population of Anthophyllite Asbestos Miners in Finland. Brit. J. Industr. Med. 31:105-112, 1974.
- 54. Dement, J.M., R.D. Zumwalde, J.F. Gamble, W. Fellner, M.J. DeMeo, D.P. Brown, and J.K. Wagoner: Health Aspects Related to Miners and Millers Occupationally Exposed to Asbestiform Talc. DHEW (NIOSH) Technical Report, p. 124, Nov. 1978.
- 55. Selikoff, I.J.: Lung Cancer and Mesothelioma During Prospective Surveillance of 1249 Asbestos Insulation Workers, Ann. N.Y. Acad. Sci., 271:448-456, 1976.
- 56. Seidman, H., R. Lilis, and I.J. Selikoff: Short-Term Asbestos Exposure and Delayed Cancer Risk. Proceedings of Third International Symposium on the Detection and Prevention of Cancer, New York, 1976.
- 57. Wagner, J.C., G. Berry, J.W. Skidmore, et al.: The Comparative Effects of Three Chrysotiles by Injection and Inhalation in Rats. Presented at the Biological Effects of Mineral Fibres. IARC, Lyon, France, Sept. 25-27, 1979.
- 58. Stanton, M.F., M. Layard, A. Tegeris, E. Miller, M. May. and E. Kent: The Carcinogenicity of Fibrous Glass: Pleural Response in the Pat in Relation to Fiber Dimension. J. NCI, Vol. 58, p. 587-603, March 1977.
- 59. Bignon, J., P. Sebastien, and A. Gaudichet: Measurement of Asbestos Retention in the Human Respiratory System Related to Health Effects. National Bureau of Standards Publication 506. Proceeding of the Workshop on Asbestos: Definitions and Measurement Methods held at NBS, Gaithersburg, Maryland, July 18-20, 1977.
- 60. Pott, F.: Animal Experiment of Biological Effects of Mineral Fibers, Presented at the Biological Effects of Mineral Fibres. IARC, Lyon, France, Sept. 25-27, 1979.
- 61. Lundin, F.E., J.K. Wagoner, and V.E. Archer: Radon Daughter Exposure and Respiratory Cancer Quantitative and Temporal Aspects. NIOSH/NIEHS Joint Monograph No. 1, 1971.
- Andrews, H.L.: Radiation Biophysics, Prentice Hall Inc., 2nd Ed., Englewood Cliffs, N.J., p. 173, 1974.

- 63. Archer, V.E., E.P. Radford, and D. Axelson: Radon Daughter Cancer in Man: Factors in Exposure Response Relationship. Radiat. Res. 1978.
- 64. DeVilliers, A.J. and J.P. Windish: Lung Cancer in a Fluorspar Mining Community: I. Radiation, Dust, and Mortality Experience. Brit. J. Industr. Med. 21:94-109, 1964.
- 65. Boyd, J.T., R. Doll, J.S. Faulds, and J. Leiper: Cancer of the Lung in Iron Ore (haematite) Miners. Brit. J. Industr. Med. 27:97-105, 1970.
- 66. Wagoner, J.K., R.W. Miller, F.E. Landin, et al.: Unusual Cancer Mortality Among a Group of Underground Metal Miners. New Eng. J. Med. 269:284-289, 1963.

Appendix A. Job dictionary for the Homestake Gold Mine in Lead, South Dakota.

Table A-1. Job dictionary for all job types underground at the Homestake Gold Mine, Lead, South Dakota.

Description of Duties

Job Title

Job Code

	<u> </u>		
	0100	Electrician	Electrical repair and installation, sometimes works underground.
	0101	Cager	Hoist and lower men, equipment and supplies for underground use.
	0102	Fork Lift Operator	Assist in loading cement timber, and supplies for underground use.
	0103	Truck Driver 1 to 3 Ton	Haul men and supplies between Yates sawmill, shops, Ross and Yates Shafts.
	0104	Lampman, Head	Charge and repair lamps and batteries at Yates and Ross.
>	0105	Lampman	Charge and repair mine lamps at Yates and Ross lamprooms.
7	0106	Powderman	Take care of book work and delivery of powder and caps.
	0107	Hoist Operator, Underground	Operate hoist in underground hoist room. Assist in handling men and supplies. Located in Ross and Yates.
	0108	Pipeman, Master	Instal! and repair air and water lines to air doors, chutes, pumps, coolers.
	0109	Pipeman	Responsible for air door operation, repair of water lines, airlines.
	0110	Carpenter, 1st.	Install pass gates, frame timber, install dumps.
	0111	Carpenter, 2nd.	Layout chimneys, make switch stands, build air doors.
	0112	Carpenter, 3rd.	Install borehole pads and drilling pads for anchor bolts, cement in bolts, frame timber.
	0113	Carpenter, 4th.	Frame timber, build forms in mine for concrete, drill

pinholes and anchor bolt holes.

Table A-l (continued)

<u> </u>	lob Codes	Job Title	Description of Duties
	0114	Carpenter, Master	Act as Leadman in installation of pass gates, frame timber, install walls and dumps.
	0115	Repairman, 1st.	Prepare and fill mine orders.
	0116	Repairman, 2nd.	Help prepare and fill orders for mine; grease and oil cars.
	0117	Repairman, 3rd.	Help oil and grease cars at ore and waste dumps.
	0118	Mechanic, 1st.	Dept. ll:repair hand tools, sharpen saws.
	0119	Mechanic, 2nd.	Dept. ll:repair and install all air doors.
	0120	Mechanic, 3rd.	Dept. 11:feed crusher, check and lubricate all crushing equipment. Same Job Code as Area O2, Position O2.
A-3	0121	Shaftman	Shaft Maintenance, caging, handle long material, supervise shaft timbering.
	0122	Shaftman, 2nd.	Ship, pull raises, blast rock, cage, handle long material, perform shaft repair.
	0123	Mechanic Special	Same as Mechanic, 1st and Mechanic, 3rd.
	0124	Skipper Head	Leadman on skip crew, pull raises, skip rock, handle long material.
	0125	Skipper	Load Skips, extra caging and shaft work.
	0126	Sampler Head	Take care of morl and dry drill samples, mark stope for back sampling.
	0127	Sampler	Take care of mine sample (either mori or dry drill), mark stopes for back sampling.
	0128	Sandman, Underground	Watch sandlines, drain stopes, back-fill stopes, repair broken sandpipe.

-	Job Code	Job Title	Description of Duties
	0129	Shopman, 2nd.	Underground drill and leg repair.
	0130	Shopman, 3rd.	Assist in underground drill and leg repair.
	0131	Motorman-Surface	Transport rock between Yates and Ross and South Mill, and haul supplies.
	0132	Motorman, 1st.	Haul rock, men, and supplies, general clean-up.
	0133	Motorman, 2nd.	Haul rock, men, and supplies, general clean-up.
	0134	Helper, lst.	Fill mine orders, Relief Man for oil, bit, and lamp room.
	0135	Helper, 2nd.	Helper on 1_2^L ton truck, hauling supplies and materials between Sawmill, Shops, etc.
A-4	0136	Helper, 4th.	Relief Man for oil, bit, and lamp rooms.
	0137	Pump Operator	Repair and maintain pumps.
	0138	Mine Supervisor	Responsible for mine production, spends some time underground.
	0139	Laborer, 1st. Underground	Giean skip pocket, help on cages and where needed.
	0140	Laborer, 2nd. Underground	Clean-up, maintain water ditches, unload materials.
	0141	Diamond Drill Operator	Set-up drill equipment, obtain drill samples for geological logging.
	0142	Diamond Drill Helper	Assist in setting up drill and obtaining ore samples.
	0143	Boring Machine Operator	Machine set-up, monitor boring of hole, completion of borehole raise.

Table A-1 (continued)

	Job Code	Job Title	Description of Duties
and produced the second	0144	Boring Machine Helper	Assist in machine set-up, handling of drill rods, sill clean-up.
	0145	Miner, Surface	Oilman, wash sample sacks, clean underground latrines, repair vent bags, janitorial work.
	0150	Miner, lst.	Shotcret, Load, Haul, Dump Operator, must be capable of drift and stope mining.
	0151	Miner, 1st.	Drill and scrape in cage raises and regular raises.
	0152	Miner, 1st.	Drill and scrape in shrinkage stopes.
	0153	Miner, 1st.	Drill and scrape in sub-sill drifts.
1	0154	Miner, 1st.	Drill and scrape in 7×7 and smaller drifts.
A- 5	0155	Miner, 1st.	Drill and scrape in $7\frac{1}{2} \times 7\frac{1}{2}$ and larger drifts.
	0156	Miner, lst.	Open cut and fill stopes including blast hole, includes drilling and slushing.
	0157	Miner, 1st.	Drill and scrape in timber cut and fill stopes.
1	0158	Miner, 1st.	Drill in bored raises.
	0159	Miner, 1st.	Sinking, including drilling and slushing.
	0160	Miner, 2nd.	General mine maintenance, install and maintain track, repair pipe.
	0161	Miner, 2nd.	Drill and scrape in cage raises and regular raises.
	0162	Miner, 2nd.	Drill and scrape in shrinkage stopes.
	0163	Miner, 2nd.	Drill and scrape in sub-sill drifts.

Table A-1 (continued)

Description of Duties

Job Title

Job Code

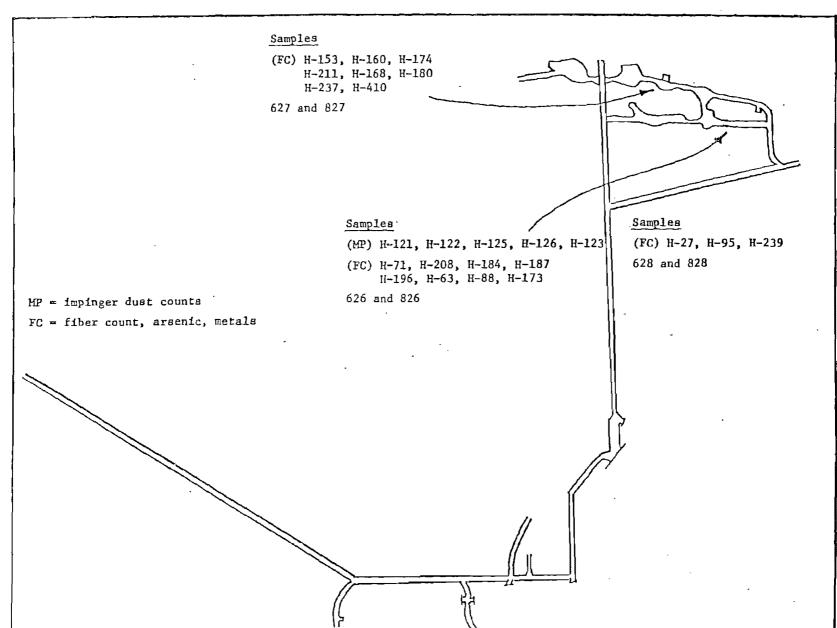
	0164	Miner, 2nd.	Drill and scrape in 7 x 7 and smaller drifts.
	0165	Miner, 2nd.	Drill and scrape in 75 x 75 and larger drifts.
	0166	Miner, 2nd.	Drilling and slushing in open cut and fill stopes including blast hole.
	0167	Miner, 2nd.	Drill and scrape in timber cut and fill stopes.
	0168	Miner, 2nd.	Drill in bored raises.
:	0169	Miner, 2nd.	Sinking, including drilling and slushing.
	0170	Miner, 3rd.	Guniting stopes, timberline, helper in stope.
 ; .	0171	Miner, 3rd.	Drill and scrape in cage raises and regular raises.
A-6	0172	Miner, 3rd.	Drill and scrape in shrinkage stopes.
	0173	Miner, 3rd.	Drill and scrape in sub-sill drifts.
	0174	Miner, 3rd.	Drill and scrape in 7×7 and smaller drifts.
	0175	Miner, 3rd.	Drill and scrape in $7\frac{1}{2} \times 7\frac{1}{2}$ and larger drifts.
	0176	Miner, 3rd.	Brilling and slushing in open cut and fill stopes including blast hole.
X 31	0177	Miner, 3rd.	Drill and scrape in timber cut and fill stopes.
7	0178	Miner, 3rd.	Drill in bored raises.
	0179	Miner, 3rd.	Sinking, including drilling and slushing.
	0180	Miner, 4th.	Help Pipeman, change blanks for sandcrews, repair broken sand lines, install pipelines.

Table A-1 (continued)

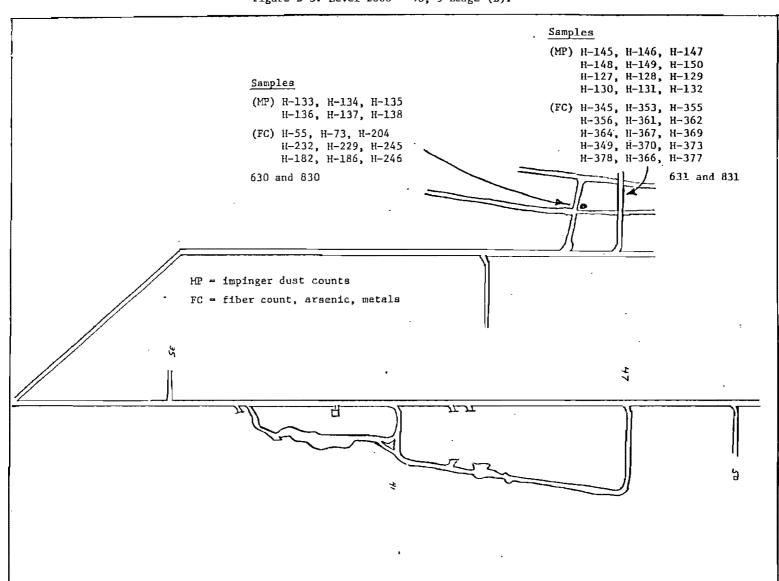
3	Job Code	Job Title	Description of Duties
	0181	Miner, 4th.	Drill and scrape in cage raises and regular raises.
	0182	Miner, 4th.	Drill and scrape in shrinkage stopes.
	0183	Miner, 4th.	Drill and scrape in sub-sill drifts.
	0184	Miner, 4th.	Drill and scrape in 7×7 and smaller drifts.
	0185	Miner, 4th.	Drill and scrape in $7\frac{1}{2}$ x $7\frac{1}{2}$ and larger drifts.
	0186	Miner, 4th.	Drilling and slushing in open cut and fill stopes including blast hole.
	0187	Miner, 4th.	Drill and scrape in timber cut and fill stopes.
>	0188	Miner, 4th.	Drill in bored raises.
-7	0189	Miner, 4th.	Sinking, including drilling and slushing.
	0190	Mine Shift Boss	

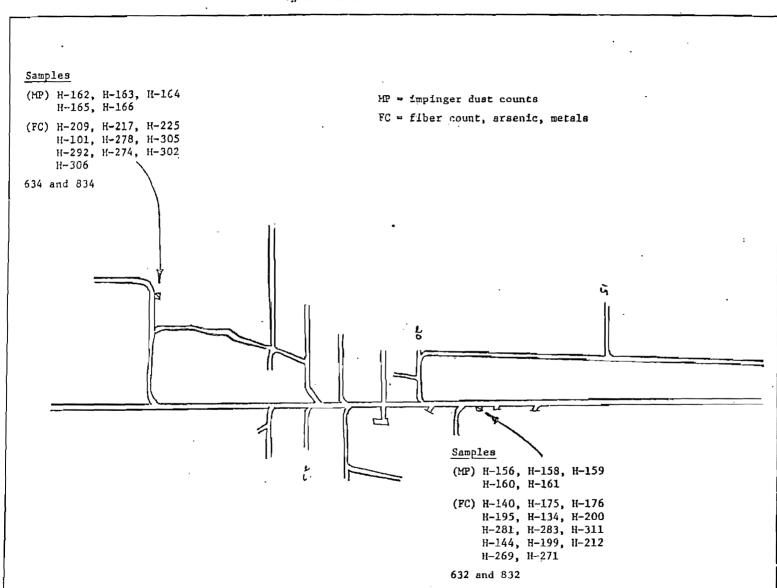
Note: The first two digits of the Job Code sepresent ledges of the mine (e.g. 01 - all workers on any ledge, 09 - 9 Ledge, 10 - Main Ledge, 11 - 11 Ledge, 13 - 13 Ledge, 19 - 19 Ledge, and 21 - 21 Ledge). The last two digits of the Job Code correspond to the specific Job Title and Job Description.

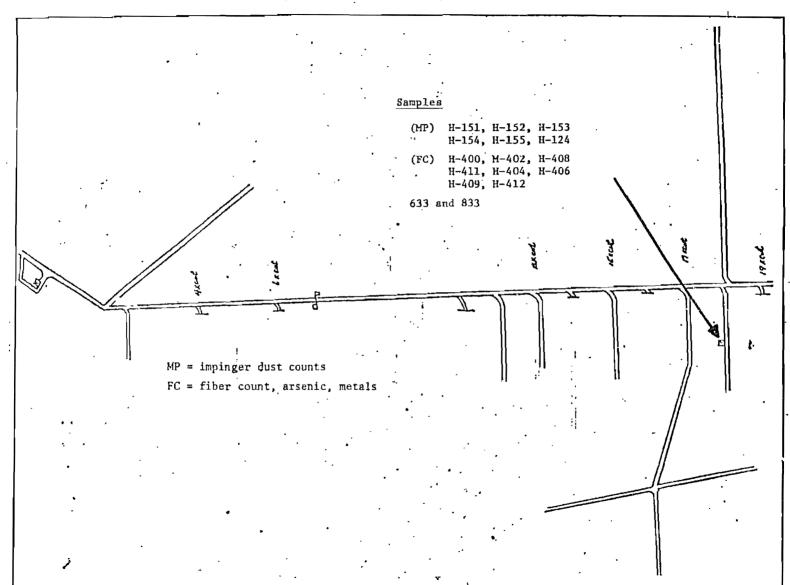
Table A-2. Job dictionary for all job types in the surface crushing mills at the Homestake Gold Mine, Lead, South Dakota.

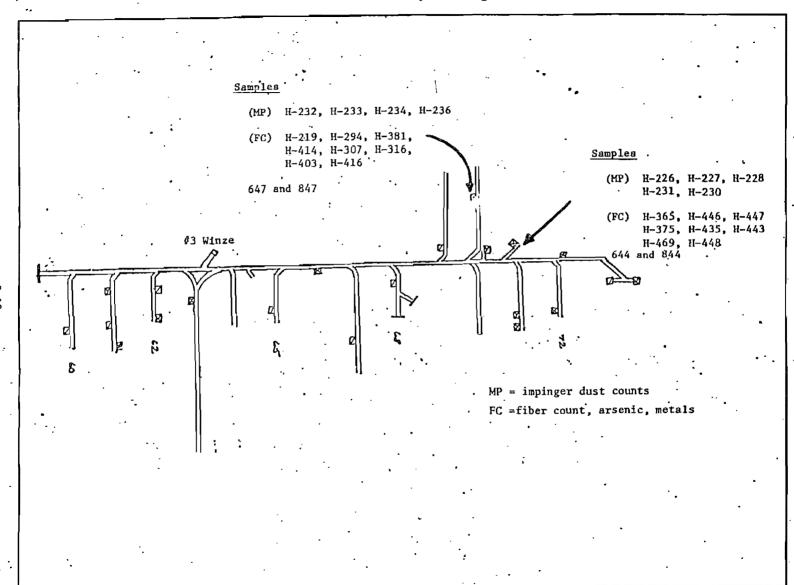

Description of Duties

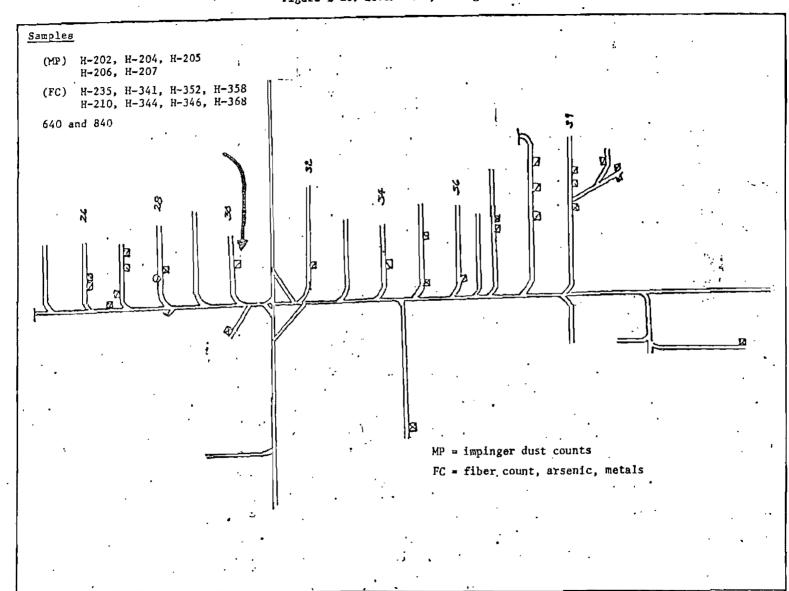
Job Title


Job Code


	0200	Surface Operations	Crushing Department
	0201	Crusher-Feeder	Maintain crusher, watch ore from feeder. Surface - Ross or Yates.
	0202	Mechanic, 3rd.	Feed crusher, check and lubricate all crushing equipment. Surface - Ross or Yates.
	0204	Belt/Chip Ficker	Inspect are on conveyor from crusher. Surface - Ross or Yates.
	0205	Laborer, 2nd.	Cleanup around ore crusher and shovel spills from conveyor. Surface - Ross or Yates.
	0206	Laborer, 1st.	Cleanup ore spills. Surface - Ross or Yates.
A-8	0231	Motorman, Surface	Transport rock between Yates and Ross and South Mill, haul supplies.


Appendix B. Sample locations for NIOSH survey at the Homestake Gold Mine, Lead, South Dakota.





Mile of Bernands

Samples

(MP) H-184, H-185, H-186 H-188, H-189, H-190

(FC) H-455, H-457, H-463 H-464, H-458

639 and 839

Hoist Room #6 Ross Shaft

MP = impinger dust counts

FC = fiber count, arsenic, metals

Samples

(MP) H-179, H-180, H-181, H-182, H-183

(FC) H-359, H-430, H-467, H-459, H-466, H-470 H-480, H-262, H-456, H-475, H-481, H-4372

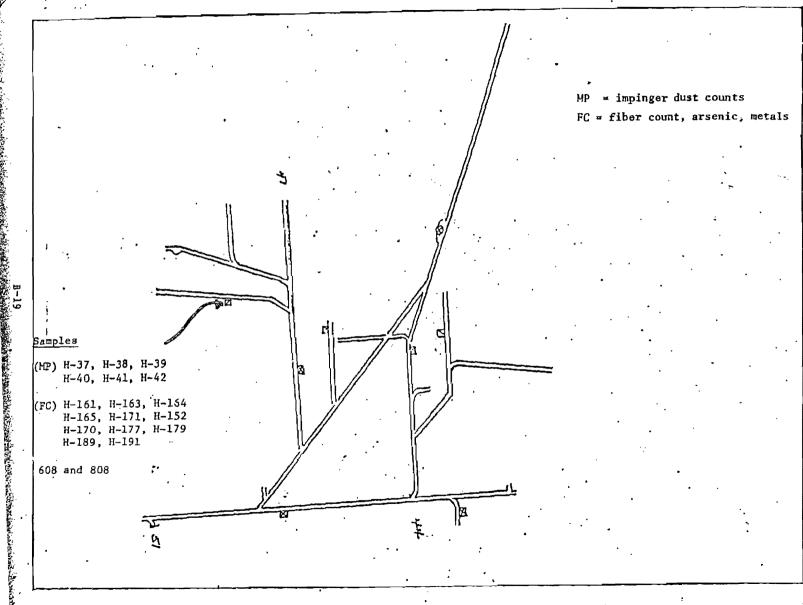
н-452, н-453, н-472, н-474, н-476, н-479

H-468 638 and 838

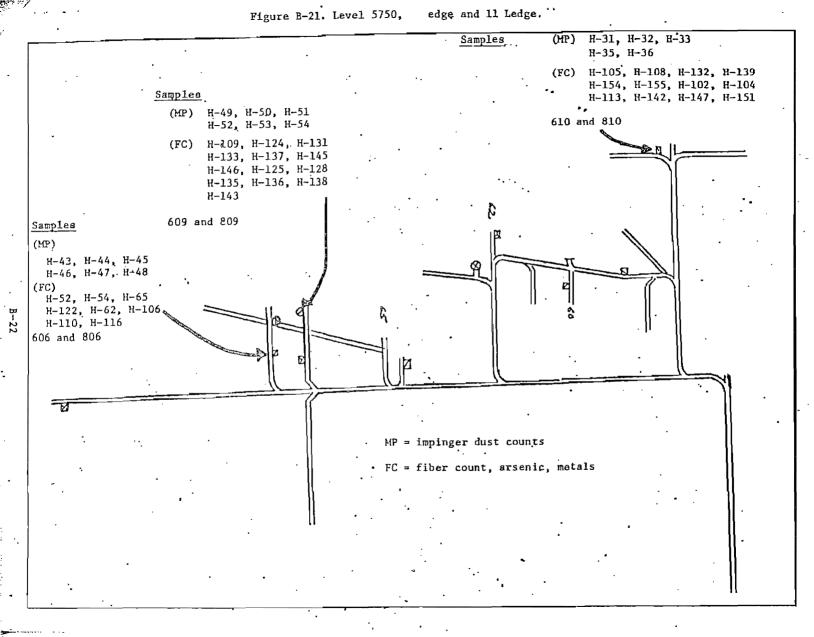
MP = impinger dust counts

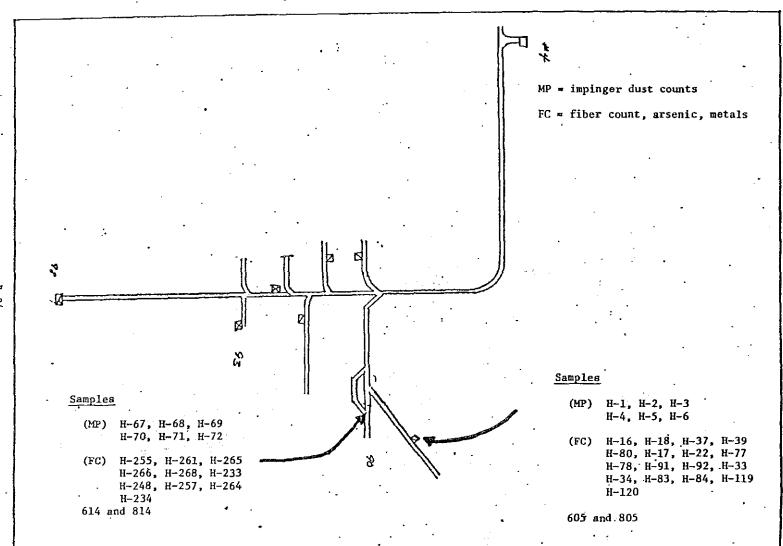
FC = fiber count, arsenic, metals

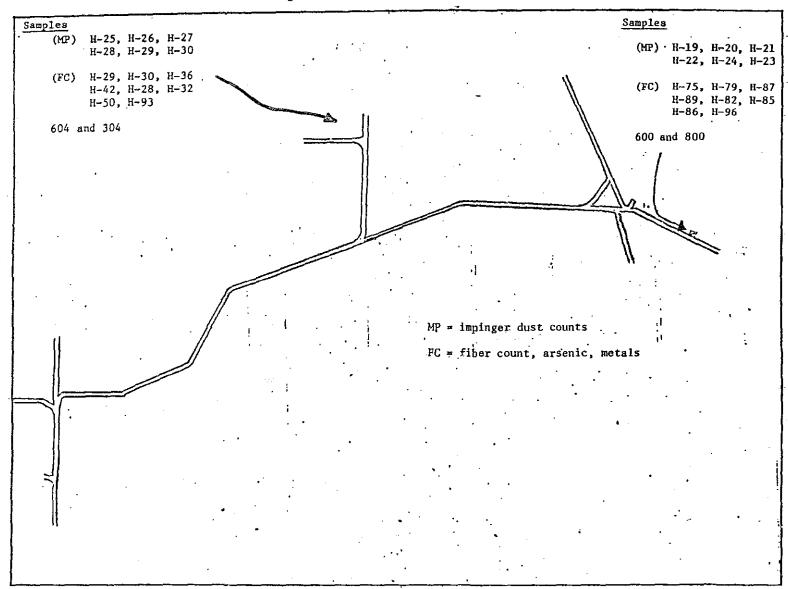
(MP) H-191, H-192, H-193

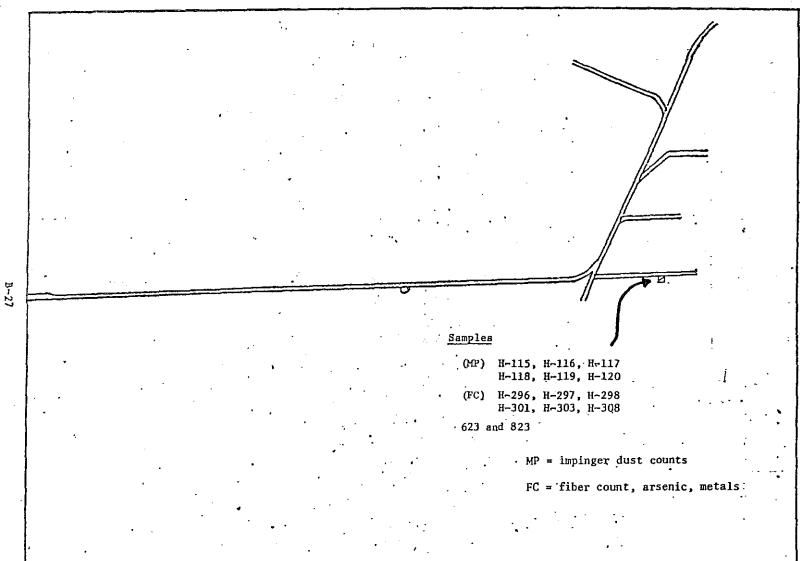

(FC) H-167, H-336, H-354

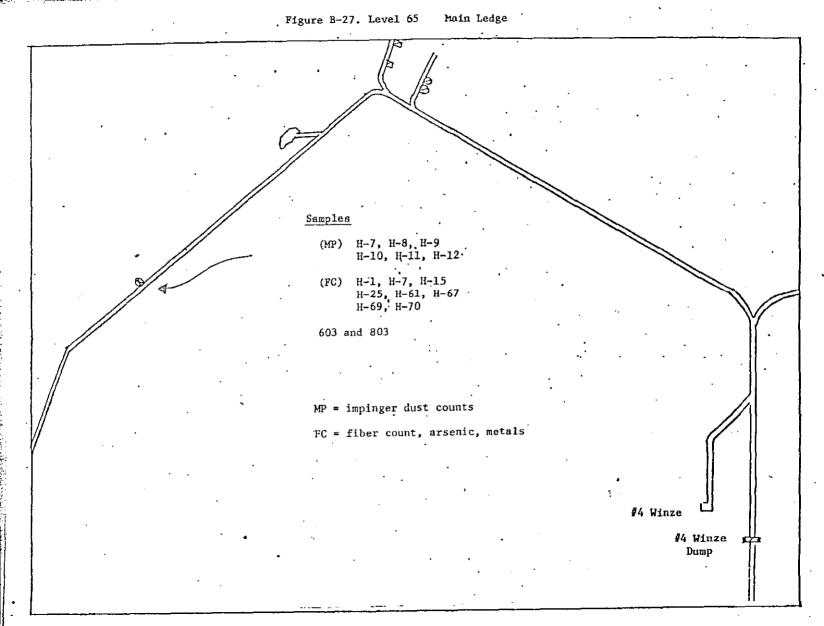
H-195, H-194

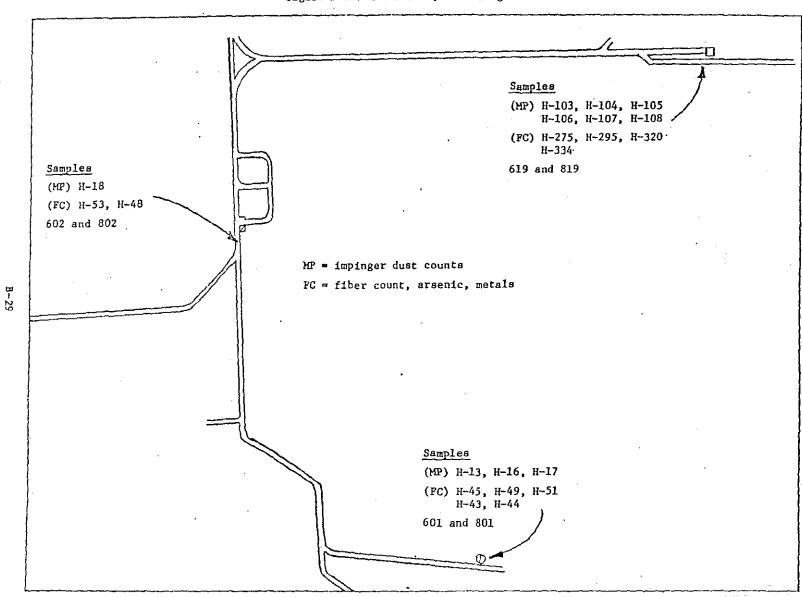

637 and 837

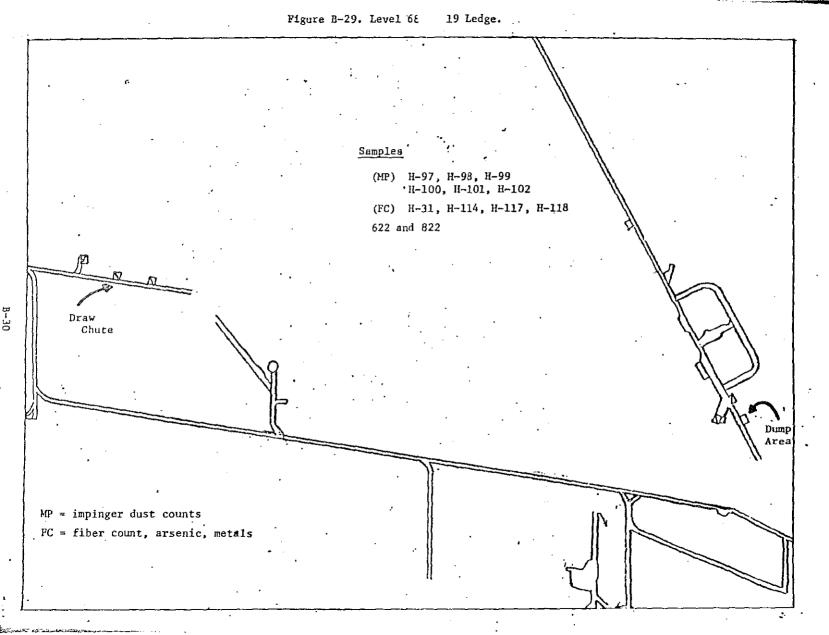

Samples


Ross Shaft ·




616 and 816.





Appendix C. Results of arsenic analysis at the Homestake Gold Mine, Lead, South Dakota.

Table C-1. Airborne arsenic sample results for all underground and surface employees at the Homestake Gold Mine.

Sample time

(minutes)

354

456

1213

444

Person Sample

number number

0836

0837

0841

0828

Date

7/19/77

7/20/77

7/20/77

7/18/77

Job

0125

0125

0128

0132

1A

11

1X

IC

code

Volume

(m³)

0.234

0.296

0.733

0.284

Time-weighted

Sample information**

(i.e. samples used for composite analysis)

Concentration Determined from Filter Samples

Concentration Determined from Filter Samples

Concentration Determined from Filter Samples 478, 482, 473, 483, 471, 485 and 484.

Concentration Determined from Filter Samples

423, 424 and 429.

336 and 167.

239 and 27.

avg. conc.

(µg/m²)

0.427

1.689

0.546

2.113

0101	13	0817	7/15/77	356	0.236	0.847	Concentration Determined from Filter Samples 327 and 285.
0107	1 A	0839	7/20/77	309	0.189	0.529	Concentration Determined from Filter Samples 463 and 464.
0107	1Q	0813	7/14/17	700	0.420	0.100	Concentration Determined from Filter Samples 2, 213, 68 and 66.
0110	1G	0844	7/21/77	625	0.385	0.260	Concentration Determined from Filter Samples 446, 469, 375 and 448.
0121	10	0818	7/15/77	702	0.422	0.474	Concentration Determined from Filter Samples 289, 304, 315 and 326.
0124	IJ	0819	7/15/77	221	0.141	2.128	Concentration Determined from Filter Samples 295 and 275.

Table C-1 (continued)

; !	Job . code_	Person	Sample number	Date	Sample time (minutes)	Volyme (m)	Time-weighted average conc. (ug/m)	Sample information** (i.e. samples used for composite analysis)
	0132	1.5	0822	7/15/77	310	0.190	0.526	Concentration Determined from Filter Samples 117 and 31.
	0142	10	0812	7/14/77	627	0.387	2.326	Concentration Determined from Filter Samples 148, 150, 159, 149 and 188.
	0144	15	0814	7/14/77	729	0.449	5.791	Concentration Determined from Filter Samples 264, 233, 234, 257 and 248.
	0152	IJ	0831	7/18/77	954	0.594	1.684	Concentration Determined from Filter Samples 356, 364, 353, 361, 366, 378, 349, 372 and 374.
2	0154	10	0826	7/18/77	729	0.449	3.786	Concentration Determined from Filter Samples 208, 63, 173 and 88.
	0154	16	0824	7/15/77	641	0.401	0.499	Concentration Determined from Filter Samples 323, 272, 273 and 287.
	0154	IJ	0847	7/21/77	629	0.389	1.799	Concentration Determined from Filter Samples 416, 307, 294 and 219.
	0155	1 A	0806	7/13/77	617	0.377	3.714	Concentration Determined from Filter Samples 65, 54, 52 and 122.
	0155	1 F	0803	7/12/77	730	0.450	1.111	Concentration Determined from Filter Samples 1, 15, 7 and 25.
	0155	16	0825	7/15/77	559	0.359	0.836	Concentration Determined from Filter Samples 291, 252, 260, 286 and 279.
	0156	IA	0850	7/22/77	631	0.391	0.256	Concentration Determined from Filter Samples 318, 202, 312 and 276.
								÷

Table C-1 (continued)

Job code	Person number	Sample number	Date	Sample time (minutes)	Volume (m³)	Time-weighted avg. conc (µg/m³)	Sample information** (i.e. samples used for composite analysis)
0156	1 B	0845	7/21/77	737	0.457	0.219	Concentration Determined from Filter Samples 386, 310, 357, 250 and 387.
0156*	10	0807	7/13/77	718	0.438	0.000	Concentration Determined from Filter Samples 97, 4, 5, 58 and 3. Sample Lost During Analysis.
0156	1 G	0808	7/13/77	422	0.262	7.252	Concentration Determined from Filter Samples 171, 161, 163, 164 and 165.
0156	1H :	0804	7/12/77	546	0.346	0.289	Concentration Determined from Filter Samples 29, 36, 30 and 42.
0156	IJ	0809	7/13/77	633	0.393	3.053	Concentration Determined from Filter Samples 124, 145, 133, 146, 131, 109 and 137.
0156	1K	0805	7/12/77	1150	0.710	0.563	Concentration Determined from Filter Samples 78, 91, 92, 77, 17, 22, 18, 80 and 39.
0156	1K	0823	7/15/77	652	0.412	0.243	Concentration Determined from Filter Samples 303, 308 and 301.
0156	1K	0840	7/20/77	745	0.465	0.430	Concentration Determined from Filter Samples 348, 352, 340, 344 and 346.
156	1L	0832	7/19/77	1016	0.616	7.468	Concentration Determined from Filter Samples 322, 176, 311, 283, 134, 144 and 271.
							,

 $[\]star$ Note: This sample not included in the TWA and Statistical Results.

Table C-1 (continued)

Volume (m)

0.281

0.327

Sample time

(minutes)

441

527

Person Sample

number number

Date

Job

code

0160

0162

1E

1G

0802

0827

7/12/77

7/18/77

Time-weighted

avg. conc. (µg/m)

Sample information**

(i.e. samples used for composite analysis)

Concentration Determined from Filter Sample 48.

Concentration Determined from Filter Samples

180, 237 and 168.

0156	าห	0810	7/13/77	657	0.417	0.480	Concentration Determined from Filter Samples 142, 147, 104, 151, 102 and 113.
0156	1N	0842	7/20/77	9 56	0.596	0,336	Concentration Determined from Filter Samples 445, 439, 450, 449, 451, 444 and 441.
0156	1Q	0833	7/19/77	736	0.456	0.658	Concentration Determined from Filter Samples 402, 400, 406 and 409.
0156	1 R	0820	7/15/77	616	0.376	1.862	Concentration Determined from Filter Samples 103, 100, 111, 112 and 123.
0156	17	0821	7/15/77	457	0.297	0.673	Concentration Determined from Filter Samples 192, 339, 328 and 181.
0156	17	0834	7/19/77	1109	0.669	0.448	Concentration Determined from Filter Samples 274, 302, 101, 288, 292 and 209.
0157	1D	0846	7/21/77	546	0.346	• 0.867	Concentration Determined from Filter Samples 350, 162, 351 and 251.
0157	1 D	0849	7/22/77	814	0.494	0.607	Concentration Determined from Filter Samples 462, 157, 331 and 385.

0.356

11.621

Table C-1 (continued)

_					Time-weighted	
		Date	(minutes)	(m)	avg. cgnc. (μg/m)	Sample information** (i.e. samples used for composite analysis)
IL	0829	7/18/77	1036	0.636	3.774	Concentration Determined from Filter Samples 337, 56, 267, 121, 115, 321, 98, 342, 127 and 363.
18	0800	7/12/77	608	0.368	4.620	Concentration Determined from Filter Samples 86, 85, 96 and 82.
11	0830	7/18/77	433	0.273	2.564	Concentration Determined from Filter Samples 246, 186 and 182.
1 D	0801	7/12/77	650	0.410	C.488	Concentration Determined from Filter Samples 44, 43 and 51.
IU	0815	7/14/77	712	0.432	1.852	Concentration Determined from Filter Samples 14, 72, 8 and 6.
1X	0816	7/14/77	659	0.419	9.785	Concentration Determined from Filter Samples 215, 206, 214, 198 and 220.
12	0811	7/14/77	614	0.374	1.070	Concentration Determined from Filter Samples 226, 227, 236, 222, 243 and 223.
1 H 	0843	7/21/77	215	0.135	2.222	Concentration Determined from Filter Samples 107 and 413.
1 G	0848	7/22/77	918	0.558	1.075	Concentration Determined from Filter Samples 293, 401 2118 and 420.
	number IL IB II ID IU IX IZ	1L 0829 1B 0800 1I 0830 1D 0801 1U 0815 1X 0816 1Z 0811 1H 0843	number number Date 1L 0829 7/18/77 1B 0800 7/12/77 1I 0830 7/18/77 1D 0801 7/12/77 1U 0815 7/14/77 1X 0816 7/14/77 1Z 0811 7/14/77 1H 0843 7/21/77	number number Date (minutes) 1L 0829 7/18/77 1036 1B 0800 7/12/77 608 1I 0830 7/18/77 433 1D 0801 7/12/77 650 1U 0815 7/14/77 712 1X 0816 7/14/77 659 1Z 0811 7/14/77 614 1H 0843 7/21/77 215	number number Date (minutes) (m³) 1L 0829 7/18/77 1036 0.636 1B 0800 7/12/77 608 0.368 1I 0830 7/18/77 433 0.273 1D 0801 7/12/77 650 0.410 1U 0815 7/14/77 712 0.432 1X 0816 7/14/77 659 0.419 1Z 0811 7/14/77 614 0.374 1H 0843 7/21/77 215 0.135	Person number Sample number Sample (minutes) Volume (my/m) avg. cgnc. (μg/m) 1L 0829 7/18/77 1036 0.636 3.774 1B 0800 7/12/77 608 0.368 4.620 1I 0830 7/18/77 433 0.273 2.564 1D 0801 7/12/77 650 0.410 0.488 1U 0815 7/14/77 712 0.432 1.852 1X 0816 7/14/77 659 0.419 9.785 1Z 0811 7/14/77 614 0.374 1.070 1H 0843 7/21/77 215 0.135 2.222

0.595

Concentration Determined from Filter Samples

391, 388, 389, 382, 396 and 383.

290, 249 and 419.

Job code	Person number	Sample number	Date	Sample time (minutes)	Volyme (m)	avg. conc. (µg/m ³)	Sample information** (i.e. samples used for composite analysis)
0200	114	0838	7/20/77	1255	0.775	6.452	Concentration Determined from Filter Samples 476, 472, 452, 466, 470, 468, 359, 262, 456 and 460.
0200	16	0835	7/19/77	1954	0.654	0.765	Concentration Determined from Filter Samples

** 1-10 filter halves from personal samples collected from employees with a similar job title were combined.

0.336

536

0851

0231

1L

7/22/77

Time-weighted

Table C-1 (continued)

Table C-2. Airborne arsenic sample results for underground employees on 9, Main, 11, 13, 19, and 21 Ledges of Homestake Gold Mine.

Time-weighted

	Job code	Person number	Sample number	Date	Sample time (minutes)	Volyme (m)	avg. conc. (µg/m)	Sample information** (i.e. samples used for composite analysis)
	0932	10	0828	7/18/77	444	0.284	2.113	Concentration Determined from Filter Samples 239 and 27.
	0952	1J	0831	7/18/77	954	0.594	1.684	Concentration Determined from Filter Samples 356, 364, 353, 361, 366, 378, 349, 372 and 374.
	0954	1D	0826	7/18/77	729	0.449	3.786	Concentration Determined from Filter Samples 208, 63, 173 and 88.
	0955	1A	0806	7/13/77	617	0.377	3.714	Concentration Determined from Filter Samples 65, 54, 52 and 122.
5 0	0956	1A	0850	7/22/77	631	0.391	0.256	Concentration Determined from Filter Samples 318, 202, 312 and 276.
	0956	1 B	0845	7/21/77	737	0.457	0.219	Concentration Determined from Filter Samples 386, 310, 357, 250 and 387.
	0956	1J	0809	7/13/77	633	0393	3.053	Concentration Determined from Filter Samples 124, 145, 133, 146, 131, 109 and 137-
	0956	1K	0840	7/20/77	745	0.465	0.430	Concentration Determined from Filter Samples 348, 352, 340, 344 and 346.

7.468

0.336

Concentration Determined from Filter Samples

Concentration Determined from Filter Samples 445, 439, 450, 449, 451, 444 and 441.

322, 176, 311, 283, 134, 144 and 271.

0956

0956

11

1N

0832

0842

7/19/77

7/20/77

1016

956

0.616

0.596

Table C-2 (continued)

Job code	Person number	Sample number		Sample time (minutes)	Volyme (m)	Time-weighted avg. conc.	Sample information** (i.e. samples used for composite analysis)
0956	ĮQ	0833	7/19/77	736	0.456	0.658	Concentration Determined from Filter Samples 402, 400, 406 and 409.
0956	lv	0834	7/19/77	1109	0.669	0.448	Concentration Determined from Filter Samples 274, 302, 101, 288, 292 and 209.
0962	lG	0827	7/18/77	527	0.327	L1.621	Concentration Determined from Filter Samples 180, 237 and 168.
0963 우	1L	0829	7/18/77	1036	0.636	3.774	Concentration Determined from Filter Samples 337, 56, 267, 121, 115, 321, 98, 342, 127 and 363.
0973	11	0830	7/18/77	433,	0.273	2.564	Concentration Determined from Filter Samples 246, 186 and 182.
0976	1X	0816	7/14/77	659	0.419	9.785	Concentration Determined from Filter Samples 215, 206, 214, 198 and 220.
0976	12	0811	7/14/77	614	0.374	1.070	Concentration Determined from Filter Samples 226, 227, 236, 222, 243 and 223.
1010	16	0844	7/21/77	625	0,385	0.260	Concentration Determined from filter Samples 446, 469, 375 and 448.
1044	15	0814	7/14/77	729	0.449	5.791	Concentration Determined from Filter Samples 264, 233, 234, 257 and 248.
1054	IJ	0847	7/21/77	.629	0.389	1.799	Concentration Determined from Filter Samples 416, 307, 294 and 219.

Table C-2 (continued)

	Job code	Person number	Sample number	Date	Sample time (minutes)	Volyme (m)	Time-weighted avg. conc. (µg/m)	Sample information** (i.e. samples used for composite analysis)
	1055	1F	0803	7/12/77	730	0.450	1.111	Concentration Determined from Filter Samples 1, 15, 7 and 25.
	1056	lK	0805	7/12/77	1150	0.710	0.563	Concentration Determined from Filter Samples 78, 91, 92, 77, 17, 22, 18, 80 and 39.
	1057	ID	0846	7/21/77	546	0,346	0.867	Concentration Determined from Filter Samples 350, 162, 351 and 251.
_	1057	1Đ	0849	7/22/77	814	0.494	0.607	Concentration Determined from Filter Samples 462, 157, 331 and 385.
1.	1060	lE	0802	7/12/77	441	0.281	0.356	Concentration Determined from Filter Sample 48.
	1076	10	0801	7/12/77	650	0.410	0.488	Concentration Determined from Filter Samples 44, 43 and 51.
	1090	1H	0843	7/21/77	215	0.135	2.222	Concentration Determined from Filter Samples 176 and 94.
	1128	1x	0841	7/20/77	1213	0.733	0.546	Concentration Determined from Filter Samples 478, 482, 473, 483, 471, 485 and 484.
	1142	1D	0812	7/14/77	627	0.387	2.326	Concentration Determined from Filter Samples 148, 150, 159, 149 and 188.
	1156*	10	0807	7/13/77	718	0.438	0.000	Concentration Determined from Filter Samples 97, 4, 5, 58 and 3. Sample Lost During Analysis.

 $[\]star$ Note: This sample not included in the TWA and Statistical Results.

Table C-2 (continued)

	Job code	Person number	Sample number	Date	Sample time (minutes)	Volume (m)	Time-weighted `avg. conc. (ug/m')	Sample information** (i.e. samples used for composite analysis)
	1156	16	0808	7/13/77	422	0.262	7.252	Concentration Determined from Filter Samples 171, 161, 163, 164 and 165.
	1156	111	0810	7/13/77	657	0.417	0.480	Concentration Determined from Filter Samples 142, 147, 104, 151, 102 and 113.
	1176	10	0815	7/14/77	712	0.432	1.852	Concentration Determined from Filter Samples 14, 72, 8 and 6.
	1356	1 H	0804	7/12/77	546	0.346	0.289	Concentration Determined from Filter Samples 29, 36, 30 and 42.
1	1366	. 1B	0800	7/12/77	608	0.368	4.620	Concentration Determined from Filter Samples 86, 85, 96 and 82.
-	1932	ĮP	0822	7/15/77	310	0.190	. 0.526	Concentration Determined from Filter Samples 117 and 31.
	1954	lG	0824	7/15/77	641	0.401	0,490	Concentration Determined from Filter Samples 323, 272, 273 and 287.
	1955	16	0825	7/15/77	559	0.359	0.836	Concentration Determined from Filter Samples 291, 252, 260, 286 and 279.
	1956	18	0820	7/15/77	616	0.376	1.862	Concentration Determined from Filter Samples 103, 100, 111, 112 and 123.
	1956	lT	0821	7/15/77	457	0.297	0.673	Concentration Determined from Filter Samples 192, 339, 328 and 181.

Table C-2 (continued)

Time-weighted

Sample information**

avg. conc.

code	number	number	Date	(minutes)	(m)	(µg/m ⁻)	(i.e. samples used for composite analysis)
2156	IK	0823	7/15/77	652	0.412	0.243	Concentration Determined from Filter Samples 303, 308 and 301.

** 1-10 filter halves from personal samples collected from employees with a similar job title were combined.

Volume

Sample time

Person Sample

Job

Table C-3. Statistical summary of airborne arsenic sample results for underground employees at the Homestake Gold Mine.

						Ars	enic yg/m ³		••
		Number of	Range	Arith.		··········	Standard	Standard	
Job	code	samples	High - Low	mean	Median	TWA	deviation	error	Job title
	0101	1	0.847	0.847	0.847	0.847	0,000	. 0.000	Cager
	0107	2	0.100 - 0.529	0.314	0.314	0,231	0.303	0.214	Hoist Operator- Underground
	0110	1	0.260	0.260	0.260	0.260	0.000	0.000	Carpenter, 1st.
	0121	1	0.474	0.474	0.474	0.474	0.000	0.000	Shaftman
	0124	1	2.128	2.128	2.128	2.128	0,000	0.000	Skipper Head
	0125	2	1,689 - 0,427	1.058	1.058	1.132	0.892	0.631	Skipper
	0128	1	0.546	0.546	0.546	0.546	0.000	0.000	Sandman, Underground
	0132	2	2.113 - 0.526	1.320	1.320	1,477	1.122	0.793	Motorman, 1st.
	0142	1	2.326	2.326	2.326	2.326	0.000	0.000	Diamond Drill Helper
	0144	1	5.791	5.791	5.791	5.791	0.000	0.000	Boring Machine Helper
	0152	1	1.684	1.684	1.684	1.684	0.000	0.000	Miner, 1st.
	0154	3	3.786 - 0.499	2.028	1.799	2.098	1.655	0.956	Miner, 1st.
	0155	3	3.714 - 0.836	1.887	1.111	1.855	1.588	0.917	Miner, 1st.
ç	0156	15	7.468 - 0.219	1.615	0.480	1.545	2.452	0.633	Miner, 1st.
منر	0157	2 .	0.867 - 0.607	0.737	0.737	0.714	0.184	0.130	Miner, 1st.
Ĺ	0160	1	0.356	0.356	0.356	0.356	0.000	0.000	Miner, 2nd.
	0162	1	11.621	11.621	11.621	11.621	0.000	0.000	Miner, 2nd.
	0163	•	3.774	3.774	3.774	3.774	0.000	0.000	Miner, 2nd.
	0166	1	4.620	4.620	4.620	4,620	0.000	0.000	Miner, 2nd.
	0173	1	2.564	2.564	2.564	2.564	0.000	0.000	Miner, 3rd.
	0176	4	9.785 - 0.488	3.299	1.461	3.364	4.360	2.180	Miner, 3rd.
	0190	1	2.222	2.222	2.222	2.222	0.000	0.000	Mine Shift Boss
Area	01	Total 47	11.621 - 0.100	2.026	0.836	1.980	2.569	0.375	All Employees Underground

The geometric mean arsenic exposure for underground employees was 1.072 $\mu g/m^3$ with a geometric standard deviation of 3.114; the lower and upper 95% confidence levels for the geometric mean were 0.768 and 1.497 $\mu g/m^3$, respectively.

Table C-4. Statistical summary of airborne arsenic sample results for surface workers at the Homestake Gold Mine.

					Ar	senic ug/m³		
Job code	Number of samples	Range High - Low	Arith. mean	Median	TWA	Standard deviation	Standard error	. Job title
0200	, 3	6.452 - 0.765	2.764	1.075	2.764	3.198	1.846	Workers in Surface Crushing Mill
0231	I	0.595	0.595	0.595	0.595	0.000	0.000	Motorman - Surface
Area 02	Total 4	6.452 - 0.595	2.222	0.920	2.713	2.827	1.414	Motorman and Workers in Crushing Mill

The geometric mean arsenic exposure for surface employees was 1.333 $\mu g/m^3$ with a geometric standard deviation of 2.941; the lower and upper 95% confidence levels were 0.240 and 7.418 $\mu g/m^3$, respectively.

Table C-5. Statistical summary of airborne arsenic sample results for underground employees on the 9, Main, 11, 13, 19, and 21 Ledges of the Romestake Gold Mine.

					Arse	nic µg/m³		
	Number of	Range	Arith.			Standard	Standard	
Job code	samples	High - Low	mean	Median	TWA	deviation	error	Job title
0932	1	2.113	2.113	2.113	2.113	0.000	0.000	Motorman, 1st.
0952	1	1.584	1.684	1.684	1.684	0.000	0.000	Miner, 1st.
0954	i	3.786	3.786	3.786	3.786	0.000	0.000	Miner, 1st.
0955	. 1	3.714	3.714	3.714	3.714	0.000	0.000	Miner, 1st.
0956	ã	7.468 - 0.219	1.609	0.439	1.731	2.548	0.901	Miner, 1st.
0962	1	11.621	11.621	11.621	11.621	0.000	0.000	Miner, 2nd.
0963	ī	3,774	3.774	3.774	3.774	0.000	0.000	Miner, 2nd.
0973	1	2.564	2.564	2.564	2.564	0.000	0.000	Miner, 3rd.
0976	. 2	9.785 - 1.070	5.428	5.428	5.675	6.162	4.357	Miner, 3rd.
Area 09	Total 17	11.621 - 0.219	3,116	2.113	2.971	3.439	0.834	Employees on 9 Ledge
1010	1	0.260	0.260	0.260	0.260	0.000	0.000	Carpenter, 1st.
1044	1	5.791	5.791	5.791	5.791	0.000	0.000	Boring Machine Helper
1054	1	1.799	1.799	1.799	1.799	0.000	0.000	Miner, 1st.
1055	1	1.111	1.111	1.111	1.111	0.000	0,000	Miner, lst.
1056	1	0.563	0.563	0.563	0.563	0.000	0.000	Miner, 1st.
1057	2	0.867 - 0.607	0.737	0.737	0.714	0.184	0.130	Miner, 1st.
1060	I	0.356	0.356	0.356	0.356	0.000	0.000	Miner, 2nd.
1076	l	0.488	0.488	0.488	0.488	0.000	0.000	Miner, 3rd.
1090	1	2.222	2.222	2.222	2.222	0.000	0.000	Mine Shift Boss
Area 10	Total 10	5.791 - 0.260	1.406	0.737	1.358	1.668	0.527	Employees on Main Ledg
1128	1	0.546	0.546	0.546	0.546	0.000	0.000	Sandman, Underground
1142	1	2.326	2.326	2.326	2.326	0.000	0.000	Diamond Drill Helper
1156	2	7.252 - 0.480	3.866	3.866 .	3.093	4.789	3.386	Miner, 1st.
1176	1	1.852	1.852	1.852	1.852	0.000	0.000	Miner, 3rd.
Area 11	Total 5	7.252 - 0.480	2.491	1.852	1.883	2.781	1.244	Employees on ll Ledge

Table C-5 (continued)

					Arsenic	μg/m ³		•
Job code	Number of samples	Range High - Low	Arith. mean	Median	TWA	Standard deviation	Standard error	Job title
1356	. 1	0.289	0.289	0.289	0.289	0.000	0.000	Miner, 1st.
1366	1	4.620	4.620	4.620	4.620	0.000	0.000	Miner, 2nd.
Area 13	Total 2	4.620 - 0.289	2.455	2.455	2.521	3.062	2.165	Employees on 13 Ledge
1932	1	0.526	0.526	0.526	0.526	0.000	0.000	Motorman, 1st.
1954	1	0.499	0.499	0.499	0.499	0.000	0.000	Miner, 1st.
1955	1	0.836	0.836	0.836	0.836	0.000	0.000	Miner, 1st.
1956	2	1.862 - 0.673	1.268	1.268	1.337	0.841	0.594	Miner, 1st.
Area 19	5	1.862 - 0.499	0.879	0.673	0.924	0.566	0.253	Employees on 19 Ledge
2156	1	0.243	0.243	0.243	0.243	0.000	0,000	Miner, 1st.
Area 21	Total 1	0.243	0.243	0.243	0.243	0.000	0.000	Employees on 21 Ledge
Ledges	Total 40	11.521 - 0.219	2.226	0.847	2.110	2.724	0.431	Underground employees on 9, Main, 11, 13, 19, and 21 Ledges

The geometric mean arsenic exposure for underground employees on the various ledges was 1.182 $\mu g/m^3$ with a geometric standard deviation of 3.124; the lower and upper 95% confidence levels were 0.819 and 1.707 $\mu g/m^3$, respectively.

Appendix D. Results of optical microscopy fiber analysis at the Homestake Gold Mine, Lead, South Dakota.

Table D-1. Airborne sample results for fibers >5 µm in length for all underground employees at the Homestake Gold Mine.

•				· · · · · · · · · · · · · · · · · · ·			
Job code	Person number	Sample number	Date .	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0100	18	н458	7/20/77	0822 - 1025	246	0.029	4550 Level, Electrician in Hoist Room for repair, Ross.
						TWA-0.029	· .
0101	13	Н284	7/15/77	0713 - 0934	282	0.043	4850 Level, Main Ledge, Winze 4 to 6800 Level Shaft Cage.
0101	13	н285	7/15/77	0934 - 1145	262	0.046	4850 Level, Main Ledge, Winze 4 to 6800 Level Shaft Cage
0101	13	н327	7/15/77	1145 - 1330	210	0.172	4850 Level, Main Ledge, Winze 4 to 6800 Level Shaft Cage.
0101	13	н319	7/15/77	1330 - 1435	130	0.056	4850 Level, Main Ledge, Winze 4 to 6800 Level Shaft Cage.
					•	TWA-0.076	
2107	1 A	н455	7/20/77	0634 ~ 0834	240	0.125	4550 Level-Hoist Room, Spent Time in Cubicle, Ross.
0107	1A	н463 .	7/20/77	0834 - 1027	226	0.101	4550 Level-Hoist Room, Spent Time in Cubicle and Hoist Room, Ross.
0107	l A	H457	7/20/77	1027 - 1230	246	0.088	4550 Level-Hoist Room, Ross.
0107	IA	н464	7/20/77	1230 1346	152	0.127	4550 Level-Hoist Room, In Control Cubicle, Ross.
						TWA-0.109	
0107	1 P	н20	7/14/77	658 - 0908	260	0.157	4850 Level, Main Ledge, Hoist Room, Operated Hoist.

0.030

0.000

0.014

4850 Level, Main Ledge, Hoist Room, Operated

4850 Level, Main Ledge, Hoist Room, Operated

4850 Level, Main Ledge, Hoist Room.

Hoist, Ate Lunch.

Hoist.

0107

0107

0107

1 P

1P

1 P

H207

H24

H57

7/14/77

7/14/77

7/14/77

0908 - 1120

1120 - 1245

1245 - 1405

264

170

160

Sample time Volume Concentration

(liters)

Off

0n

Date

Job

Person Sample

code number number

Table D-1 (continued)

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

0107	1Q	Н2	7/14/77	0705 - 0906	242	0.020	4850 Level, Hain Ledge, Hoist Room, Cleaning Up.
0107	1Q	H213	7/14/77	0906 - 1120	268	0.004	4850 Level, Main Ledge, Hoist Room, Operating
-1-7	1.0	** C O	7/11/77	1120 1245	170	0.021	Hoist.
0107 0107	1Q 10	н68 н66	7/14/77 7/14/77	1120 - 1245 1245 - 1405	160	0.021 0.053	4850 Level, Main Ledge, Hoist Room. 4850 Level, Main Ledge, Hoist Room.
0107	ŧŲ	noo	7714777	1243 - 1403	100		4050 Level, Main Ledge, Rotst Room.
						TWA-0.021	
0108	1H	н314	7/15/77	0947 - 1145	236	0.301	19 Ledge, 4850 Level, 46 Crosscut, Installing Water Tank.
0108	111	н280	7/15/77	1145 - 1401	272	0.323	19 Ledge, 4850 Level, 46 Crosscut, Fitting
0108	1 H	н317	7/15/77	1401 - 1502	122	0.168	19 Ledge, 4850 Level, 46 Crosscut, Fitting
,						•	Pipes.
			•				
						TWA-0.285	
0110	1G	н365	7/21/77	0728 - 0916	216	1.161	Main Ledge, 4250 Level, 71C Stope, Set Timber for Track.
0110	1 G	н446	7/21/77	0916 - 1047	182	0.119	Main Ledge, 4250 Level, 71C Stope, Waited for Timber to Arrive.
0110	1G	H447	7/21/77	1047 - 1248	242	0.264	Main Ledge, 4250 Level, 71C Stope, Ate Lunch. Blasted and Worked on Timberline.
0110	1G	Н469	7/21/77	1248 - 1426	196	0.510	Main Ledge, 4250 Level, 71C Stope, Worked on Timberline.
		*				TWA-0.522	•
				•			••

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0110	111	н443	7/21/77	0728 - 0917	218	1.741	Main Ledge, 4250 Level, 71C Stope, Set Timbers for Track.
0110	1H	н375	7/21/77	0917 - 1055	196	0.221	Main Ledge, 4250 Level, 71C Stope, Waiting for Timber.
0110	18	н435	7/21/77	1055 - 1248	226	0.888	Main Ledge, 4250 Level, 71C Stope, Ate Lunch, Blasted and Worked on Timberline.
0110	114	H448	7/21/77	1248 - 1426	196	0.913	Main Ledge, 4250 Level, 71C Stope, Worked on Timberline.
						TWA-0.960	
0114	1K	н329	7/18/77	0702 - 0806	248	• 0.533	9 Ledge, 2150 Level, 49 Crosscut, Putting Up Door.
0114	1K	н130	7/18/77	0806 - 0909	126	0.851	9 Ledge, 2150 level, Carpenter.
0114	1K	н322	7/18/77	0909 - 1010	122	3.872	9 Ledge, 2150 Level, Carpenter.
0114	1K	H141	7/18/77	1010 - 1153	206	0.286	9 Ledge, 2150 Level, Carpenter.
0114	lK	н99	7/18/77	1153 - 1255	124	0.350	9 Ledge, 2150 Level, Carpenter.
				•	. •	TWA-1.063	
0121	11	н325	7/15/77	0718 - 0932	268	0.045	. 4850 Level, Winze 4, Spent Some Time Mucking at 6880.
0121	11	H313	7/15/77	0932 - 1147	270	0.049	4850 Level, Winze 4.
0121	11	H304	7/15/77	1147 - 1333	212	0.102	4850 Level, Area.
0121	11	H289	7/15/77	1333 - 1436	126	C.105	4850 Level, Area.

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0121	* 12	н326	7/15/77	0708 - 0720	24	0.000	4850 Level, Main Ledge, Winze 4 Area, Voided for count - finger print on filter.
0121	12	H315	7/15/77	0720 - 0933	226	0.009	4850 Level, Main Ledge, Winze 4, Spent Some Time Mucking at 6880 Sump.
0121	12	11335	7/15/77	0933 - 1148	270	0.018	4850 Level, dain Ledge, Winze 4 Area, Fixed Door at 4790, Loaded Pipe at 5700, Lowered Cement to 5700.
0121	12	H277	7/15/77	1148 - 1331	103	0.187	4850 Level, Hain Ledge, Winze 4 Area.
					,	TWA-0.062	
0124	14	н334	7/15/77	0710 - 0917	254	0.076	6800 Level, Main Ledge, Transfered Waste in Cage.
0124	14	н295	7/15/77	0917 - 1017	120	3.584	6800 Level, Main Ledge, Some Slushing and Blasting.
ر آن 0124	. 14	н320	7/15/77	1017 - 1109	104	0.347	6800 Level, Main Ledge, Some Slushing, Made Trips to 4850.
0124	14	H275	7/15/77	1109 - 1230	162	0.602	6800 Level, Main Ledge, Slushing.
						TWA-0.911	
0125*	1.4	н428	7/19/77	636 - 654	0	0.000	4850 Level-Skip Pocket, Yates, Wore Respirator,
0125	IA	H423	7/19/77	655 - 745	100	0.301	4850 Level-Skip Pocket, Loaded Ore, Yates, Wore Respirator.
0125	lA	H425	7/19/77	745 - 850	130	0.417	4850 Level-Skip Pocket, Yates.
0125	`. 1A	H424	7/19/77	850 - 945	110	0.186	4850 Level-Skip Pocket, Yates.
0125	1A	H429	7/19/77	1036 - 1245	258	0.121	4850 Level-Skip Pocket, Ate Lunch, Yates.
0125	1A	н300	7/19/77	1245 - 1350	130	0.232	4850 Level-Skip Pocker, Yates.

 $[\]star$ Note: This sample not included in the TWA and Statistical Results.

Concentration

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

Volume

(liters)

Sample time

Off

0n

Date

Person Sample

code number number

Job

. —							· · · · · · · · · · · · · · · · · · ·
0125	. 11	н354	7/20/77	633 - 855	230	0.335	4850 Level-Skip Pocket, Skipped Ore About Every 10 Minutes, Ross.
0125	11	н336	7/20/77	855 1219	398	0.686	4850 Level-Skip Pocket, Skipped Some Ore, Ate Lunch, Ross.
0125	11	н167	7/20/77	1223 - 1400	194	0.341	4850 Level-Skip Pocket, Ross.
						TWA-0.498	
0128	1X	н477	7/20/77	0646 - 0821	190	0.771	li Ledge, 4550 Level 24-26 Stope, Back Filling with Sand, Plugging Holes with Burlap.
0128	1 X	Н478	7/20/77	0822 - 1021	238	0.162	ll Ledge, 4550 Level, 24-26 Stope, Back Filling with Sand.
0128	1 X	н491	7/20/77	1022 - 1152	180	0,535	ll Ledge, 4550 Level, 24-26 Stope, Ate Lunch.
0128	ĺΧ	H482	7/20/77	1152 - 1410	276	0.345	11 Ledge, 4550 Level, 24-26 Stope.
7				•			
4						TWA-0.426	
0128	14.	H473	7/20/77	0643 - 0835	224	0.226	ll Ledge, 4550 Level, 24-26 Stope, Applied Sand and Water.
0128	14	н489	7/20/77	0835 - 1031	232	0.176	ll Ledge, 4550 Level, 24-26 Stope, Filled Manway with Sand.
0128	14	Н483	7/20/77	1031 - 1204	186	0.376	11 Ledge, 4550 Level, 24-26 Stope, Filled Manway.
0128	ĮΥ	н486	7/20/77	1204 - 1415	262	0.303	11 Ledge, 4550 Level, 24-26 Stope.
						TWA-0.266	

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0128	lz	н471	7/20/77	0645 - 0829	208	0.174	ll Ledge, 4550 Level, 24-26 Stope, Load Equipment.
0128	12	H487	7/20/77	0830 - 1025	230	0.141	11 Ledge, 4550 Level, 24-26 Stope, Sandfill.
0128	12	H485	7/20/77	1026 - 1154	176	01062	11 Ledge, 4550 Level, 24-26 Stope, Ate Lunch.
0128	1 Z	H488	7/20/77	1154 - 1317	166	0.036	11 Ledge, 4550 Level, 24-26 Scope, Sandfill.
0128	12	н484	7/20/77	1317 - 1436	158	0.137	11 Ledge, 4550 Level, 24-26 Stope, Lowered Equipment.
						TWA-0.114	
0131	1K	н436 -	7/22/77	0735 - 0950	270	1.939	Tramway-Surface, Motorman, Near Crushing.
0131	1K	H2O1	7/22/77	0950 - 1210	280	0.030	Tramway-Surface, Motorman.
0131	1K	н419	7/22/77	1210 - 1315	130	0.241	Tramway-Surface, Motorman.
D-7						TWA-0.828	
0131	· 1L	н290	7/22/77	0739 - 0950	262	0.156	Tramway-Surface, Motorman.
0131	1 L	H249	7/22/77	0950 - 1210	280	0.125	Tramway-Surface, Motorman.
0131	14	Н94	7/22/77	1210 - 1315	130	0.046	Tramway-Surface, Motorman.
						TWA-0.122	
0132	10	н239	7/18/77	0730-0905	190	1.561	9 Ledge, 1700 Level, Motorman, Hauled Ore.
0132	1C	н95	7/18/77	0905 - 1138	306	0.437	9 Ledge, 1700 Level, Motorman, Hauled Ore,
							Washed Cars, Dumped Waste.
0132	·1C	H27	7/18/77	1138 - 1447	378	0.796	9 Ledge, 1700 Level, Motorman.

Concentration

fibers/cc

Sample information (i.e. location, operation, activity, etc.)

Volume

(liters)

Sample time

On

Date

off

Job Person Sample code number number

0132	1 P	н114	7/15/77	0754 - 949	230	0.063	19 Ledge, 6800 Level, Motorman, Hauled Rock.
0132	1P	H117	7/15/77	0949 - 1148	238	0.111	19 Ledge, 6800 Level, Motorman, Pulled Raises, Dumped Waste.
0132	1 P	H118	7/15/77	1148 - 1324	192	0.207	19 Ledge, 6800 Level, Motorman, Pulled Raises, Dumped Ore.
0132	1 P	Н31	7/15/77	1324 - 1435	142	0.127	19 Ledge, 6800 Level, Motorman, Pulled Raises, Dumped Ore.
						TWA-0.123	
0133	1G	н69	7/12/77	910 - 1145	310	0.144	Main Ledge, 6500 Level, Helped In Slushing,
. 0133	1 <i>G</i>	H61	7/12/77	0801 - 909	136	4.591	Main Ledge, 6500 Level, Hauling Rock, Pulling Raise.
0133	1 <i>G</i>	н70	7/12/77	1145 - 1405	520	0.167	Main Ledge, 6500 Level, Helped Muck and Slush Ore.
0133	1G	H67 ¹ .	7/12/77	1405 - 1525	160	0,602	Main Ledge, 6500 Level, Helped Muck and Slush, Drove Motor Car.
						TWA-0.917	
0141	10	H156	7/14/77	910 - 1030	280	• 0.009	ll Ledge, 5600 Level, 55 Pillar, Some Drilling.
0141	1°C	H166	7/14/77	0751 - 908	154	0.242	11 Ledge, 5600 Level, 55 Pillar, Some Drilling.
0141	10	н169	7/14/77	1030 - 1125	110	0.011	11 Ledge, 5600 Level, 55 Pillar, Some Drilling, Ate Lunch.
0141	10	H172	7/14/77	1125 - 1259	188	0.032	11 Ledge, 5600 Level, 55 Pillar, Drilling, Some Slushing.
0141	10	H183	7/14/77	1300 - 1420	160	0.000	ll Ledge, 5600 Level, 55 Pillar, Drilling, Pulling Core.
			-			TWA-0.060	•

Concentration

Sample information

Main Ledge, 6050 Level, 90 Pillar, Bore

Main Ledge, 6050 Level, 90 Pillar, Bore

Machine Drilling, Cap Left On Sample, Voided

Machine Drilling, Ate Lunch.

for Fiber Count.

Machine Drilling.

'Volume

222

84

Sample time

code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0147	10	н150	7/14/77	857 - 1030	186	0.013	ll Ledge, 5600 Level, 55 Pillar, Some Drilling.
0142	! 1D	H148	7/14/77	0749 - 0854	130	0.120	li Ledge, 5600 Level, 55 Pillar, Drilling and Pulling Core.
0142	1 D	H159	7/14/77	1030 - 1125	110	0.022	ll Ledge, 5600 Level, 55 Pillar, Ate Lunch.
0142		н149	7/14/77	1125 - 1300	190	0.019	11 Ledge, 5600 Level, 55 Pillar, Pulling Core.
0142		Н188	7/14/77	1301 - 1420	158	0.030	ll Ledge, 5600 Level, 55 Pillar, Drilling and Pulling Core.
						TWA-0.037	
0143	1R	H261	7/14/77	0715 - 0852	194	0.223	Main Ledge, 6050 Level, 90 Pillar, Wet Drilling.
0143		H265	7/14/77	0852 - 1043	222	2.956	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
J 0143	1R	H255	7/14/77	1043 - 1213	160	5.231	Main Ledge, 6050 Level, 90 Pillar, Bore

0.000

6.647

TWA-2.438

H268

H266

1R

1R

0143*

0143

7/14/77

7/14/77

1213 - 1404

1404 - 1446

^{*} Note: This sample not included in the TWA and Statistical Results.

Table D-l (continued)

Job	Person	Sample		Sample time	Volume	Concentration	Sample information
code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0144	ıs	Н248	7/14/77	0717 - 0850	186	3.431	Main Ledge, 6050 Level, 90 Pillar, Assist
0144	ls	н257	7/14/77	0850 - 1042	224	1.917	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling, Ate Lunch.
0144	18	H234	7/14/77	1042 - 1212	180	3.579	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
0144	15	н233	7/14/77	1212 - 1401	218	2,210	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
0144	18	H264	7/14/77	1401 - 1446	90	1.271	Main Ledge, 6050 Level, 90 Pillar, Some Drilling.
						TWA-2.570	
0152	1.8	H211	7/18/77	831 - 1010	198	0.693	9 Ledge, 1700 Level, 24A Stope.
0152	1 B	H153	7/18/77	0657 - 0831	188	0.128	9 Ledge, 1700 Level, 24A Stope, Drilling.
0152	1 B	H174	7/18/77	1010 - 1210	240	0.100	9 Ledge, 1700 Level, 24A Stope.
0152	1 B	H160	7/18/77	1210- 1432	284	0.246	9 Ledge, 1700 Level, 24A Stope.
						TWA-0.280	
0152	1 F	н378	7/18/77	723 – 907	208	. 0.151	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing, Drilling.
0152	1 F	H370	7/18/77	907 - 1117 ·	260	0.634	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing, Drilling, Are Lunch.
0152*	1 F	н373	7/18/77	1117 - 1312	0	0.000	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing and Prepared for Blasting, Sample
0152	1 F	н349	7/18/77	1312 - 1433	162	0.074	Lost. 9 Ledge, 2000 Level, 45-51G/H Blast Hole, Prepared for Blasting.
			•			TWA-0.331	

[,] \star Note: This sample not included in the TWA and Statistical Results.

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	. Sample information (i.e. location, operation, activity, etc.)
0152	1J	н356	7/18/77	835 - 955	160	0.075	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing.
0152	1J	H369	7/18/77	956 - 1016	40	0.151	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Pulling Chute.
0152	IJ	н364	7/18/77	1018 - 1034	16	0.376	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Pulling Chute.
0152	IJ	H345	7/18/77	1035 - 1044	18	0.067	9 Ledge, 2000 Level, 45-51G/H Blast Hole.
0152	IJ	H353	7/18/77	1044 - 1054	20	0.542	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Loading Ore.
0152	IJ	Н367	7/18/77	1055 - 1158	126	0.994	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Ate Lunch, Loading Ore, Blast.
0152	IJ	. нз61	7/18/77	1158 - 1255	114	0.465	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Loading Ore.
0152	IJ	H362	7/18/77	1255 - 1322	54	0.112	9 Ledge, 2000 Level, 45-51G/H Blast Hole.
T 0152	1J	н366	7/18/77	1322 - 1406	88	0.151	9 Ledge, 2000 Level, 45-51G/H Blast Hole.
C 0152	IJ	н355	7/18/77	1406 - 1440	68	6.559	9 Ledge, 2000 Level, 45-51G/H Blast Hole.
				·		TWA-0.386	
0153	1H	11204	7/18/77	0725 - 0844	158	2.722	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
0153	1H	H229	7/18/77	0844 - 1000	152	0.681	9 Ledge, 2150 Level, 49 Crosscut, Maintenance Work.
0153	1H	H55	7/18/77	1000 - 1145	210	0.235	9 Ledge, 2150 Level, 49 Crosscut, Ate Lunch.
0153	111	H245	7/18/77	1145 - 1315	180	0.020	9 Ledge, 2150 Level, 49 Crosscut.
0153	1 H	H73	7/18/77	1315 - 1428	146	0.330	9 Ledge, 2150 Level, 49 Crosscut.

Table D-1 (continued)

Job	Person	Sample		Sample time	Volume	Concentration	Sample information
code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0153	114	H324	7/18/77	659 - 816	154	0.063	9 Ledge, 2150 Level, 49 Crosscut,
			•	•	•		Hanging Pipe.
0153	1M	H256	7/18/77	816 - 914	116	1.266	9 Ledge, 2150 Level, 49 Crosscut,
							Hanging Pipe, Mucking.
0153	1 M	н333	7/18/77	914 - 1012	116	0.187	9 Ledge, 2150 Level, 49 Crosscut,
							Some Mucking.
0153	114	H338	7/18/77	1012 - 1033	42	0.143	9 Ledge, 2150 Level, 49 Crosscut,
							Some Mucking.
0153	lH	H126	7/18/77	1033 - 1135	124	0.126	9 Ledge, 2150 Level, 49 Crosscut, Some
						• .	Mucking, Ate Lunch.
0153	IH	н98	7/18/77	1135 - 1211	.72	0.569	9 Ledge, 2150 Level, 49 Crosscut,
							Some Muching.
0153	1H	11342	7/18/77	1211 - 1245	68	1.045	9 Ledge, 2150 Level, 49 Crosscut Mucking.
0153	lM	HI 27	7/18/77	1245 - 1325	80	0.647	9 Ledge, 2150 Level, 49 Crosscut Mucking.
0153	1 M	H363.	7/18/77	1325 - 1437	144	0.092	9 Ledge, 2150 Level, 49 Crosscut, Worked on
	•						Gate.
			٠.			TWA-0.411	
0157		לחנט	7/10/77	850 - 1135	220 .	0.701	0.1-d 1200 t1 putch do -1 -c 00
0154	l A	H187	7/18/77	830 - 1133	330	0.401	9 Ledge, 1700 Level, Drift South of 22
0154			7/10/77	0315 0050	100	0.701	Crosscut, Some Drilling.
0154	I A	H71	7/18/77	0715 ~ 0850	190	0.781	9 Ledge, 1700 Level, Drift South of 22
015/			7/10/77	1125 1757	161	0.705	Crosscut, Some Mucking and Drilling.
0154	1 A	H184	7/18/77	1135 - 1257	164	0.705	9 Ledge, 1700 Level, Drift South of 22
015/			7/10/57	1257 1//0	206	0.401	Crosscut, Drilling.
0154	1 A	HI 96	7/18/77	1257 - 1440	206	0.491	9 Ledge, 1700 Level, Drift South of 22
							Crosscut, Blasting.

	Job	Person	Sample		Sample time	Volume	Concentration	Sample information
	code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
	015/	10	11200	7/18/77	0713 - 0855	204	1.687	G Ladon 1700 Laural Duice Cruek of 22
	0154	1D .	н208	7/10/77	0/12 ~ 0073	204	1.007	9 Ledge, 1700 Level, Drift South of 22 Crosscut, Some Mucking and Drilling.
	0154	10	н63	7/18/77	0855 - 1135	320	0,166	9 Ledge, 1700 Level, Drift South of 22
	0134	10	1,03	,, 10,	0033 - 1133		01.00	Crosscut, Some Mucking, Loading and Drilling.
	0154	10	H173	7/18/77	1135 - 1255	160	0.715	9 Ledge, 1700 Level, Drift South of 22
			-				•	Crosscut, Drilling.
	0154	10	н88	7/18/77	1255 - 1442	214	0.540	9 Ledge, 1700 Level, Drift South of 22
				•				Crosscut, Prepare for Blasting.
							TWA-0.698	
							1WA-0.070	
	0154	16	н325	7/15/77	0821 - 0917	112	0.624	19 Ledge, 4850 Level, 46 Crosscut, Waited
	0.5.	••	.,,,,,,	.,	7,022			for Equipment.
_	0154	1G	H272	7/15/77	0917 - 1048	182	0.523	19 Ledge, 4850 Level, 46 Crosscut, Assisted in
[•		Installing Pipe.
3	0154	1G	H273	7/15/77	1048 - 1401	386	0.162	19 Ledge, 4850 Level, 46 Crosscut, Installed
							•	Some Pipe, Ate Lunch.
	0154	1G	H287	7/15/77	1401 - 1502	122	0.454	19 Ledge, 4850 Level, 46 Crosscut, Helped
								Install Water Tank.
							TWA-0.353	
							Inp-01333	
	0154	IJ	H416	7/21/77	748 - 945	234	4.889	Main Ledge, 4250 Level, 70 Crosscut, Some
						-		Drilling, Took Break.
	0154	IJ	н403	7/21/77	945 - 1152	254	1.831	Main Ledge, 4250 Level, 70 Crosscut, Drilled,
								Ate Lunch.
	0154	IJ	н307	7/21/77	1152 - 1330	196	0.172	Main Ledge, 4250 Level, 70 Crosscut Drilled.
	0154	IJ	н316	7/21/77	1330 - 1439	. 138	4.625	Main Ledge, 4250 Level, 70 Crosscut, Prepared
					••			for Blasting.

TWA-2.775

Table D-1 (continued)

Concentration

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

Volume

(liters)

Sample time

On

Date

Off

Person Sample

number number

Job

code

0154	lL	H381	7/21/77	0747 - 0945	236	0.250	Main Ledge, 4250 Level, 70 Crosscut, Set Up
•					•		Equipment, Wet Drilling.
0154	1 L	н294	7/21/77	0945 - 1130	210	0.080	Main Ledge, 4250 Level, 70 Crosscut, Some
3				•			Drilling, Ate Lunch.
0154	1 L	H414	7/21/77	1155 - 1333	196	1.360	Main Ledge, 4250 Level, 70 Crosscut, Drilled.
0154	1L	н219	7/21/77	1333 - 1442	138	3.148	Main Ledge, 4250 Level, 70 Crosscut, Prepared
0124	ΙL	11217	1/21/11	1333 - 1445	130		for Blasting.
							tot blasetiig.
				•		TWA-0.996	
0155	LA	н65	7/13/77	0832 - 0955	166	1.422	9 Ledge, 5750 Level, 680 Scope, Slushing.
0155	1A	н54	7/13/77	0956 - 1130	188	0.397	9 Ledge, 5750 Level, 68C Stope, Slushing.
0155	1A	н52	7/13/77	1135 - 1310	190	0.235	9 Ledge, 5750 Level, 68C Stope, Eating Lunch
0133	In	1152	,,13,	1155 1510	2,0	0.202	Some of the Time.
0155	IA .	H122	7/13/77	1310 - 1455	210	0.178	9 Ledge, 5750 Level, 68C Stope, Set Up
0133	IK	11122	1112111	1010 - 1400	210	0.170	Drill Equipment.
							pritt rdarbueur.
				•		TWA-0.521	
				•		IWA-0.321	
0155	1B	H110	7/13/77	0804 - 0922	156	0.984	9 Ledge, 5750 Level, 68C Stope, Pulling Chute.
0155	18	1162	7/13/77	0922 - 1053	182	0.569	9 Ledge, 5750 Level, 68C Stope, Barred,
0133	113	1102	,,,,,,,,,	0722 - 1033	101	. 0.303	Ate Lunch.
0155	1B ·	H116	7/13/77	1155 - 1323	176	0.123	9 Ledge, 5750 Level, 68C Stope, Electricity
0133	110	ALLU	1/13///	1177 - 1757	170	0.123	
							Went Off, Workers Not Working at Time of
							Sample.
0155	1B	H106	7/13/77	1323 - 1503	200	0.421	9 Ledge, 5750 Level, 68C Stope, Electricity
							Went Off, Workers Not Working at Time of
						•	Sample.
						MT. 0 COO	

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0155	1 F	Н07	7/12/77	0758 - 0958	240	2.835	Main Ledge, 6500 Level, Mucked, Slushed and Dumped Ore.
0155	1 F	1125	7/12/77	0958 - 1146	216	0.784	Main Ledge, 6500 Level, Mucked, Slushed.
0155	1 F	H15	7/12/77 .	1146 - 1408	284	0.986	Main Ledge, 6500 Level, Mucked, Slushed, Ate Lunch.
0155	1 F	101	7/12/77	1408 - 1528	160	0.489	Main Ledge, 6500 Level, Set Up Drilling Equipment.
			٠.			TWA-1.342	
0156	IA	н87	7/12/77	0820 - 1015	230	0.099	13 Ledge, 6050 Level, 46-47C Stope, Some Drilling.
0156	1A	मंघं ३	7/12/77	1015 - 1200	210	0.086	13 Ledge, 6050 Level, 46-47C Stope, Drilling,
0156	lA	н75	7/12/77	1205 - 1335	180	0.080	13 Ledge, 6050 Level, 46-47C Stope, Some Mucking.
0156	1A	н79	7/12/77	1335 - 1439	128	0,574	13 Ledge, 6050 Level, 46-47C Stope, Pulling Chute.
						TWA-0.172	
0156	1.6	н318	7/22/77	0807 - 0957	. 220	2.105	9 Ledge, 4700 Level, 37F Stope, Set Up Equipment, Drilling.
0156	1,A	н299	7/22/77	0957 - 1144	214	0.703	9 Ledge, 4700 Level, 37F Stope, Drilling, Ate Lunch.
0156	1A	H202	7/22/77	1144 - 1302	156	0.564	9 Ledge, 4700 Level, 37F Stope, Drilling.
0156	lA	н407	7/22/77	1302 - 1358	112	0.344	9 Ledge, 4700 Level, 37F Stope, Some Drilling.

TWA-1.054

Job	Person	Sample		Sample time	Volume	Concentration	Sample information
code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0156	1 B	H417	7/21/77	0715 - 0859	208	1.524	9 Ladge, 3950 Level, 24-25B Stope, Loaded
						•	Cars with Ore.
0156	1B	н90	7/21/77	1046 - 1232	212	0.136	9 Ledge, 3950 Level, 24-25B Stope, Loaded
							Cars, Ate Lunch.
0156	1B	н310	7/21/77	1232 - 1405	186	0.382	9 Ledge, 3950 Level, 24-25B Stope.
0156	1B	H405	7/21/77	1405 - 1449	. 88	0.246	9 Ledge, 3950 Level, 24-25B Stope.
			-	4		•	
						TWA-0.632	
0156	1 B	H312	7/22/77	0807 - 0955	216	0.307	9 Ledge, 4700 Level, 37F Stope, Slushing.
0156	1 B	н465	7/22/77	0955 - 1223	296	0.232	9 Ledge, 4700 Level, 37F Stope, Drilling,
-110			,,				Ate Lunch.
0156	1B	н276	7/22/77	1223 - 1358	190	0.298	9 Ledge, 4700 Level, 37F Scope, Drilling.
						TWA-0.273	
•		•					•
0156	10	H49	7/12/77	0805 - 1055	180	0,335	Main Ledge, 6800 Level, 93-940 Cutting
					•	• •	Sill, Slushing.
0155	1C	H45	7/12/77	1301 - 1531	180	0.381	Main Ledge, 6800 Level, 93-94C Cutting
				•	•		Sill, Slushing.
					,	TWA-0.357	
0156	1D	н97	7/13/77	920 - 1015	110	1.286	ll Ledge, 5450 Level, 49-51 Stope, Set Up
							Drilling.
0156	1D	Н04	7/13/77	1015 - 1250	310	0.105	11 Ledge, 5450 Level, 49-51 Stope, Some
			•	•			Drilling, Lunch.
0156	·ID	но5	7/13/77	1250 - 1405	150	0.361	11 Ledge, 5450 Level, 49-51 Stope.
0156	lD	H58	7/13/77	1407 - 1443	72	0.368	11 Ledge, 5450 Level, 49-51 Stope.
							- · · · · · · · · · · · · · · · · · · ·
						TWA-0.397	**

L-0.397

Table D-1 (continued)

Concentration

Sample information

Volume

Sample time

Person Sample

Job

code	rerson numbe <u>r</u>	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0156	12	н23	7/13/77	922 - 1020	116	0.031	ll Ledge, 5450 Level, 49-51 Stope, Wet
0156	1E	н13	7/13/77	1020 - 1250	300	0.096	11 Ledge, 5450 Level, 49-51 Stope, Drilling, Lunch.
						TWA-0.078	
0156	1 G	н171	7/13/77	0948 - 1028	80	0.135	Il Ledge, 5300 Level, 490 Stope, Drilling.
0156		н161	7/13/77	1028 - 1111	. 86	0.042	11 Ledge, 5300 Level, 49D Stope, Drilling.
0156		н163	7/13/77	1111 - 1216	130	0.019	11 Ledge, 5300 Level, 49D Stope, Some
5250	••						Drilling, Lunch.
0156	1G	H164	7/13/77	1216 - 1244	56	1.226	ll Ledge, 5300 Level, 49D Stope, Some
• • • •				•		•	Drilling.
0156	l G	H165	7/13/77	1244 - 1410	172	0,042	11 Ledge, 5300 Level, 49D Stope, Cleaned
						*	Area for Blasting.
					1		•
				•		TWA-0.177	
0156	1 H	н29	7/12/77	820 - 1018	236	0.398	13 Ledge, 6050 Level, Mucking.
0156	1H	н36	7/12/77	1019 - 1216	234	0.812	13 Ledge, 6050 Level, Ate Lunch, Mucking.
0156	111	130	7/12/77	1216 - 1355	198	0.122	13 Ledge, 6050 Level, Mucking, Putting in
0150		1120	,,,	1010 1003	170	, 01122	Track.
0156	1H	H42	7/12/77	1356 - 1408	24	15.483	13 Ledge, 6050 Level, Putting in Track.
						TWA-0.982	

Table D-1 (continued)

	ob ode	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0	156	111	н189	7/13/77	0859 - 0952	106	0.045	ll Ledge, 5300 Level, 49D Stope, Wetted Ore, Drilled.
0	156	111	H152	7/13/77	0952 - 1052	120	0.120 .	li Ledge, 5300 Level, 49D Stope, Drilled.
-	156	1H	н179	7/13/77	1052 - 1132	80	0.316	11 Ledge, 5300 Level, 49D Stope, Drilled, Ate Lunch.
01	156	111	H177	7/13/77	1133 - 1220	94	0.256	11 Ledge, 5300 Level, 49D Stope, Drilled.
	156	1H	и191	7/13/77	1220 - 1340	160	3.305	ll Ledge, 5300 Level, 49D Stope, Some Drilling, Prepared for Blasting.
01	56	111	н170	7/13/77	1340 - 1410	60	0.723	ll Ledge, 5300 Level, 49D Stope, Prepared for Blasting.
							TWA-1.033	
اه اه ۲	56	ΙΙ	н28	7/12/77	818 - 1015	154	0.555	13 Ledge, 6050 Level, Wetted Ore, Mucked.
<u> 7</u> 01	56	11	н32	7/12/77	1016 - 1228	264	0.810	13 Ledge, 6050 Level, Dumped Ore, Mucked.
დ 01		lI	н93	7/12/77	1228 - 1356	176	0.144	13 Ledge, 6050 Level, Put in Track, Mucked.
01	56	11	н50	7/12/77	1357 - 1408	22	12.772	13 Ledge, 6050 Level, Put in Track.
							TWA-0.934	
01	56	IJ	н18	7/12/77	0815 - 0918	126	0.048	Main Ledge, 6050 Level, 89E Stope, Set Up Drill Equipment.
01	56	IJ	н80	7/12/77	0918 - 1145	294	0.258	Main Ledge, 6050 Level, 89E Stope, Pulling Chute, Lunch.
01	56	IJ	н39	7/12/77	1145 - 1322	194	0.719	Main Ledge, 6050 Level, 89E Stope, Drilling.
01	56	lJ	н16	7/12/77	1322 - 1418	112	2.444	Main Ledge, 6050 Level, 89E Stope, Drilling.
01	56	IJ	н37	7/12/77	1418 - 1458	80	1.785	Main Ledge, 6050 Level, 89E Stope, Drilling.

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0156	IJ	н124	7/13/77	808 - 907	118	0.745	9 Ledge, 5750 Level, 67-68D Stope, Wetted Ore.
0156	1J	н145	7/13/77	907 - 1010	126	0.363	9 Ledge, 5750 Level, 67-68D Stope, Drilled.
0156	ĺĴ	н133	7/13/77	1011 - 1140	178	0.325	9 Ledge, 5750 Level, 67-68D Stope, Some Drilling, Ate Lunch.
0156	1J	н146	7/13/77	1140 - 1234	108	0.335	9 Ledge, 5750 Level, 67-68D Stope, Drilled.
0156	· IJ	н131	7/13/77	1235 - 1309	68	0.496	9 Ledge, 5750 Level, 67-68D Stope, Some Drilling.
0156	IJ	н109	7/13/77	1309 - 1355	92	1.204	9 Ledge, 5750 Level, 67-68D Stope, Prepared for Blasting.
0156	lЈ	н137	7/13/77	1355 - 1443	96	0.100	9 Ledge, 5750 Level, 67-68D Stope, Prepared for Blasting, Put in Roof Bolts.
						TWA-0.486	
0156	ıĸ	н78	7/12/77	0815 - 0918	126	0.363	Main Ledge, 6050 Level, 89E Stope, Set Up for Drilling, Drilling.
0156	1K	н91	7/12/77	0918 - 1025	134	0.620	Main Ledge, 6050 Level, 89E Stope, Drilling.
0156	1K	н92	7/12/77	1025 - 1207	204	0.331	Main Ledge, 6050 Level, 89E Stope, Started Slushing, Ate Lunch.
0156	1K	H77	7/12/77	1207 - 1321	148	0.651	Main Ledge, 6050 Level, 89E Stope, Drilling.

1.064

1.145

Main Ledge, 6050 Level, 89E Stope, Drilling.

Main Ledge, 6050 Level, 89E Stope, Drilling.

112

82

7/12/77 1322 - 1418

7/12/77 1418 - 1459

0156

0156

lκ

1K

H17

H22

Table D-1 (continued)

Job	Person	Sample		Sample time	Volume	Concentration	Sample information
code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0156	1K	н138	7/13/77	808 - 907	118	0.214	9 Ledge, 5750 Level, 67-68D Stope, Set Up for Drilling.
0156	1K	H135	7/13/77	907 - 1010	126	0.134	9 Ledge, 5750 Level, 67-68D Stope, Drilled.
0156	1K	H136	7/13/77	1011 - 1140	178	0.068	9 Ledge, 5750 Level, 67-68D Stope, Some
0130	***						Drilling, Ate Lunch.
0156	1K	H128	7/13/77	1140 - 1234	108	0.290	9 Ledge, 5750 Level, 67-68D Stope, Drilled.
0156	1K '	H125	7/13/77	1235 - 1309	68	1.576	9 Ledge, 5750 Level, 67-68D Stope, Drilled.
0156	1K	H143	7/13/77	1355 - 1444	98	0.184	9 Ledge, 5750 Level, 67-68D Stope, Prepared for
							Blasting, Put in Roof Bolts.
						TWA-0.303	
0156	1K	н308	7/15/77	945 - 1304	398	0.079	21 Ledge, 6200 Level, 50-52B Stope, Operate Crane.
무 0156	1K	н303	7/15/77	0757 ~ 0945	216	0.301	21 Ledge, 6200 Level, 50-52B Stope, Drilling.
8 0156	1K	H301	7/15/77	1305 - 1450	210	0.528	21 Ledge, 6200 Level, 50-52B Stope, Some
				•			Drilling, Set Charges for Blasting.
						TWA-0.252	
0156	1K	H235	7/20/77	0728 - 0848	160	0.188	9 Ledge, 4400 Level, 31-32C/D Stope, Slushing, Cable Repair.
0156	1K	н341	7/20/77	1023 - 1139	152	2,010	9 Ledge, 4400 Level, 31-32C/D Stope, Slushing.
0156	1K	н352	7/20/77	1139 - 1332	226	0.437	9 Ledge, 4400 Level, 31-32C/D Stope.
0156	1K	н358	7/20/77	1332 - 1428	112	0.376	9 Ledge, 4400 Level, 31-32C/D Stope, Set Up for Drilling, Drilling.

Concentration

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

11 Ledge, 5750 Level, 57C Stope, Took Break.

11 Ledge, 5750 Level, 57C Stope, Set Up

Volume

(liters)

148

100

Sample time

1258 - 1412

1412 - 1502

On

Off

Person Sample

number number

114

111

0156

0156

H105

H154

Date

7/13/77

7/13/77

Job

code

0156	lL	н140	7/19/77	0710 - 0845	190	0.146	9 Ledge, 3650 Level, 18B Stope, Setting Up Equipment.
0156	11.	H175	7/19/77	1015 - 1134	158	0.610	9 Ledge, 3650 Level, 18B Stope, Lunch.
0156	1L	H176	7/19/77	1134 - 1300	172	0.182	9 Ledge, 3650 Level, 18B Stope.
0156	1L	н195	7/19/77	1300 - 1433	186	0.065	9 Ledge, 3650 Level, Constructed Chute and Manway.
					·	TWA-0.237	
0156	lh	н155	7/13/77	0806 - 0838	64	0.489	11 Ledge, 5750 Level, 57C Stope, Fixed Slusher Blocks.
0156	IM	н139	7/13/77	0838 - 0922	88	3.839	Il Ledge, 5750 Level, 57C Stope, Wetted Ore, Drilled.
) 0156 위	lH	H132	7/13/77	0922 - 1116	228	1.007	ll Ledge, 5750 Level, 57C Stope, Set Up Slusher and Ate Lunch.
¹² 0156	l H	H108	7/13/77	1116 - 1258	84	2.485	11 Ledge, 5750 Level, 57C Stope, Repositioned

0:421 TWA-1.462

0.464

Slusher.

Slusher.

Table D-1 (continued)

	ob ode_	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0	156	111	н142	7/13/77	0806 - 0838	64	0.884	11 Ledge, 5750 Level, 57C Stope, Fixed Slusher.
0	156	18	н147	7/13/77	0838 - 0924	92	0.890	ll Ledge, 5750 Level, 57C Stope, Wet Ore and Drilled.
0	156	114	н104	7/13/77	0924 - 1116	224	0.043	11 Ledge, 5750 Level, 57C Stope, Put in Slusher Blocks, Ate Lunch.
0	156	1N	H151	7/13/77	1116 - 1254	196	0.203	ll Ledge, 5750 Level, 57C Stope, Repositioned Slusher.
0	156	1N	H102	7/13/77	1254 - 1412	156	.0.178	ll Ledge, 5750 Level, 57C Stope, Set Up Slusher.
0	156	1N	H113	7/13/77	1412 - 1503	102	0.118	ll Ledge, 5750 Level, 57C Stope, Took Break.
							TWA-0.273	
.0	156	1N	Н438	7/20/77	730 - 914	208	0.278	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling.
0	156*	1 N	н445	7/20/77	914 - 930	0	0.000	9 Ledge, 4250 Level, 36-37B/C Stope, Dropped Filter.
01	156	111	н439 -	7/20/77	931 - 1058	174	0.076	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling, Ate Lunch.
0)	156	1 N	н432	7/20/77	1125 - 1304	198	0.450	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling.

TWA-0.276

^{*} Note: This sample not included in the TWA and Statistical Results.

	Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
	0156	10	н440	7/20/77	731 - 915	208	0.573	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling.
	0156	10	H449	7/20/77	915 - 1058	206	0.164	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling, Ate Lunch.
	0156	10	H451	7/20/77	1127 - 1304	194	0.217	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.
	0156	10	н434	7/20/77	1304 - 1432	176	0.513	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling
							TWA-0.364	
	0156	1 P	н431	7/20/77	916 - 1055	198	0.341	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling, Ate Lunch.
							TWA-0.341	
7	0156	1Q	н74	7/15/77	0803 - 0935	184	0.582	19 Ledge, 6200 Level, 27 Crosscut, Cutting and Hoisting Timber for Chute.
	0136	1Q	н59	7/15/77	0935 - 1102	174	0,055	19 Ledge, 6200 Level, 27 Crosscut, Cutting and Hoisting Timber.
	0156	1Q	H35	7/15/77	1102 - 1230	176	0.096	19 Ledge, 6200 Level, 27 Crosscut, Ate Lunch, Cut and Hoisted Timber.
	0156	1Q	Н64	7/15/77	1230 - 1330	120	0.050	19 Ledge, 6200 Level, 27 Crosscut, Hoisted Timber.
	0156	10	н46	7/15/77	1330 - 1440	140	0.499	19 Ledge, 6200 Level, 27 Crosscut, Some Drilling on Roof and Wood.
			:	,			TWA-0.264	•
						-		

Volume

Sample time

Person Sample

Concentration

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

Job	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
code	number	number	Dace				
	10	н408	7/19/77	702 - 0901	238	0.025	9 Ledge, 3950 Level, 18G Stope, Set Up
0156	1Q	MACO	7712777	,02 0,02			Equipment.
0157	10	н402	7/19/77	0901 - 1143	324	0.190	9 Ledge, 3950 Level, 18G Stope.
0156	•	H411	7/19/77	1143 - 1312	178	0.636	9 Ledge, 3950 Level, 18G Stope, Drilling.
0156	-	H400	7/19/77	1312 - 1421	138	0.131	9 Ledge, 3950 Level, 18G Stope, Some Drilling.
0156	1 Q	H400	11 12/11	1512 1121			
						TWA-0:226	
2156	10	. 17111	7/15/77	0804 - 0937	186	0.045	19 Ledge, 6200 Level, 27 Crosscut, Placed
0156	1R	H111	1/13/11	0004 6757	*		Timber into Chute.
0156	18	н112	7/15/77	0937 - 1102	170	0.064	19 Ledge, 6200 Level, 27 Crosscut, Ate Lunch,
. 0100	IK	11112	,, .,,				Placed Timber into Chute.
0156	IR	H123	7/15/77	1102 - 1230	176	0.075	19 Ledge, 6200 Level, 27 Grosscut, Cut and
	***						Placed Timber into Chute.
무 0156 24	1R ·	H100	7/15/77	1230 - 1330	120	0.100	19 Ledge, 6200 Level, 27 Crosscut, Placed
24							Timber into Chute.
0156		н103	7/15/77	1330 - 1420	100	0.289	19 Ledge, 6200 Level 27 Crosscut, Some Drilling
							on Wood and Roof.
						TWA-0.098	
						•	0 - 1
0156	1R	H406	7/19/77	0718 - 0935	274	0.105	9 Ledge, 3950 Level, IBG Stope, Set Up
							Equipment.
0156	IR	H404	7/19/77	0935 - 1144	258	0.075	9 Ledge, 3950 Level, 18G Stope. 9 Ledge, 3950 Level, 18G Stope, Drilling.
0156		н409	7/19/77	1144 - 1312	176	0.897	9 Ledge, 3950 Level, 18G Scope, Some Drilling.
0156	1 R	H412	7/19/77	1312 - 1420	136	0.027	y Ledge, 3730 Level, 136 Stope; Some Dilling.
						TWA-0.248	

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0156	18	н194	7/15/77	830 - 1000	180	0.100	19 Ledge, 6200 Level, 41-42C Stope, Some Slushing.
0156	18	H178	7/15/77	1000 - 1146	212	0.187	19 Ledge, 6200 Level, 41-42C Stope, Some Slushing, Ate Lunch.
0156	18	H185	7/15/77	1146 - 1250	128	0.160	19 Ledge, 6200 Level, 41-420 Stope, Drilling.
0156	18	н193	7/15/77	1252 - 1423	182	0.033	19 Ledge, 6200 Level, 41-42C Stope, Drilling.
						TWA-0.120	
0156	lT	11192	7/15/77	830 - 1000	180	0.027	19 Ledge, 6200 Level, 41-42C Stope, Some Slushing.
0156	17	н339	7/15/77	1000 - 1145	210	0.109	19 Ledge, 6200 Level, 41-42C Stope, Some Slushing, Ate Lunch.
0156	1 T	11328	7/15/77	1146 - 1251	130	0.102	19 Ledge, 6200 Level, 41-42C Stope, Drilling.
0156	IT	11181	7/15/77	1253 - 1330	74	0.130	19 Ledge, 6200 Level, 41-42C Stope, Some Drilling.
4				•		TWA-0.085	
9156	IV	H306	7/19/77	706 - 850	208	0.666	9 Ledge, 3650 Level, 27D Stope, Set Up
0156	117	11376	7/10/77	050 1104	268	0.279	Equipment, Some Drilling.
0156	1 V	H274	7/19/77	850 - 1104			9 Ledge, 3650 Level, 27D Stope, Drilling.
0156	17	н302	7/19/77	1315 - 1440	170	0.170	9 Ledge, 3650 Level, 27D Stope, Some Drilling.

Concentration

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

Volume

(liters)

Sample time

On

Off

Person Sample

number number

Date

code

Λ	156	1 W	н101	7/19/77	706 - 850	208	0.434	9 Ledge, 3650 Level, 27D Stope, Some Drilling.
_	156	1 W	H278	7/19/77	850 - 1104	268	0.431	9 Ledge, 3650 Level, 27D Stope, Drilling.
	_				1315 - 1440	170	0.425	
U	156	1 W	H305	7/19/77	1313 - 1440	170	0.423	9 Ledge, 3650 Level, 27D Stope, Some Drilling.
							TWA-0.430	
0	156	14	H221	7/14/77	0754 - 0950	232	0,296	9 Ledge, 5450 Level, 66-67C Stope, Set Up
								Equipment, Some Slushing.
0	156	1 Y	н216	7/14/77	0950 - 1143	226	1.715	9 Ledge, 5450 Level, 66-67C Stope, Some
							٠.	Drilling, Ate Lunch.
0	156	1 Y	H203	7/14/77	1143 - 1313	180	1.216	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
0	156	lY	H197	7/14/77	1313 - 1457	208	0.156	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
				•,			TWA-0.836	
,								
(0)	156	15	н259 -	7/15/77	811 - 859	96	0.050	19 Ledge, 5900 Level, 28-29F Stope, Slushing.
	156	15	H247	7/15/77	900 - 1010	140	0.637	19 Ledge, 5900 Level, 28-29F Stope, Slushing.
	156	15	H270	7/15/77	1010 - 1130	160	0.331	19 Ledge, 5900 Level, 28-29F Stope, Some
								Slushing, Ate Lunch.
01	156	15	н258	7/15/77	1130 - 1300	180	0.388	19 Ledge, 5900 Level, 28-29F Stope, Repaired
0,	.,,		11230	.,	1150 1500	100	. 0.300	Slusher, Load Rock.
- 01	156	15	H254	7/15/77	1300 - 1425	170	0.050	19 Ledge, 5900 Level, 28-29F Stope, Prepared
. 01	טכז	رن	M404	1/13/11	1000 - 1423	170	٥٠٥٥٥	
							•	for Blasting.
		-				-		tara da antara da antara da antara da antara da antara da antara da antara da antara da antara da antara da an

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0156	16	H291	7/15/77	810 859	98	0.184	19 Ledge, 5900 Level, 28-29F Stope, Pulling
0156	16	н252	7/15/77	900 - 1010	140	0.705	19 Ledge, 5900 Level, 28-29F Stope, Pulling Chute.
0156	16	н260	7/15/77	1010 - 1213	246	1.454	19 Ledge, 5900 Level, 28-29F Stope, Some Slushing, Ate Lunch.
0156	16	H286	7/15/77	1213 - 1305	104	0.938 ·	19 Ledge, 5900 Level, 28-29F Stope, Pulled Chute Prepared for Blasting.
n156	16	н279	7/15/77	1305 - 1410	130	0.000	19 Ledge, 5900 Level, 28-29F Stope, Prepared for Blasting, Uneven particulate distribution. Filter voided for Fiber Count.
			-			TWA-0.973	
7 0157 N	10	н350	7/21/77	855 - 1055	240	0.226	Main Ledge, 4100 Level, 58E Stope, Timber Stope, Ate Lunch.
0157	10	H41	7/21/77	0723 - 0855	184	0,808	Main Ledge, 4100 Level, 58E Stope, Timber Stope.
0157	10	н343	7/21/77	1146 - 1323	194	0.273	Main Ledge, 4100 Level, 58E Stope.
0157	10 .	H162	7/21/77	1324 - 1416	104	0.197	Main Ledge, 4100 Level, 58E Stope, Bracing.
					•	TWA-0.383	

^{*} Note: This sample not included in the TWA and Statistical Results.

Concentration

fibers/cc

Volume

(liters)

Sample time

On

Date

Off

Person Sample

code number number

Job

Sample information (i.e. location, operation, activity, etc.)

							— —-
0157	1 D	н380	7/22/77	0746 - 0940	228	0.058	Main Ledge, 4100 Level, 61 Crosscut, Cut
					250		and Stand Timber.
0157	1 D	11462	7/22/77	0940 - 1149	258	1.111	Main Ledge, 4100 Level, 61 Crosscut, Cut and
							Stand Timber.
0157	1 D	:1390	7/22/77	1149 - 1329	200	0.217	Main Ledge, 4100 Level, 61 Crosscut.
0157	, 1D	H157	7/22/77	1329 - 1445	152	0.222	Main Ledge, 4100 Level, 61 Crosscut.
						TWA-0.450	
0157	1£	H228	7/21/77	0725 - 0855	180	0.107	Main Ledge, 4100 Level, 58E Stope.
0157	1E	H251	7/21/77	1322 - 1416	108	0.100	Main Ledge, 4100 Level, 58E Scope.
		11-2-	.,,.				
				•		TWA-0.104	-
0157	1E	н331	7/22/77	0745 - 0939	228	0.185	Main Ledge, 4100 Level, 61 Crosscut.
0157	lE	11427	7/22/77	0939 - 1149	260	0.435	Main Ledge, 4100 Level, 61 Crosscut, Cut
			, ,	• .			and Stand Timber.
0157	1E	H385	7/22/77	1150 - 1445	350	0.206	Main Ledge, 4100 Level, 61 Crosscut.
						TWA-0.271	
0160	1 E	н53	7/12/77	0810 - 1050	320	0.117	Main Ledge, 6800 Level, in Pump Room,
						7.7.7	Repaired Track.
0160	1E	H48	7/12/77	1050 - 1531	562	0.528	Main Ledge, 6800 Level, Ate Lunch, Repaired
			.,,			- + 0 - 0	Track.
						TWA-0.379	
					-		

Concentration

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

	0162	1 <i>G</i>	н237	7/18/77	833 - 1007	188	0.045	9 Ledge, 1700 Level, 24A Stope.
	0162	16	H180	7/18/77	0700 - 0833	186	0.123	9 Ledge, 1700 Level, 24A Stope, Set Up Drill
			••				•	Equipment.
	0.62	lG	H410	7/18/77	1007 - 1210	246	0.078	9 Ledge, 1700 Level, 24A Stope.
	(+162	10	H168	7/18/77	1210 - 1430	280	2.258	9 Ledge, 1700 Level, 24A Stope.
							TWA-0.759	
	0163	1L	н337	7/18/77	703 - 806	126	0.191	9 Ledge, 2150 Level, at Motor Barn, Pur Up
			*	V			* 1	Door.
	0163	lL.	H56	7/18/77	806 - 909	126	5.018	9 Ledge, 2150 Level, Some Drilling, Put Up
							6.5.4	Door.
	0.163	11.	H267	7/18/77	909 - 1010	122	3.085	9 Ledge, 2150 Level, Put Up Door.
	0163	11	H121	7/18/77	1010 - 1216	252	- 0.540	9 Ledge, 2150 Level, Put Up Door, Ate Lunch.
Y	0163	1L	H115	7/18/77	1216 - 1327	142	0.483	9 Ledge, 2150 Level, Worked on Gate.
29	0163	11.	H321	7/18/77	1327 - 1437	140	1.677	9 Ledge, 2150 Level, Worked on Gate.
					ē		TWA-1.621	

Volume

(liters)

Sample time

Off

On

Date

Person Sample

number number

Job

code

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
5045							
0166	IΑ	н357	7/21/77	0714 - 0856	204	0.575	9 Ledge, 3950 Level, 24-25B Stope, Set Up
				•			Slushing Equipment,
0166	IA	H205 ·	7/21/77	0856 - 1049	226	0.208	9 Ledge, 3950 Level, 24-25B Stope, Slushing.
0166	lA	н250	7/21/77	1049 - 1236	214	0,657	9 Ledge, 3950 Level, 24-25B Stope, Ate Lunch,
							Slushed.
0166	lA	H418	7/21/77	1236 - 1401	170	0.120	9 Ledge, 3950 Level, 24-25B Scope.
0166	l A	н387	7/21/77	1401 - 1449	96	0.106	9 Ledge, 3950 Level, 24-25B Stope.
			•			•	
			•			TWA-0.420	
0166	18	н82	7/12/77	822 - 1016	228	0.10	13 Ledge, 6050 Level, 46-47C Stope, Some
C 100			,,,,,,,		2-0		Drilling.
0166	1 B	н96	7/12/77	1018 - 1200	204	0.047	13 Ledge, 6050 Level, 46-47C Stope, Drilling.
0166	1 B	н85	7/12/77	1207 - 1330	166	0.232	13 Ledge, 6050 Level, 46-47C Stope, Pulling
A 0100	. 10	1103	17 + 27 / /	1207 1330	100	0.232	Chute.
ဗ္ဗိ ₀₁₆₆	18	н86	7/12/77	1330 - 1439	138	1.589	13 Ledge, 6050 Level, 46-47C Stope, Pulling
01.70	•••		,,,				Chute.
-			•		•	TWA-0.478	
0166	1 <i>L</i>	н368	7/20/77	0848 - 1012	168	0.,151	9 Ledge, 4400 Level, 31-32C/D Stope, Pulled
0100	115	0000	1/20/11	0040 - 1012	100	0.,131	Chute, Put Car Back on Track.
0166	1L	H344	7/20/77	1012 - 1153	202	0.060	9 Ledge, 4400 Level, 31-32C/D Stope, Pulled
0100	IL	пэ44	1/20/11	1012 - 1133	202	0.000	Chute, Ate Lunch.
0166	1L	H210	7/20/77	1153 - 1311	156	0.093	
0100	1L	H210	1/20/11	1103 - 1311	150	0.093	9 Ledge, 4400 Level, 31-32C/D Stope, Some Pulling of Chure.
0166	1L	н346	7/20/77	1311 - 1427	152	0.452	taran da antara da antara da antara da antara da antara da antara da antara da antara da antara da antara da a
0100	11-	UPPU	1,40,11	1311 - 1427	1.32	0.432	9 Ledge, 4400 Level, 31-32C/D Stope, Set Up and Drilled.
						າໝ4_ດ 178	

Concentration

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

9 Ledge, 5450 Level, 64-65D Scope, Drilling.

9 Ledge, 5450 level, 64-65D Stope, Some

Volume

(liters)

140

96.

Sample time

Off

On

Date

7/14/77

7/14/77

1252 - 1402

1403 - 1451

Person Sample

code number number

Job

0176

0176

1A

1A

H230

H241

					and the second second		•
0166	111	н311	7/19/77	0712 - 0845	186	1.942	9 Ledge, 3650 Level, 18B Stope, Set Up Drill
			,				Equipment.
0166	114	H200	7/19/77	0845 - 1014	178	3.229	9 Ledge, 3650 Level, 18B Stope, Drill Sampling.
0166	114	H283	7/19/77	1014 - 1134	160	3.838	9 Ledge, 3650 Level, 18B Stope, Ate Lunch.
0166	1 M	H281	7/19/77	1134 - 1301	174	6.056	9 Ledge, 3650 Level, 18B Stope.
0166	lH	Н134	7/19/77	1301 - 1433	184	2,247	9 Ledge, 3650 Level, 18B Stope.
						TWA-3.421	٤.
0173	11	Н246	7/18/77	0810 - 1004	228	0.433	9 Ledge, 2150 Level, 49 Crosscut, Assemble
01,3	• •	112 10	,,,				Ring Drill.
0173	11	H186	7/18/77	1004 - 1142	196	0.092	9 Ledge, 2150 Level, 49 Crosscut, Assemble
0113			., ., .,	100.		0,0,2	Ring Drill.
0173	11	H232	7/18/77	1142 - 1348	. 252	0.005	9 Ledge, 2150 Level, 49 Crosscut, Repair
ب ۲۰۰۶	**	. 11232	7710777	1142 - 1540	. 232	0,005	Ring Drill.
မ် o173	II	H182	7/18/77	1348 - 1449	122	0.039	9 Ledge, 2150 Level, 49 Crosscut, Repair
→ 0173	11	1102	1/10/11	1740 - 1443	122	0.033	Ring Drill.
							•
						TWA-0, 154	
0176	1A	H242	7/14/77	834 - 932	116	0.187	9 Ledge, 5450 Level, 64-65D Stope, Set Up
						4	Slusher.
0176	lA	H224	7/14/77	933 - 1038	130	0.639	9 Ledge, 5450 Level, 64-65D Stope, Loading
							Ore into Cars.
0176	1 A	н238	7/14/77	1039 - 1154	150	0.698	9 Ledge, 5450 Level, 64-65D Stope, Slushing,
						2.000	Ate Lunch.
0176	1 A	H240	7/14/77	1154 - 1252	116	0.602	9 Ledge, 5450 Level, 64-65D Stope, Slushing,
4270		*******	1124111	1134 - 1432	110	0.002	Drilling.
							ntriving.

0.224

4.921

Drilling.

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0176	lD	H44	7/12/77	0840 - 1053	266	0.804	Main Ledge, 6800 Level, 93-940 Cutting Sill, Slushing.
0176	1D	н43	7/12/77	1053 - 1305	264	0.420	Main Ledge, 6800 Level, 93-94C Cutting Sill, Ate Lunch.
0176	ID	H51	7/12/77	1306 - 1531	290	0.514	Main Ledge, 6800 Level, 93-94C Cutting Sill, Cleaned Mud from Slusher.
						TWA-0.578	•
0176	. lj	н297	7/15/77	0756 0935	198	*0.085	21 Ledge, 6200 Level, 50-52B Stope, Hoisted Materials into Stope.
0176	1J	H298	7/15/77	0935 - 1304	. 418	. 0.089	21 Ledge, 6200 Level, 50-52B Stope, Some Drilling, Ate Lunch.
0176	IJ	н296	7/15/77	1305 - 1450	208	0.191	21 Ledge, 6200 Level, 50-52B Stope, Set Charges for Blasting.
						TWA-0.114	
0176	11	н38	7/14/77	0754 - 1015	282	0.821	ll Ledge, 5450 Level, 54B Stope, Loaded Lagging.
0176	11	н11	7/14/77	1015 - 1145	180	1.174	11 Ledge, 5450 Level, 54B Stope, Some Drilling, Moved Equipment.
0176	1T	H19	7/14/77	1200 - 1327	174	0.800	11 Ledge, 5450 Level, 548 Scope, Some Drilling.
0176	lT	H21	7/14/77	1330 - 1510	200	1.962	11 Ledge, 5450 Level, 54B Stope.
0110	4.4	1141	11 54111	1000 - 1010	200	TUA_1 166	ir neuge, 5450 never, 540 drupe.

TWA-1 166

Table D-1 (continued)

Concentration

fibers/cc

Sample information

(i.e. location, operation, activity, etc.)

Volume

(liters)

Sample time

Off

On

Person Sample

number number

Date

Job

							·
0176	វ្	H14	7/14/77	0754 - 915	162	1.018	11 Ledge, 5450 Level, 54B Stope, Washed Down.
0176	10	Н72	7/14/77	0915 - 1050	190	0.222	Stope, 11 Ledge, 5450 Level, 54B Stope, Some
0176	10	но8-	7/14/77	1050 - 1327	314	0.146	Drilling. 11 Ledge, 5450 Level, 54B Stope, Some
0176	1ช	но6	7/14/77	1330 - 1510	200	1.559	Drilling, Ate Lunch. Il Ledge, 5450 Level, 54B Stope, Prepared for Blasting.
*						TWA-0.652	
0176	1X	H215	7/14/77	0754 - 0950	232	Ò.535	9 Ledge, 5450 Level, 66-67C Stope, Wet Ore,
01.76	1x	H206	7/14/77	0950 - 1143	226	0.410	Set Up Equipment. 9 Ledge, 5450 Level, 66-67C Stope, Some Drilling, Ate Lunch.
0176	ΙX	H214	7/14/77	1143 - 1313	180	0.462	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
0176	1 X	н198	7/14/77	1313 - 1348	70	0.344	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
0176	ıx	H220	7/14/77	1352 - 1457	130	0.037	9 Ledge, 5450 Level, 66-67C Stope, Some Drilling.

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0176	12	н226	7/14/77	828 - 932	128	1.103	9 Ledge, 5450 Level, 64-65D Stope, Removing Loose Rock and Wetting Ore.
0176	12	H227	7/14/77	933 - 1026	106	0.534	9 Ledge, 5450 Level, 64-65D Stope, Slushing, Wetting Ore.
0176	12	н236	7/14/77	1026 - 1153	174	0.961	9 Ledge, 5450 Level, 64~65D Stope, Slushing, Ate Lunch.
0176	12	H222	7/14/77	1153 - 1252	118	1.276	9 Ledge, 5450 Level, 64-65D Stope, Slushing, Drilling.
0176	1 Z	H243	7/14/77	1254 - 1402	136	0.195	9 Ledge, 5450 Level, 64-65D Scope, Drilling.
0176	12	н223	7/14/77	1403 - 1446	86	0.490	9 Ledge, 5450 Level, 64-65D Stope, Some Drilling.
						TWA-0.781	
0182	1E	н379	7/18/77	720 - 908	216	0.045	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Drilling.
0182	: 1E	H372	.7/18/77	908 - 1117	258	0,121	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Drilling, Ate Lunch.
0182	1E	н376	7/18/77	1117 - 1312	.115	0.021	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Prepared for Blasting.
0182	IE	н374	7/18/77	1312 - 1433	162	0.134	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Prepared for Blasting.

Table D-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0186	15	н76	7/13/77	920 - 1020	120	0.080	ll Ledge, 5450 Level, 49-51 Stope, Set Up Drilling.
0186	15	H12	7/13/77	1025 - 1243	138	0.192.	ll Ledge, 5450 Level, 49-51 Stope, Some Drilling, Ate Lunch.
0186	1 F	ноэ	7/13/77	1243 - 1440	234	0.896	11 Ledge, 5450 Level, 49-51 Stope, Some Drilling.
						TWA-0.432	
0186	11	н83	7/12/77	0815 - 0918	126	0.268	Main Ledge, 6050 Level, 89E Stope, Set Up and Drilling.
0186	1L	H84	7/12/77	0918 - 1025	134	0.467	Main Ledge, 6050 Level, 89E Stope, Drilling.
0186	lL	H120	7/12/77	1025 - 1207	204	0.277	Main Ledge, 6050 Level, 89E Stope, Slushing, Ate Lunch.
J 0186	1L	H119	7/12/77	1207 - 1322	150	0.602	Main Ledge, 6050 Level, 89E Stope, Drilling.
წ 0186	iL	н33	7/12/77	1321 - 1418	114	0.549	Main Ledge, 6050 Level, 89E Stope, Drilling.
0186	1L	н34	7/12/77	1418 - 1458	80	0.587	Main Ledge, 6050 Level, 89E Stope, Drilling.
					-	TWA-0.437	
0186	111	H212	7/19/77	0714 - 0846	184	2.836	9 Ledge, 3650 Level, 18B Stope, Set Up Equipment.
0186	1N	H144	7/19/77	0846 - 1014	176	6.124	9 Ledge, 3650 Level, 18B Stope, Remove Ore, Haul Equipment.
0186	1N	H269	7/19/77	1014 - 1135	162	9.812	9 Ledge, 3650 Level, 18B Stope.
0186	IN	H271	7/19/77	1135 - 1302	174	0.923	9 Ledge, 3650 Level, 18B Stope.
0186	เห	н199	7/19/77	1302 - 1434	184	0.977	9 Ledge, 3650 Level, 18E Stope.

TWA-4.011

Table D-1 (continued)

	Job code	Person number	Sample number	Date	Sample time On Öff	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
	0186	1P	H444	7/20/77	730 - 916	212	0.057	9 Ledge, 4250 Level, 36-37B/C Stope, Some
	0186	1 P	н431	7./20/77	916 - 1055	198	0.341	Drilling, Took Break. 9 Ledge, 4250 Level, 36-37B/C Stope, Some
	0186	1P	H441	7/20/77	1125 - 1305	200	0.030	Drilling, Aie Lunch. 9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.
	0186	1P	H442	7/20/77	1305 - 1430	170	0.184	9 Ledge, 4250 Level, 36-37B/C Scope, Drilling.
	٠.			•			TWA-0.150	
	0186	19	H217	7/19/77	0705 - 0850	210	1.125	9 Ledge, 3650 Level, 27D Stope, Set Up
	0186	1P	н292	7/19/77	0850 - 1100	260	0.056	Equipment. 9 Ledge, 3650 Level, 27D Stope, Some Drilling.
,	0186	1P .	H225	7/19/77	1100 - 1315	270	0.165	9 Ledge, 3650 Level, 27D Stope, Some Drilling, Ate Lunch.
٧,	0186	1P	н209	7,19/77	1315 - 1440	170	0.248	9 Ledge, 3650 level, 27D Stope, Some Drilling.
					•			Drilling.
							TWA-0.371	
	0190	111	н421	7/21/77	805 - 930	170	. 0.071	Main Ledge, 4100-4250 Levels, Went to 62 Crosscut and 71 Pillar West.
	0190	111	н413	7/21/77	930 - 1058	176	0.212	Main Ledge, 4100-4250 Levels, Went to 580 East, 61 Timberline, 710 Timber and 70 Drift.
	0190	1M	H415	7/21/77	1157 - 1327	180	1.079	Main Ledge, 4100-4250 Levels, Went to 64-65C Stope.
	0190	IM	н107	7/21/77	1327 - 1414	94	0.410	Main Ledge, 4100-4250 Levels, Went to 4400 Level, 71 Crosscut.

Table D-2. Airborne sample results for fibers >5 μm in length for surface employees in the crushing mills at the Homestake Gold Mine.

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0201	1H	н396	7/19/77	632 - 844	264	2.577	Crushing-Surface, Feeder, Some Feeding, Operation Shut Down.
0201	1H	н393	7/19/77	844 - 1025	202	17192	Crushing-Surface, Feeder, Some Feeding of Ore Switched to Waste, Yates.
0201	. 1H	н383	7/19/77	1025 - 1230	250	0.250	Crushing-Surface, Feeder, Some Feeding of Waste Ore, Ate Lunch, Yates.
0201	18	н332	7/19/77	1230 - 1354	168	2.761	Crushing-Surface, Feeder, Some Feeding of Waste Ore.
						TWA-1.637	
0201	11	н371	7/22/77	939 - 1132	226	0.213	Crushing-Surface, Crusher Feeder, Are Lunch, Yates
0201	11	11401	7/22/77	0713 - 0939	292	1.718	Crushing-Surface, Crusher Feeder, Waste Ore, Yates.
0201	11	H218	7/22/77	1132 - 1352	280	1.551	Air Hose for Clogged Rocks, Yates.
						TWA-1.233	
0202	1 F	Н466	7/20/77	0634 - 0845	262	1.017	Crushing-Surface, Ore Crusher Feeder, Ross.
0202	l F	H480	7/20/77	0845 - 1032	214	3.011	Crushing-Surface, Ore Crusher Feeder, Ross.
0202	1F	H470	7/20/77	1032 - 1250	276	1.498	Crushing-Surface, Ore Crusher Feeder, Ross.
0202	1 F	н459	7/20/77	1250 - 1405	150	6.061	Crushing-Surface, Ore Crusher Feeder, Ross.
•		1			÷	TWA-2.476	

Table D-2 (continued)

Concentration

fibers/cc

2.332

Sample information

Crushing-Surface, Chip Picker, Ross.

Ore, Yates.

Crushing-Surface, Beltman-Chip Picker Waste

Crushing-Surface, Beltman-Chip Picker, Yates.

Crushing-Surface, Beltman-Chip Picker, Yates.

(i.e. location, operation, activity, etc.)

Crushing-Surface, Chip Picking Occasionally,

Volume

(liters)

268

168

294

314

196

Sample time

1241 - 1405

0709 - 0936

0936 - 1213

1213 - 1351

On

626 -

Off

840

Person

number

1G

1G

1G

IG

1G

Job

code

0204

0204

0204

0204

0204

Sample

number

H399

H456

11253

H293

н398

Date

7/19/77

7/20/77

7/22/77

7/22/77

7/22/77

							Operation Shut Down, Yates.
020	4 1G	н391	7/19/77	840 - 1030	220	0.257	Crushing-Surface, Some Chip Picking Switched to Waste, Yates.
020	4 IG	н394	7/19/77	1030 - 1229	238	1.879	Crushing-Surface, Some Chip Picking, Ate Lunch, Waste Ore, Yates.
0204	4 1G	н388	7/19/77	1229 - 1354	170	0.595	Crushing-Surface, Some Chip Picking of Waste Ore, Yates.
						TWA-1.373	
0204	4 1G	н481	7/20/77	0639 - 0843	248	1.087	Crushing-Surface, Chip Picker, Inspects Ore on Conveyor from 30 Inch, Ross.
♥ 020 <i>l</i>	4 1G	H262	7/20/77	0843 - 1029	212	3.948	Crushing-Surface, Chip Picker, Ross.
မ္က <u>02</u> 04	4 1G	H475	7/20/77	1029 - 1240	262	1.039	Crushing-Surface, Chip Picker, Ross.

0.252

2.571

0.061

0.403

TWA-2.034

Table D-2 (continued)

Concentration

Sample information

Volume

Sample time

Person Sample

Job

code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0205	1E	н430	7/20/77	0627 - 0839	264	4.174	Crushing-Surface, Clean Up, Ore Crusher Feeder, and Shoveled Spills From Conveyor, Ross.
0205	1E	H468	7/20/77	0839 - 1027	216	1.430	Crushing-Surface, Clean Up, Ross.
0205	lΕ	H467	7/20/77	1028 - 1248	280	4.279	Crushing-Surface, Clean Up, Ross.
0205	1 E	н359	7/20/77	1248 - 1407	158	1.427	Crushing-Surface, Clean Up, Ross.
						880. E-AWT	
0205	1 F	н384	7/19/77	622 - 848	292	0.982	Crushing-Surface, Clean Up, Some Chip Picking of Ore, Yates.
0205	1F	н389	7/19/77	848 - 1040	224	2.849	Crushing-Surface, Clean Up-Switch to Waste Ore, Yates.
0205	1 F	н39 2	7/19/77	1040 - 1224	208	1.256	Crushing-Surface, Clean Up-Waste Ore, Ate Lunch, Yates.
0205	1 F	н382	7/19/77	1224 - 1354	180	1.024	Crushing-Surface, Clean Up-Waste Ore.
i Ž						TWA-1.516	
0205	1 H	н360	7/22/77	0712 - 0935	286	0.147	Crushing-Surface, Clean Up-Waste Ore, Yates.
0205	1 H	H420	7/22/77	0935 - 1130	230	0,607	Crushing-Surface, Clean Up, Yates.
0205	1 H	н397	7/22/77	1130 - 1351	282	1.452	Crushing-Surface, Clean Up, Yates.
						TWA-0.741	

Table D-2 (continued)

Volume

code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
							
0206	1 H	H479	7/20/77	0650 - 0724	68	16.204	Crushing-Surface, Clean Up, Sweep Floor, Clean
							Off Grate, Ross.
0206	1 H	H476	7/20/77	0724 - 0752	56	10.068	Crushing-Surface, Clean Up, Shovels Ore Off
							Floor, Ross.
0206	111	11453	7/20/77	0752 - 0828	72 -	15,722	Crushing-Surface, Clean Up, Ross.
0206	1H	11472	7/20/77	0828 - 0914	92	8.181	Crushing-Surface, Clean Up, Ross.
0206	1H	H474	7/20/77	0914 - 1105	222	0.980	Crushing-Surface, Clean Up, Ate Lunch, Ross.
0206	ΙH	11437	7/20/77	1159 - 1350	222	1.257	Crushing-Surface, Clean Up, Swept Floor,
						,	Shoveled Floor, Ross.
0206	14	H452	7/20/77	1350 - 1405	30	0.723	Crushing-Surface, Clean Up, Ross.
						•	

-5.339

Table D-3. Airborne sample results for fibers >5 μm in length for underground employees on the 9 Ledge of the Homestake Gold Mine.

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0914	1K	н329	7/18/77	0702 - 0806	248	0.533	9 Ledge, 2150 Level, 49 Crosscut, Putting Up Door.
0914	1K	н130	7/18/77	0806 - 0909	126	0.851	9 Ledge, 2150 Level, Carpenter.
0915	1K	11322	7/18/77	0909 - 1010	122	3.872	9 Ledge, 2150 Level, Carpenter.
0914	1K	H141	7/18/77	1010 - 1153	206	0.286	9 Ledge, 2150 Level, Carpenter.
0914	1K	1199	7/18/77	1153 - 1255	124	0.350	9 Ledge, 2150 Level, Carpenter.
						TWA-1.063	
0932	1 C	н239	7/18/77	0730 - 0905	190	. 1.561	9 Ledge, 1700 Level, Motorman, Hauled Ore.
0932	10	H95	7/18/77	0905 - 1138	306	0.437	9 Ledge, 1700 Level, Motorman, Hauled Ore,
•,							Washed Cars, Dumped Waste.
₽ 0932	lC :	H27	7/18/77	1138 - 1447	378	0.796	9 Ledge, 1700 Level, Motorman.
41						TWA-0.837	•
0952	18	н211	7/18/77	831 - 1010	198	0.693	9 Ledge, 1700 Level, 24A Stope.
0952	1 B	H153	7/18/77	0657 - 0831	188	0.128	9 Ledge, 1700 Level, 24A Stope, Drilling.
0952	1 B	H174	7/18/77	1010 - 1210	240	0.100	9 Ledge, 1700 Level, 24A Stope.
0952	1 B	H160	7/18/77	1210 - 1432	284	0.246	9 Ledge, 1700 Level, 24A Stope.

Table D-3 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
2002	1101110111						0 - 1 2000 t 1 1/5 510/4 ht N-1-
0952	lF	H378	7/18/77	723 - 907	208	0.151	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
•						- 404	Slushing, Drilling.
0952	1 F	н370	1/18/77	907 - 1117	260	0.634	9 Lodge, 2000 Level, 45-51C/H Blast Hole,
							Slushing, Drilling, Ate Lunch. 9 Ledge, 2000 Level, 45-51G/H Blast Hole,
0952*	18	н373	7/18/77	1117 - 1312	0	0.000	
							Slushing and Prepared for Blasting
						7/	(Lost Sample). 9 Ledge, 2000 Level, 45-51G/H Blast Hole,
0952	1 F	н349	7/18/77	1312 - 1433	162	0.074	N
				·			Prepared for Blasting.
				•		TWA-0.331	
•							•
-050	1 7	11256	7/18/77	835 - 955	160	0.075	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
_ 0952	lJ	н356	7710777	0.7 - 7.55	•00		Slushing.
<u> </u>	1.7	н369	7/18/77	956 - 1016	40	0.151	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
5 0952	IJ	นวบจ	7710777	,,,,			Pulling Chute.
0952	IJ	н364	7/18/77	1018 - 1034	16	0:376	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
0932	IJ	H204	77 10777	1010		•	Pulling Chute.
ი952	1.J	н345	7/18/77	1035 - 1044	18	0.067	9 Ledge, 2000 Level, 45-51G/H Blast Hole.
0952	lJ	н353	7/18/77	1044 - 1054	-20	0.542	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
0932	13	112.23	,, 10,				Loading Ore.
0952	1J	н367	7/18/77	1055 - 1158	126	0.994	9 Ledge, 2000 Level, 45-51G/H.Blast Noie,
0732	1.5		,, 10,				Ate Lunch, Loading Ore, Blast.
0952	lЈ	н361	7/18/77	. 1158 - 1255	114	6.465	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
(J) J2	13	11302	,, 20, 4,				Loading Ore.
0952	IJ	н362	7/18/77	1255 - 1322	54	0.112	9 Ledge, 2000 Level, 45-51G/H Blast Hole.
0952	1.1	н366	7/18/77	1322 - 1406	88	0.151	9 Ledge, 2000 Level, 45-51G/H Blast Hole.
0952	1J	11355	7/18/77	1406 - 1440	68	6.559	9 Ledge, 2000 Level, 45-51G/H Blast Hole.
		= =					

 $[\]star$ Note: This sample not included in the TWA and Statistical Results.

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0953	1н	н204	7/18/77	0725 - 0844	158	2.722	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
0953	1H	H229	7/18/77	0844 - 1000	152	0.681	9 Ledge, 2150 Level, 49 Crosscut, Maintenance, Work.
0953	I H	н55	7/18/77	1000 - 1145	210	0.235	9 Ledge, 2150 Level, 49 Crosscut, Ate Lunch.
0953	lH	H245	7/18/77	1145 - 1315	180	0,020	9 Ledge, 2150 Level, 49 Crosscut.
0953	1 H	н73	7/18/77	1315 - 1428	146	0.330	9 Ledge, 2150 Level, 49 Crosscut.
	·					TWA-0.750	
0953	111	н324	7/18/77	659 - 816	154	0.063	9 Ledge, 2150 Level, 49 Crosscut, Hanging Pipe.
0953	. IM	н256	7/18/77	816 - 914	116	1.266	9 Ledge, 2150 Level, 49 Crosscut, Hanging Pipe, Mucking.
0953	- 1M	H333	7/18/77	914 - 1012	116	0.187	9 Ledge, 2150 Level, 49 Crosscut, Some Mucking.
0953	1M"	н338	7/18/77	1012 - 1033	42	0.143	9 Ledge, 2150 Level, 49 Crosscut, Some Mucking.
0953	IM ·	H126	7/18/77	1033 - 1135	124	0.126	9 Ledge, 2150 Level, 49 Crosscut, Some Mucking,
		•					Ate Lunch.
0953	lm	н98	7/18/77	1135 - 1211	72	0.569	9 Ledge, 2150 Level, 49 Crosscut, Some Mucking.
0953	174	H342	7/18/77	1211 - 1245	68	1.045	9 Ledge, 2150 Level, 49 Crosscut, Mucking.
0953	1M	H127	7/18/77	1245 - 1325	80	0.647	9 Ledge, 2150 Level, 49 Crosscut, Mucking.
0953	111	н363	7/18/77	1325 - 1437	144	0.092	9 Ledge, 2150 Level, 49 Crosscut, Worked on Gate.

Table D-3 (continued)

Concentration

fibers/cc

Sample information

(i.e. location, operantion, activity, etc.)

Volume

(liters)

Sample time

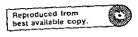
Off

On

Date

Job Person Sample code number number

0954	1 A	н187	7/18/77	850 - 1135	330	0.401	9 Ledge, 1700 Level, Drift South of 22
0954	la	н71	7/18/77	0715 - 0850	190	0.781	Crosscut, Some Drilling. 9 Ledge, 1700 Level, Drift South of 22
0954	ľA	Н184	7/18/77	1135 - 1257	164	0.705	Crosscut, Some Mucking and Drilling. 9 Ledge, 1700 Level, Drift South of 22
0954	l A	н196	7/18/77	1257 - 1440	206	0.491	Crosscut, Drilling. 9 Ledge, 1700 Level, Drift South of 22 Crosscut, Blasting.
						TWA-0.559	
0954	ID	H208	7/18/77	0713 - 0855	204	1.687	9 Ledge, 1700 Level, Drift South of 22 Crosscut, Some Mucking and Drilling.
P 0954	- 1D	H63	7/18/77	0855 - 1135	320	0.166	9 Ledge, 1700 Level, Drift South of 22 Crosscut, Some Mucking, Loading and Drilling.
£ 0954	1D	н173	7/18/77	1135 - 1255	160	0.715	9 Ledge, 1700 Level, Drift South of 22 Crosscut, Drilling.
0954	ÍĐ	188	7/18/77	1255 - 1442	214	0.540	9 Ledge, 1700 Level, Drift South of 22 Crosscut, Prepare for Blasting.
						TWA-0.698	


Table D-3 (continued)

	Job	Person	Sample		Sample time	Volume	Concentration	Sample information
	code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
	0955	1 A	н65	7/13/77	0832 - 0955	166	1.422	9 Ledge, 5750 Level, 68C Stope, Slushing.
	0955	1 A	H54	7/13/77	0956 - 1130	188	0.397	9 Ledge, 5750 Level, 68C Stope, Slushing.
	0955	IA	H52	7/13/77	1135 - 1310	190	0.235	9 Ledge, 5750 Level, 68C Stope, Eating Lunch Some of the Time.
	0955	1A	H122	7/13/77	1310 - 1455	210	0.178	9 Ledge, 5750 Level, 68C Stope, Set Up Drill Equipment.
							TWA-0.521	
	0955	18	H110	7/13/77	0804 - 0922	156	0,984	9 Ledge, 5750 Level, 68C Stope, Pulling Chute.
	0955	18	H62	7/13/77	0922 - 1053	182	0.569	9 Ledge, 5750 Level, 68C Stope, Barred, Ate Lunch.
7	0955	18	н116	7/13/77	1155 - 1323	176	0.123	9 Ledge, 5750 Level, 68C Stope, Electricity Went Off, Workers Not Working at Time of Sample.
,	0955	1 B	н106	7/13/77	1323 - 1503	200	0.421	9 Ledge, 5750 Level, 68C Stope, Electricity Went Off, Workers Not Working.
							TWA-0.508	
	0956	1.4	н318	7/22/77	0807 - 0957	220	2.105	9 Ledge, 4700 Level, 37F Stope, Set Up Equipment, Drilling.
	0956	1A	н299	7/22/77	0957 - 1144	214	0.703	9 Ledge, 4700 Level, 37F Stope, Drilling, Ate Lunch.
	0956	1.6	H202	7/22/77	1144 - 1302	156	0.564	9 Ledge, 4700 Level, 37F Stope, Drilling.
	0956	lA	Н407	7/22/77	1302:- 1358	112	0.344	9 Ledge, 4700 Level, 37F Stope, Some Drilling.

TWA-1.054

Table D-3 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0956	18	H417	7/21/77	0715 - 0859	208	1.524	9 Ledge, 3950 Level, 24-25B Stope, Loaded Cars
0956	1 B	н90	7/21/77	1046 - 1232	212	0.136	9 Ledge, 3950 Level, 24-25B Stope, Loaded Cars,
0956	1 B	н310	7/21/77	1232 - 1405	181	0.382	Ate Lunch. 9 Ledge, 3950 Level, 24-25B Stope.
0956	1 B	H405	7/21/77	1405 - 1449	88	0.246	9 Ledge, 3950 Level, 24-25B Stope.
						TWA-0.632	
0956	18	Н312	7/22/77	0807 - 0955	216	0.307	9 Ledge, 4700 Level, 37F Stope, Slushing.
0956	1 B	н465	7/22/77	0955 - 1223	296	0.232	9 Ledge, 4700 Level, 37F Stope, Drilling,
				- 222 - 2250	.00	- 200	Ate Lunch.
0956	1B	н276	7/22/77	1223 - 1358	190	0.298	9 Ledge, 4700 Level, 37F Stope, Drilling.
						TWA-0.273	
0956	lЈ	Н124	7/13/77	808 - 1907	118	0.745	9 Ledge, 5750 Level, 67-68D Stope, Wetted Ore.
0956	lЈ	H145	7/13/77	907 - 1010	126	0.363	. 9 Ledge, 5750 Level, 67-68D Stope, Drilled.
0956	ÌЈ	H133	7/13/77	1011 - 1140	178	0.325	9 Ledge, 5750 Level, 67-68D Stope, Some
			•			;	Drilling, Ate Lunch.
0956	IJ	H146	7/13/77	1140 - 1234	108	0.335	9 Ledge, 5750 Level, 67-68D Stope, Drilled.
0956	IJ	H131	7/13/77	1235 - 1309	68	0.496	9 Ledge, 5750 Level, 67-68D Stope, Some
							Drilling.
0956	IJ	н109	7/13/77	1309 - 1355	92	1.204	9 Ledge, 5750 Level, 67-68D Stope, Prepared for
-074							Blasting.
0956	IJ	H137	7/13/77	1355 - 1443	96	0.100	9 Ledge, 5750 Level, 67-68D Stope, Prepared for
							Blasting. Put in Roof Bolts.

Sample information

9 Ledge, 3650 Level, 183 Stope, Lunch.

9 Ledge, 3650 Level. 188 Starting

Table D-3 (continued)

Concentration

Volume

158

172

186

Sample time

1015 - 1134

1134 - 1300

1300 - 1433

Person Sample

Job

0956

0956

0956

lL

1L

1L

H175

H176

H195

7/19/77

7/19/77

7/19/77

	code	number	number	Date	On Off	. (liters)	fibers/cc	(i.e. location, operation, activity, etc.)
	0956	lK	н138	7/13/77	808 - 907	118	0.214	9 Ledge, 5750 Level, 67-68D Stope, Set Up for Drilling.
	0956	١ĸ	н135	7/13/77	907 - 1010	126	0.134	9 Ledge, 5750 Level, 67-68D Stope, Orilled.
	0956	1 K	H136	7/13/77	1011 - 1140	178	0.068	9 Ledge, 5750 Level, 67-68D Stope, Some Drilling, Ate Lunch.
	0956	1K	H128	7/13/77	1140 - 1234	108	0.290	9 Ledge, 5750 Level, 67-68D Stope, Drilled.
	0956	1K	H125	7/13/77	1235 - 1309	68	1.576	9 Ledge, 5750 Level, 67-68D Stope, Drilled.
	0956	1K	н143	7/13/77	1355 - 1444	98	0.184	9 Ledge, 5750 Level, 67-68D Stope, Prepared for Blasting, Put in Roof Bolts.
							TWA-0.303	
Ŗ	0956	1K	H235	7/20/77	0728 - 0848	160	0.188	9 Ledge, 4400 Level, 31-32C/D Stope, Slushing, Cable Repair.
	0956	1K	H341	7/20/77	1023 - 1139	152	2.010	9 Ledge, 4400 Level, 31-32C/D Stope, Slushing.
_	0956	1 K	н352	7/20/77	1139 - 1332	226	0.437	9 Ledge, 4400 Level, 31-32C/D Stope.
	0956	lκ	Н358	7/20/77	1332 - 1428	112	0.376	9 Ledge, 4400 Level, 31-32C/D Stope, Set Up for Drilling, Drilling.
							TWA-0.733	
	0956	11.	H140	7/19/77	0710 - 0845	190	0.146	9 Ledge, 3650 Level, 18B Stope, Setting Up

6.610

0.182

0.065

Equipment.

Table D-3 (continued)

Job c <u>o</u> de	Person number	Sample number	Dațe	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0956	18	н438	7/20/77	730 - 914	208	0.278	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling.
0956	* 1N	H445	7/20/77	914 - 930	e	0.000	9 Ledge, 4250 Level, 36-37B/C Stope, Dropped Filter, Voided for Fiber Count.
0956	111	н439	7/20/77	931 - 1058	174	0.076	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling, Ate Lunch.
0956	114	н432	7/20/77	1125 - 1304	198	0.450	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling.
						TWA-0.276	
0956	10	H440	7/20/77	731 - 915	208	0.573	9 Ledge, 4250 Level, 36-37B/C Stope, Some Orilling.
면 0956	10	н449	7/20/77	915 - 1058	206	0.164	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling, Ate Lunch.
 6956	10	H451	7/20/77	1127 - 1304	194	0.217	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.
0956	10	H434	7/20/77	1304 - 1432	176	0,513	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.
						TWA-0.364	
0956	1P	H431	720/77	916 - 1055	198	0.341	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling, Ate Lunch.

 $[\]star$ Note: This sample is not included in the TWA and Statistical Results.

Table D-3 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
Code	HOMOEL	110111011	5520				(tree tocation, operation, activity, etc.)
0956	1Q	H408	7/19/77	702 - 0901	238	0.025	9 Ledge, 3950 Level, 18G Stope, Set Up Equipment.
0956	lQ	н402	7/19/77	0901 - 1143	324	0,190	9 Ledge, 3950 Level, 18G Scope.
0956	10	H411	7/19/77	1143 - 1312	178	0.636	9 Ledge, 3950 Level, 18G Stope, Drilling.
0956	lQ	н400	7/19/77	1312 - 1421	138	0.131	9 Ledge, 3950 Level, 18G Stope, Some Drilling.
				•		TWA-0.226	
0956	lR	н406	7/19/77	0718 - 0935	274	0.105	9 Ledge, 3950 Level, 18G Stope, Set Up
					•	1.1.1	Equipment.
0956	IR	H404	7/19/77	0935 - 1144	258	0.075	9 Ledge, 3950 Level, 18G Stope.
09561	1 R	H409	7/19/77	1144 - 1312	176	0.897	9 Ledge, 3950 Level, 18G Stope, Drilling.
0956	18	H412	7/19/77	1312 - 1420	136	0.027	9 Ledge, 3950 Level, 18G Stope, Some Drilling.
7				* v		·	
49			•			TWA-0.248	
0956	1 V	н306	7/19/77	706 - 850	208	0.666	9 Ledge, 3650 Level, 27D Stope, Set Up
				•		·	Equipment, Some Drilling.
0956	17	H274	7/19/77	850 - 1104	268	0.279	9 Ledge, 3650 Level, 27D Stope, Drilling.
0956	IΛ	н302	7/19/77	1315 - 1440	170	0.170	9 Ledge, 3650 Level, 27D Stope, Some Drilling.
		•				TWA-0.375	
0956	1W	н101	7/19/77	706 - 850	208	0.434	9 Ledge, 3650 Level, 27D Stope, Some Drilling.
0956	1 W	H278	7/19/77	850 - 1104	268	0.431	9 Ledge, 3650 Level, 27D Stope, Drilling.
0956	1₩	н305	7/19/77	1315 - 1440	170	0.425	9 Ledge, 3650 Level, 27D Stope, Some Drilling.

Table D-3 (continued)

Job	Person	Sample	_	Sample time	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
code	number	number	Date	On Off	(fireis)	Tinersyce	(1:c. tocation, operation, accuracy
0956	14	11221	7/14/77	0745 - 0950	232	0.296	9 Ledge, 5450 Level, 66-67C Scope, Set Up Equipment, Some Slushing.
0956	14	н216	7/14/77	0950 - 1143	226	1.715	9 Ledge, 5450 Level, 66-67C Stope, Some Drilling, Ate Lunch.
	11/	11202	7/14/77	1143 - 1313	180	1.216	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
0956 0956	1Y 1Y	н203 н197	7/14/77	1313 - 1457	208	0.156	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
		,				TWA-0.836	
0962	1G	н237	7/18/77	833 - 1007	188	0.045	9 Ledge, 1700 Level, 24A Stope.
0962	1G	н180	7/18/77	0700 - 0833	186	0.123	9 Ledge, 1700 Level, 24A Stope, Set Up Drill Equipment.
0962	1G	11140	7/18/77	1007 - 1210	246	0.078	9 Ledge, 1700 Level, 24A Stope.
. 0962	1G	11168	7/18/77	1210 - 1430	280	2.258	9 Ledge, 1700 Level, 24A Stope.
, ,					·	TWA-0.759	
0963	1L	н337	7/18/77	703 – 806	126	0.191	9 Ledge, 2150 Level, at Motor Barn, Put Up Door.
0963	IL	н56	7/18/77	806 - 909	126	5.018	9 Ledge, 2150 Level, Some Drilling, Put Up Door.
0963	1L	н267	7/18/77	909 - 1010	122	.3.085	9 Ledge, 2150 Level, Put Up Door.
0963	IL IL	H121	7/18/77	1010 - 1216	252	0.540	9 Ledge, 2150 Level, Put Up Door, Ate Lunch.
0963	11.	H115	7/18/77	1216 - 1327	142	0.483	9 Ledge, 2150 Level, Worked on Gate.
0963	1L	н321	7/18/77	1327 - 1437	140	1.677	9 Ledge, 2150 Level, Worked on Gate.

TWA-1.621

Table D-3 (continued)

Concentration

Sample information

Volume

Sample time

Person Sample

Job

code	number	number	Date .	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0966	14	н357	7/21/77	0714 - 0856	204	0.575	9 Ledge, 3950 Level, 24-25B Stope, Set Up Slushing Equipment.
0966	1A	H205	7/21/77	0856 - 1049	226	0.208	9 Ledge, 3950 Level, 24-25B Stope, Slushing.
0966	1A	H250	7/21/77	1049 - 1236	214	0.657	9 Ledge, 3950 Level, 24-25B Stope, Ate Lunch, Slushed.
0966	1 A	H418	7/21/77	1236 - 1401	170	0.120	9 Ledge, 3950 Level, 24-25B Stope.
0966	l A	н387	7/21/77	1401 - 1449	96	0.106	9 Ledge, 3950 Level, 24-25B Stope.
						TWA-0.420	
0966	lL	н368	7/20/77	0848 - 1012	168	0.151	9 Ledge, 4400 Level, 31-32C/D Stope, Pulled Chute, Put Car Back on Track.
0966	lL	н344	7/20/77	1012 - 1153	202	0.060	9 Ledge, 4400 Level, 31-32C/D Stope, Pulled Chute, Ate Lunch.
∑ 0966 ∑	1L	H210	7/20/77	1153 - 1311	156	0.093	9 Ledge, 4400 Level, 31-32C/D Stope, Some Pulling of Chute.
0966	1L	н346	7/20/77	1311 - 1427	152	0.452	9 Ledge, 4400 Level, 31-32C/D Stope, Set Up and Drilled.
						TWA-0.178	
0966	111	н311	7/19/77	0712 - 0845	186	1.942	9 Ledge, 3650 Level, 18B Stope, Set Up Drill Equipment.
0966	1M	H200	7/19/77	0845 - 1014	178	3,229	9 Ledge, 3650 Level, 188 Stope, Drill Sampling.
0966	lH	H283	7/19/77	1014 - 1134	160	3.838	9 Ledge, 3650 Level, 18B Stope, Ate Lunch.
0966	1H	H281	7/19/77	1134 - 1301	174	6.056	9 Ledge, 3650 Level, 18B Stope.
0966	IM	н134	7/19/77	1301 - 1433	184	2.247	9 Ledge, 3650 Level, 18B Scope.
•			•				

TWA-3.421

Table D-3 (continued)

Job	Person	Sample		Sample time	Volume	Concentration	Sample information
code	number	number	Cate	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
0973	11	н246	7/18/77	0810 - 1004	228	0.433	9 Ledge, 2150 Level, 49 Crosscut, Assemble Ring Drill.
0973	11	H186	7/18/77	1004 - 1142	196	0.092	9 Ledge, 2150 Level, 49 Crosscut, Assemble Ring Drill.
0973	lI	н232	7/18/77	1142 - 1348	252	0.005	9 Ledgo, 2150 Level, 49 Crosscut, Repair Ring Drill.
0973	11	н182	7/18/77	1348 - 1449	122	0.039	9 Ledge, 2150 Level, 49 Crosscut, Repair Ring Drill.
						TWA-0.154	
0976	lA	Н242	7/14/77	834 - 932	116	0.187	9 Ledge, 5450 Level, 64-65D Stope, Set Up Slusher.
, 0976	1A	н224	7/14/77	933 - 1038	130	0.639	9 Ledge, 5450 Level, 64-65D Stope, Loading Ore into Cars.
0976	1A	н238	7/14/77	1039 - 1154	150	0.698	9 Ledge, 5450 Level, 64-65D Stope, Slushing,
0976	lA	н240	7/14/77	1154 - 1252	116	. 0.602	9 Ledge, 5450 Level, 64-65D Stope, Slushing, Drilling,
0976	1 A	н230	7/14/77	1252 - 1402	140	0.224	9 Ledge, 5450 Level, 64-65D Stope, Drilling.
0976	1 A	н241	7/14/77	1403 - 1451	96	4-921	9 Ledge, 5450 Level, 64-65D Stope, Some

TWA-1.047

Table D-3 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
COGE	Hambet	nomber.					(3.3.)
0976	1X	н215	7/14/77	0745 - 0950	232	0.535	9 Ledge, 5450 Level, 66-67C Stope, Wet Ore, Set Up Equipment.
0976	1 X	H206	7/14/77	0950 - 1143	226	0.410	9 Ledge, 5450 Level, 66-67C Stope, Some Drilling, Ate Lunch
0976	1 X	H214	7/14/77	1143 - 1313	180	0.462	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
0976	ìx	H198	7/14/77	1313 - 1348	70	0.344	9 Ledge, 5450 Level, 66-67C Stope, Some Drilling.
0976	ıx	- н220	7/14/77	1352 - 1457	130	0.037	9 Ledge, 5450 Level, 66-67C Stope, Some Drilling.
						ŢWA-0∙392	
0976	ız	н226	7/14/77	828 - 932	128	1.103	9 Ledge, 5450 Level, 64-65D Stope, Removing Loose Rock and Wetting Ore.
7 0976 3	12	H227	.7/14/77	933 - 1026	106	0.534	9 Ledge, 5450 Level, 64-65D Stope, Slushing, Wetting Ore.
0976	12	н236	7/14/77	1026 1153	174	0.961	9 Ledge, 5450 Level, 64-65D Stope, Slushing, Ate Lunch.
0976	12	Н222	7/14/77	1153 - 1252	118	1.276	9 Ledge, 5450 Level, 64-65D Scope, Slushing, Drilling.
0976	12	H243	7/14/77	1254 - 1402	136	0.195	9 Ledge, 5450 Level, 64-65D Stope, Drilling.
0976	1z	H223	7/14/77	1403 - 1446	86	0.490	9 Ledge, 5450 Level, 64-65D Stope, Some Drilling.

Table D-3 (continued)

Job code	Ferson number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0982	lE	н379	7/18/77	720 – 908	216	0.045	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Drilling.
0982	1E	н372	7/18/77	908 - 1117	2 58	0.121	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Drilling, Ate Lunch.
0982	lE	н376	7/18/77	1117 - 1312	115	0.021	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Prepared for Blasting.
0982	1£	н374	7/18/77	1312 - 1433	162	0.134	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Prepared for Blasting.
					•	•	
						TWA-0.078	
0986	111	H212	7/19/77	0714 - 0846	184	2.836	9 Ledge, 3650 Level, 18B Stope, Set Up Equipment.
는 ⁰⁹⁸⁶	и	H144	7/19/77	0846 - 1014	176	6.124	9 Ledge, 3650 Level, 18B Stope, Remove Ore and Haul Equipment.
6 0986 ←	1N	H269	7/19/77	1014 - 1135	162	9.812	9 Ledge, 3650 Level, 18B Stope.
0986	IN	H271	7/19/77	1135 - 1302	174	0.923	9 Ledge, 3650 Level, 18B Stope.
0986	IN	н199	7/19/77	1302 - 1434	184	0.977	9 Ledge, 3650 Level, 18B Stope.
						TWA-4.011	
0986	1P ·	H444	7/20/77	730 - 916	212	0.057	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling, Took Break.
0986	1 P	н431	7/20/77	916 - 1055	198	0.341	9 Ledge, 4250 Level, 36-37B/C Stope, Some
							Drilling, Ate Lunch.
0986	1 P	H441	7/20/77	1125 - 1305	200	0.030	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.
0986	1P	H442	7/20/77	1305 - 1430	170	0.184	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.

Table D-3 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
0986	1P	H217	7/19/77	0705 - 0850	210	1.125	9 Ledge, 4250 Level, 36-37B/C Scope, Set Up
0986	1P	H292	7/19/77	0850 - 1100	260	0.056	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling.
0986	IP	H225	7/19/77	1100 - 1315	270	.0.165	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling, Ate Lunch.
0986	19	H209	7/19/77	1315 - 1440	170	0.248	9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling.

Table D-4. Airborne sample results for fibers >5 μm in length for underground employees on the Main Ledge of the Homestake Gold Mine.

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1010	lG	н365	7/21/77	0728 - 0916	216	1.161	Main Ledge, 4250 Level, 710 Stope, Set Timber for Track.
1010	1 G	н446	7/21/77	0916 - 1047	182	0.119	Main Ledge, 4250 Level, 71C Stope, Waited for Timber to Arrive.
1010	IG	11447	7/21/77	1047 - 1248	242	0.264	Main Ledge, 4250 Level, 71C Stope, Ate Lunch, Blasted and Worked on Timberline.
1010	IG	H469	7/21/77	1248 - 1426	196	0.510	Main Ledge, 4250 Level, 71C Stope, Worked on Timberline.
					-	TWA-0.522	
1010	1 H	H443	7/21/77	0728 - 0917	218	1.741	Main Ledge, 4250 Level, 71C Stope, Set Timbers for Track.
ioio	IH	н375	7/21/77	0917 - 1055	196	0.221	Main Ledge, 4250 Level, 71G Stope, Waiting for Timber.
1010	1н	н435	7/21/77	1055 - 1248	226	0.888	Main Ledge, 4250 Level, 71C Stope, Ate Lunch, Blasted and Worked on Timberline,
1010	1H	H448	7/21/77	1248 - 1426	196	0.913	Main Ledge, 4250 Level, 71C Stope, Worked on Timberline.

Table D-4 (continued)

		Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
10	33	1G	н69	7/12/77	910 - 1145	310	0.144	Main Ledge, 6500 Level, Helped in Slushing, Ate Lunch,
10	33	1G	н61	7/12/77	0810 - 909	136	4.591	Main Ledge, 6500 Level, Hauling Rock, Pulling Raise.
10	233	1 G	н70	7/12/77	1145 - 1405	520	0.167	Main Ledge, 6500 Level, Helped Muck and Slush Ore.
10	33	,1G	1167	7/12/77	1405 - 1525	160	0.602	Main Ledge, 6500 Level, Helped Muck and Slush, Drove Motor Car.
							TWA-0.917	·
10	43	1R	H261	7/14/77	0715 - 0852	194	0.223	Main Ledge, 6050 Level, 90 Pillar, Wet Drilling.
7 10	43	. 1R	H265	7/14/77	0852 - 1043	222	2,956	Main Ledge, 6050 Level, 90 Fillar, Bore Machine Drilling.
S 10	43	1 R	11255	7/14/77	1043 - 1213	160	5.231	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling, Ate Lunch.
10	43 *	1 R	H268	7/14/77	1213 - 1404	222	0.000	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling. Cap Left on Sample, Voided For Fiber Count.
104	43	1R	Н266	7/14/77	1404 - 1446	84	6.647	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.

TWA-2.438

^{*} Note: This sample not included in the TWA and Statistical Results.

Table D-4 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1044	15	н248	7/14/77	0717 - 0850	186	3.431	Main Ledge, 6050 Level, 90 Pillar, Assist in Bore Machine Drilling.
1044	IS	н257	7/14/77	0850 - 1042	224	1.917	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling, Ate Lunch.
1044	ls	н234	7/14/77	1042 - 1212	180	3.579	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
1044	15	н233	7/14/77	1212 - 1401	218	2.210	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
1044	15	н264	7/14/77	1401 - 1446	90	1.271	Main Ledge, 6050 Level, 90 Pillar, Some Drilling.
		•				TWA-2.570	
1054	1 Ј	н416	7/21/77	748 - 945	234	4.889	Main Ledge, 4250 Level, 70 Crosscut, Some Drilling, Took Break.
£ 1054	lJ	н403	7/21/77	945 - 1152	254	1.831	Main Ledge, 4250 Level, 70 Crosscut, Drilled,
1054 1054	1J 1J	н307 н316	7/21/77 7/21/77	1152 - 1330 1330 - 1439	196 138	0.172 4.625	Main Ledge, 4250 Level, 70 Crosscut, Drilled. Main Ledge, 4250 Level, 70 Crosscut, Prepared for Blasting.
						TWA-2.775	
1054	1L	н381	7/21/77	0747 - 0945	236	0.250	Main Ledge, 4250 Level, 70 Crosscut, Set Up Equipment, Wet Drilling.
1054	1L	H294	7/21/77	0945 - 1130	210	0.080	Main Ledge, 4250 Level, 70 Crosscut, Some Drilling, Ate Lunch.
1054 1054	lL lL	н414 н219	7/21/77 7/21/77	1155 - 1333 1333 - 1442	196 138	1.360 3.148	Main Ledge, 4250 Level, 70 Crosscut, Drilled. Main Ledge, 4250 Level, 70 Crosscut, Prepared for Blasting.

Table D-4 (continued)

Job code	Person number	Sample number	Date ·	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1055	15	но7	7/12/77	0758 - 0958	240	2.835	Main Ledge, 6500 Level, Mucked, Slushed and Dumped Ore.
1055	l F	H25	7/12/77	0958 - 1146	216	0.784	Main Ledge, 6500 Level, Mucked, Slushed.
1055	lF	H15	7/12/77	1146 - 1408	284	0.986	Main Ledge, 6500 Level, Mucked, Slushed, Ate Lunch.
1055	15	ноі	7/12/77	1408 - 1528	160	0.489	Main Ledge, 6500 Level, Set Up Drilling Equipment.
			٠			TWA-1.342	
1056	lc	н49	7/12/77	0805 - 1055	180	0.335	Main Ledge, 6800 Level, 93-94C Cutting Sill, Slushing.
1056	1c	H45	7/12/77	1301 - 1531	180	0.381	Main Ledge, 6800 Level, 93-94C Cutting Sill,
P 59						TWA-0.357	Slushing.
					-	147-61337	
1056	1J	1113	7/12/77	0815 - 0918	126	0.048	Main Ledge, 6050 Level, 89E Stope, Set Up Drill Equipment.
1056	1ј	H80	7/12/77	0918 - 1145	294	0.258	Main Ledge, 6050 Level, 89E Stope, Pulling Chute, Lunch.
1056	lJ	н39	7/12/77	1145 - 1322	194	0.719	Main Ledge, 6050 Level, 89E Stope, Drilling.
1056	· IJ	н16	7/12/77	1322 - 1418	112	2.444	Main Ledge, 6050 Level, 89E Stope, Drilling.
1056	IJ	н37	7/12/77	1418 - 1458	80	1.785	Main Ledge, 6050 Level, 89E Stope, Drilling.

Table D-4 (continued)

	Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
	1056	1K	H78	7/12/77	0815 - 0918	126	0.363	Main Ledge, 6050 Level, 89E Stope, Set Up for Drilling, Drilling.
	1056	18	н91	7/12/77	0918 - 1025	134	0.620	Main Ledge, 6050 Level, 89E Stope, Drilling.
	1056	1K	н92	7/12/77	1025 - 1207	204	0.331	Main Ledge, 6050 Level, 89E Stope, Started Slushing, Ate Lunch.
	1056	1 K	H77	7/12/77	1207 - 1321	- 148	0.651	Main Ledge, 6050 Level, 89E Stope, Drilling.
	1056	1K	н17	7/12/77	1322 - 1418	112	1.064	Main Ledge, 6050 Level, 89E Stope, Drilling.
	1056	lK	н22	7/12/77	1418 - 1459	82	1.145	Main Ledge, 6050 Level, 89E Stope, Drilling.
							TWA=0.627	
	1057	10	н350	7/21/77	855 - 1055	240	0.226	Main Ledge, 4100 Level, 58E Stope, Timber
q	1057	10	H41	7/21/77	0723 - 0855	184	0.808	Stope, Ate Lunch. Main Ledge, 4100 Level, 58E Stope, Timber Stope.
6	1057	10	н343	7/21/77	1146 - 1323	194	0.273	Main Ledge, 4100 Level, 58E Stope.
	1057	10	н162	7/21/77	1324 - 1416	104	0.197	Main Ledge, 4100 Level, 58E Stope, Bracing.
							TWA-0.383	
	1057	10	н380	7/22/77	0746 - 0940	228	0.05B	Main Ledge, 4100 Level, 61 Crosscut, Cut and Stand Timber.
	1057	10	н462	7/22/77	0940 - 1149	258	1.111	Main Ledge, 4100 Level, 61 Crosscut, Cut and Stand Timber.
	1057	10	н390	7/22/77	1149 - 1329	200	0,217	Main Ledge, 4100 Level, 61 Crosscut.
	1057	ID	H157	7/22/77	1329 - 1445	152	0.222	Main Ledge, 4100 Level, 61 Crosscut.
		***	11.27	,,, ,,	+527 - 1773		V	maxii acabet 1100 peacti of otossedes

Table D-4 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1057	1E	H228	7/21/77	0725 - 0855	180	0.107	Main ledge, 4100 Level, 58E Stope.
1057	1E	H251	7/21/77	1322 - 1416	108	0.100	Main Ledge, 4100 Level, 58E Stope.
						TWA-0.104	
1057	12	н331	.7/22/77	0745 - 0939	228	0.185	Main Ledge, 4100 Level, 61 Crosscut.
1057	15	H427	7/22/77	0939 - 1149	260	0.435	Main Ledge, 4100 Level, 61 Crosscut, Cut and Stand Timber.
1057	1 E	н385	7/22/77	1150 - 1445	350	0.206	Hain Ledge, 4100 Level, 61 Crosscut.
						TWA-0.271	
1060	1E	н53	7/12/77	0810 - 1050	320	0.117	Main Ledge, 6800 Level, in Pump Room,
<u>T</u> 1060	lE	H43	7/12/77	1050 - 1531	562	0,528	Repaired Track. Main Ledge, 6800 Level, Repaired Track, Ate Lunch.
		·		•	÷	TWA-0.379	
1076	10	н44	7/12/77	0840 - 1053	266	0.804	Main Ledge, 6800 Level, 93-940 Cutting Sill, Slushing.
1076	10	H43	7/12/77	1053 - 1305	264	0,420	Main Ledge, 6800 Level, 93-94C Cutting Sill, Ate Lunch.
1076	10	н51	7/12/77	1306 - 1531	290	0.514	Main Ledge, 6800 Level, 93-94C Cutring Sill, Cleaned Mud from Slusher.

Table D-4 (continued)

	Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
	1086	lL	н83	7/12/77	0815 - 0918	126	0.268	Main Ledge, 6050 Level, 89E Stope, Set Up and Drilling.
	1086	Į L	н84	7/12/77	0918 - 1025	134	0.467	Main Ledge, 6050 Level, 89E Stope, Drilling.
	1086	lL.	H120	7/12/77	1025 - 1207	204	0.277	Main Ledge, 6050 Level, 89E Stope, Slushing, Ate Lunch,
	1086	1L	н119	7/12/77	1207 - 1322	150	0.602	Main Ledge, 6050 Level, 89E Stope, Drilling.
	1086	1L	н33	7/12/77	1321 - 1418	114	0.549	Main Ledge, 6050 Level, 89E Stope, Drilling.
٠	1086	1L	н34	7/12/77	1418 - 1458	80	0.587	Main Ledge, 6050 Level, 89E Stope, Drilling.
							TWA-0.437	
	1090	1M	ñ421	7/21/77	805 - 930	170	0.071	Main Ledge, 4100-4250 Levels, Went to 62 Crosscut and 71 Pillar West.
Ď O	1090	iH	н413	7/21/77	930 - 1058	176	0.212	Main Ledge, 4100-4250 Levels, Went to 58C East, 61 Timberline, 71C Timber and 70 Drift.
	1090	111	н415	7/21/77	1157 - 1327	180	1.079	Main Ledge, 4100-4250 Levels, Went to 64-65C Stope.
	1090	1H	H107	7/21/77	1327 - 1414	94	0.410	Main Ledge, 4100-4250 Levels, Went to 4400 Level, 71 Crosscut.

Table D-5. Airborne sample results for fibers >5 μm in length for underground employees on the 11 Ledge of the Homestake Gold Mine.

								·
	Job	Person	Sample		Sample time	Volume	Concentration	Sample information .
	çode_	number	number	Date.	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
	1128	lΧ	H477	7/20/77	0646 - 0821	190	0.771	11 Ledge, 4550 Level, 24-26 Stope, Back Filling
						220	0.1/0	With Sand, Plugging Holes With Burlap.
	1128	1 X	H478	7/20/77	0822 - 1021	238	0.162	11 Ledge, 4550 Level, 24-26 Stope, Back Filling
					1000 1150			With Sand.
	1128	1 X	H491	7/20/77	1022 - 1152	180	0.535	11 Ledge, 4550 Level, 24-26 Stope, Ate Lunch.
	1128	!X	H482	7/20/77	1152 - 1410	276	0:345	11 Ledge, 4550 Level, 24-26 Stope.
							TWA-0.426	
	1128	lY	н473	7/20/77	0643 - 0835	224	0,226	11 Ledge, 4550 Level, 24-26 Stope, Applied
		* *	11	.,20,	***		-111	Sand and Water.
	1128	1 Y	н489	7/20/77	0835 - 1031	232	0.176	11 Ledge, 4550 Level, 24-26 Stope, Filled
		* *	11.07	.,,.	••••			Manway With Sand.
ሻ	1128	11	н483	7/20/77	1031 - 1204	186	0.376	11 Ledge, 4550 Level, 24-26 Stope, Filled
ũ		••		.,	• • • • • • • • • • • • • • • • • • • •			Manway.
	1128	14	Н486	7/20/77 .	1204 - 1415	262	0,303	ll Ledge, 4550 Level, 24-26 Stope.
							TWA-0.266	•
					•			
	1128	1Z	H471	7/20/77	0645 - 0829	208	. 0.174	ll Ledge, 4550 Level, 24-26 Stope, Load
								Equipment.
	1128	12	H487	7/20/77	0830 - 1025	230	0.141	ll Ledge, 4550 Level, 24-26 Stope, Sandfill.
	1128	ΙZ	H485	7/20/77	1026 - 1154	176	0.062	11 Ledge, 4550 Level, 24-26 Stope, Ate Lunch.
	1128	12	H488	7/20/77	1154 - 1317	166	0.036	11 Ledge, 4550 Level, 24-26 Stope, Sandfill.
	1128	12	H484	7/20/77	1317 - 1436	158	0.137	11 Ledge, 4550 Level, 24-26 Stope, Lowered
								Equipment.

Table D-5 (continued)

	Job	Person	Sample	•	Sample time	Volume	Concentration	Sample information
	code	_number_	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activity, etc.)
	1141	1 C	ม156	7/14/77	910 - 1030	280	0.009	11 Ledge, 5600 Level, 55 Pillar, Some Drilling.
	1141	1 G	н166	7/14/77	0751 - 908	154	0.242	ll Ledge, 5600 Level, 55 Pillar, Some Drilling.
	1141	1 C	н169	7/14/77	1030 - 1125	110	0.011	ll Ledge, 5600 Level, 55 Pillar, Some Drilling, Ate Lunch.
	1141	10	н172	7/14/77	1125 - 1259	188	0.032	ll Ledge, 5600 Level, 55 Pillar, Drilling, Some Slushing.
	1141	10	H183	7/14/77	1300 - 1420	160	0.000	11 Ledge, 5600 Level, 55 Pillar, Drilling and Pulling Core.
						,	TWA-0.060	
	1142	1.D	н150	7/14/77	857 - 1030	186	0.013	11 Ledge, 5600 Level, 55 Pillar, Some Drilling.
	1142	1D	н148	7/14/77	0749 - 0854	130	0.120	11 Ledge, 5600 Level, 55 Pillar, Drilling and Pulling Ore.
9-6	11/2	1 D	н159	7/14/77	1030 - 1125	110	0.022	11 Ledge, 5600 Level, 55 Pillar, Ate Lunch.
64	1142 1142	1D 1D	H149	7/14/77	1125 - 1300	190	0.019	11 Ledge, 5600 Level, 55 Pillar, Pulling Ore.
	1142	10	H188	7/14/77	1301 - 1420	158	0,030	ll Ledge, 5600 Level, 55 Pillar, Drilling and Pulling Core.
							TWA-0.037	
	1156	10	н97	7/13/77	920 - 1015	110	1.286	ll Ledge, 5450 Level, 49-51 Stope, Set Up Drilling.
	1156	10	н04	7/13/77	1015 ~ 1250	310	0.105	11 Ledge, 5450 level, 49-51 Stope, Some Drilling, Ate Lunch.
		In	но5	7/13/77	1250 - 1405	150	0.361	11 Ledge, 5450 Level, 49-51 Stope.
	1156 1156	ID ID	ноэ н58	7/13/77	1407 - 1443	72	0.368	ll Ledge, 5450 Level, 49-51 Stope.

Job code	-	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1156	1E	H23	7/13/77	922 - 1020	. 116	0.031	ll Ledge, 5450 Level, 49-51 Stope, Wet Drilling.
1156	1E	н13	7/13/77	1020 - 1250	300	0.096	ll Ledge, 5450 Level, 49-51 Stope, Drilling, Ate Lunch.
						TWA-0.078	
1156	IG	н171	7/13/77	0948 - 1028	80	0.135	11 Ledge, 5300 Level, 49D Stope, Drilling.
1156	1 <i>G</i>	н161	7/13/77	1028 - 1111	86	0.042	11 Ledge, 5300 Level, 49D Stope, Drilling.
1156	IG	н163	7/13/77	1111 - 1216	130	0.019	ll Ledge, 5300 Level, 49D Stope, Some Orilling and Ate Lunch.
1156	1G	н164	7/13/77	1216 - 1244	56	1.226	11 Ledge, 5300 Level, 49D Stope, Some Drilling.
1156	1G	н165	7/13/77	1244 - 1410	172	0.042	11 Ledge, 5300 Level, 490 Stope, Cleaned Area for Blasting.
<i>n</i>						TWA-0.177	
1156	111	н189	7/13/77	0859 - 0952	106	0.045	ll Ledge, 5300 Level, 49D Stope, Wetted Ore, Drilled.
1156	IН	н152	7/13/77	0952 - 1052	120	0.120	ll Ledge, 5300 Level, 49D Scope, Drilled.
1156	14	н179	7/13/77	1052 - 1132	80	0.316	11 Ledge, 5300 Level, 49D Stope, Drilled,
1156	1 H	H177	7/13/77	1133 - 1220	94	0.256	11 Ledge, 5300 Level, 49D Stope, Drilled.
1156	1н	н191	7/13/77	1220 - 1340	160	3.305	11 Ledge, 5300 Level, 49D Stope, Some Drilling, Prepared for Blasting.
1156	114	Н170	7/13/77	1340 - 1410	60	0.723	11 Ledge, 5300 Level, 49D Stope, Prepared for Blasting.

TWA-1.033

Table D-5 (continued)

Job	Person	Sample		Sample time	Volume	Concentration	Sample information .
code	number	number	Date	On Off	(liters)	fibers/cc	(i.e. location, operation, activ'y, etc.)
1156	1#	H155	7/13/77	0806 - 0838	64	0.489	11 Ledge, 5750 Level, 57C Stope, Fixed Slusher
			,				Blocks.
1156	114	н139	7/13/77	0838 - 0922	88	3.839	11 Ledge, 5750 Level, 57C Stope, Wested Ore.
1130	• • • • • • • • • • • • • • • • • • • •	.,,,,	., 23, , .				Drilled.
1156	114	н132	7/13/77	0922 - 1116	228	1.007	11 Ledge, 5750 Level, 57C Stope, Set Up
1130	***					•	Slusher and Ate Lunch.
1156	1M	H108	7/13/77	1116 - 1258	84	2.485	11 Ledge, 5750 Level, 57C Stope, Repositioned
1130	1	11100	,, 10,			- • ·	Slusher.
1156	IM	н105	7/13/77	1258 - 1412	148	0.464	11 Ledge, 5750 Level, 57C Stope, Set Up
1130	1	nics	,,,,,,,,	1230 1112	2.0		Slusher.
1156	111	Н154	7/13/77	1412 - 1502	100	0.421	11 Ledge, 5750 Level, 57C Stope, Took Break.
1130	111	HIJ4	,,12,,,	1411 1301	100		The Pet 2, 2, 20 Tenati
						TWA-1.462	
-							
1156ء	1N	H142	7/13/77	0806 - 0838	64	0.884	ll Ledge, 5750 Level, 57C Stope, Fixed
بخ							Slusher.
1156	1N	H147	7/13/77	0838 - 0924	92	0.890	ll Ledge, 5750 Level, 57C Stope, Wet Ore
						•	and Drilled.
1156	1N	H104	7/13/77	0924 - 1116	224	0.043	ll Ledge, 5750 Level, 57C Stope, Put in Slusher
					•	•	Blocks, Ate Lunch.
1156	114	н151	7/13/77	1116 - 1254	196	0.203	il Ledge, 5750 Level, 57C Stope, Repositioned
	-						Slusher.
1156	1N	H102	7/13/77	1254 - 1412	156	0.178	11 Ledge, 5750 Level, 57C Stope, Set Up
							Słusher.
1156	1N	н113	7/13/77	1412 - 1503	102	0.118	ll Ledge, 5750 Level, 57C Stope, Took Break.
						•	

Table D-5 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1176	lT	н38	7/14/77	0754 - 1015	282	0.821	ll Ledge, 5450 Level, 54B Stope, Loaded
1176	1 T	ни	7/14/77	1015 - 1145	180	1.174	11 Ledge, 5450 Level, 54B Stope, Some
							Drilling, Moved Equipment.
1176	1 T	H19	7/14/77	1200 - 1327	174	0.800	ll Ledge, 5450 Level, 54B Stope, Some Drilling.
1176	1 T	H21	7/14/77	1330 - 1510	200	1,962	li Ledge, 5450 Level, 54B Stope.
						TWA-1.166	•
1176	10	Н14	7/14//77	0754 - 915	162	1.018	ll Ledge, 5450 Level, 54B Stope, Washed Down Stope.
1176	10	H72 -	7/14/77	0915 - 1050	190	0.222	ll Ledge, 5450 Level, 54B Stope, Some Drilling.
₩ 1176	lU	но8	7/14/77	1050 - 1327	314	0.146	li Ledge, 5450 Level, 54B Stope, Some Drilling,
1176	10	но6	7/14/77	1330 - 1510	200	1.559	11 Ledge, 5450 Level, 54B Stope, Prepared for Blasting.
						TWA-0.652	
1186	1 F	н76	7/13/77	920 - 1020	120	0.080	ll Ledge, 5450 Level, 49-51 Stope, Set Up Drilling.
1186	1 F	H12	7/13/77	1025 - 1243	138	0.192	11 Ledge, 5450 Level, 49-51 Stope, Some Drilling, Ate Lunch.
1186	15	ноз	7/13/77	1243 - 1440	234	0.896	11 Ledge, 5450 Level, 49-51 Stope, Some Drilling.

Table D-6. Airborne sample results for fibers >5 μm in length for underground employees on the 13 Ledge of the Homestake Gold Mine.

Job code	Person	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1356	1A	н87	7/12/77	0820 - 1015	230	0.099	13 Ledge, 6050 Level, 46-47C Stope, Some
							Drilling.
1356	1 A	н89	7/12/77	1015 - 1200	210	0.086	13 Ledge, 6050 Level, 46-47C Stope, Drilling.
1356	1 A	H75	7/12/77	1205 - 1335	180	0.080	13 Ledge, 6050 Level, 46-47C Stope, Some
	•						Mucking,
1356	1 A	H79 .	7/12/77	1335 - 1439	128	0.574	13 Ledge, 6050 Level, 46-47C Stope, Pulling
							Chute.
						TWA-0.172	
1356	1#	н29	7/12/77	820 - 1018	236	0.398	13 Ledge, 6050 Level, Mucking.
1356	18	н36	7/12/77	1019 - 1216	234	9.812	13 Ledge, 6050 Level, Ate Lunch, Mucking.
	111	н30	7/12/77	1216 - 1355	198	0.122	13 Ledge, 6050 Level, Mucking, Putting in
를 1356							Track.
£ 1356	1 H	1142	7/12/77	1356 - 1408	24	15.483	13 Ledge, 6050 Level, Putting in Track.
				•		TWA-0.982	
1356	11	н28	7/12/77	818 - 1015	154	0.555	13 Ledge, 6050 Level, Wetted Ore, Mucked.
1356	11	н32	7/12/77	1016 - 1228	264	0.810	13 Ledge, 6050 Level, Dumped Ore, Mucked.
1356	11	н93	7/12/77	1228 - 1356	176	0.144	13 Ledge, 6050 Level, Put in Track, Mucked.
1356	11	H50	7/12/77	-1357 - 1408	22	12.772	13 Ledge, 6050 Level, Put in Track.
							•

Table D-6 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1366	1B	н82	7/12/77	822 - 1016	228	0.370	l3 Ledge, 6050 Level, 46-47C Stope, Some
1366	1 B	н96	7/12/77	1018 - 1200	204	0.047	13 Ledge, 6050 Level, 46-47C Stope, Drilling.
1366	1 B	н85	7/12/77	1207 - 1330	166	0.232	13 Ledge, 6050 Level, 46-47C Stope, Pulling Chute.
1366	18	н86	7/12/77	1330 - 1439	138	1.589	13 Ledge, 6050 Level, 46-47C Stope, Pulling Chute.

Table D-7. Airborne sample results for fibers >5 μm in length for underground employees on the 19 Ledge of the Homestake Gold Mine.

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
Coue	Homoer	Hamber	Date	011 011	(11001)		(1.e. Ideation, operation, activity, etc.)
1908	1H	н314	7/15/77	0947 - 1145	236	0.301	19 Ledge, 4850 Level, 46 Crosscut, Installing
1908	IH	H280	7/15/77	1145 - 1401	272	0.323	19 Ledge, 4850 Level, 46 Crosscut, Fitting Pipes.
1908	1 H	н317	7/15/77	1401 - 1502	122	0.168	19 Ledge, 4850 Level, 46 Crosscut, Fitting Pipes.
						TWA-0.285	
1932	1 P	Н114	7/15/77	0754 - 949	230	0.063	19 Ledge, 6800 Level, Motorman, Hauled Rock.
1932	1 P	H117	7/15/77	0949 - 1148	238	0.111	19 Ledge, 6800 Level, Motorman, Pulled Raises, Dumped Waste.
1932	112	Н118	7/15/77	1148 - 1324	192	0.207	19 Ledge, 6800 Level, Motorman, Pulled Raises, Dumped Ore.
1932	1P	н31 -	7/15/77	1324 - 1435	142	0.127	19 Ledge, 6800 Level, Motorman, Pulled Raises, Dumped Ore.
						•	
					•	TWA-0.123	
1954	1 G	н323	7/15/77	0821 - 0917	112	. 0.624	19 Ledge, 4850 Level, 46 Grosscut, Waited for Equipment.
1954	1 G	H272	7/15/77	0917 - 1048	182	0.523	19 Ledge, 4850 Level, 46 Crosscut, Assisted in Installing Pipe.
1954	ıc	H273	7/15/77	1048 - 1401	386	0.162	19 Ledge, 4850 Level, 46 Crosscut, Installed Some Pipe and Ate Lunch.
1954	1 G	H287	7/15/77	1401 - 1502	122	0.454	19 Ledge, 4850 Level, 46 Crosscut, Helped Install Water Tank.

Table D-7 (continued)

	ob Person ode number	Sample number	Date	Sample time On Off	Volume (<u>liters)</u>	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
	ag Hamber	HUMBEL	Date	011 022	(110010)		viver tocation; operation; activity; etc.)
15	956 1Q	н74	7/15/77	0803 - 0935	184	0.582	19 Ledge, 6200 Level, 27 Grosscut, Cutting and Hoisting Timber for Chute.
19	56 IQ	н59	7/15/77	0935 - 1102	174	0.055	19 Ledge, 6200 Level, 27 Crosscut, Cutting and Hoisting Timber.
19	156 1Q	Н35	7/15/77	1102 - 1230	176	0.096	19 Ledge, 6200 Level, 27 Crosscut, Ate Lunch, Cut and Hoisted Timber.
19	56 1Q	H64	7/15/77	1230 - 1330	120	0.050	19 Ledge, 6200 Level, 27 Crosscut, Hoisted Timber.
19	56 1Q	н46	7/15/77	1330 - 1440	140	0.499	19 Ledge, 6200 Level, 27 Crosscut, Some Drilling on Wood and Roof.
						TWA-0.264	
, 19	56 1R	Н117	7/15/77	0804 - 0937	186	0.045	19 Ledge, 6200 Level, 27 Crosscut, Placed Timber into Chute.
19	56 IR	Н112	7/15/77	0937 - 1102	170	0.064	19 Ledge, 6200 Level, 27 Crosscut, Ate Lunch, Placed Timber into Chute.
19	56 lR	H123	7/15/77	1102 - 1230	176	0.075	19 Ledge, 6200 Level, 27 Crosscut, Cut and Placed Timber into Chute.
19:	56 1R	Н100	7/15/77	1230 - 1330	120	0.100	19 Ledge, 6200 Level, 27 Crosscut, Placed Timber into Chute.
19.	56 lR	H103	7/15/77	1330 - 1420	100	0.289	19 Ledge, 6200 Level, 27 Crosscut, Some Drilling on Wood and Roof.

X-0.090

Table D-7 (continued)

Job code	Person number-	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1956	15	н194	7/15/77	830 - 1000	180	0.100	19 Ledge, 6200 Level, 41-42C Stope, Some Slushing.
1956	18	н178	7/15/77	1000 - 1146	212	0.187	19 Ledge, 6200 Level, 41-42C Stope, Some
1956	18	н185	7/15/77	1146 - 1250	128	0.160 .	Slushing, Ate Lunch. 19 Ledge, 6200 Level, 41-42C Stope, Drilling.
1956	15	н193	7/15/77	1252 - 1423	182.	0.033	19 Ledge, 6200 Level, 41-42C Stope, Drilling.
						TWA-0.120	
1956	ΙT	н192	7/15/77	830 - 1000	180	0.027	19 Ledge, 6200 Level, 41-42C Stope, Some Slushing.
1956	11	ห339	7/15/77	1000 - 1145	210	0.109	19 Ledge, 6200 Level, 41-42C Stope, Some Slushing, Ate Lunch.
1956 ص	1 T	H328	7/15/77	1146 - 1251	130	0.102	19 Ledge, 6200 Level, 41-42C Stope, Drilling.
7 1956 N	11	н181	7/15/77	1253 - 1330	74	0.130	19 Ledge, 6200 Level, 41-42C Stope, Some Drilling.
				•		TWA-0.085	
1956	15	ห259	7/15/77	811 - 859	96	0.050	19 Ledge, 5900 Level, 28-29f Stope, Slushing.
1956	15	H247	7/15/77	900 - 1010	140	0.637	19 Ledge, 5900 Level, 28-29F Stope, Slushing.
1956	15	H270	7/15/77	1010 - 1130	160	0.331 ·	19 Ledge, 5900 Level, 28-29F Stope, Some Slushing, Ate Lunch
1956	15	н258	7/15/77	1130 - 1300	180	0.388	19 Ledge, 5900 Level, 28-29F Stope, Repaired Slusher, Load Rock.
1956	15	н254	7/15/77	1300 - 1425	170	0.050	19 Ledge, 5900 Level, 28-29F Stope, Prepared for Blasting.

Table D-7 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
1956	16 .	н291	7/15/77	810 - 859	98	0.184	19 Ledge, 5900 Level, 28-29F Stope, Pulling
1956	16	H252	7/15/77	900 - 1010	140	0.705	19 Ledge, 5900 Level, 28-29F Stope, Pulling Chute.
1956	16	н260	7/15/77	1010 - 1213	246	1.454	19 Ledge, 5900 Level, 28-29F Stope, Some Slushing, Ate Lunch.
1956	16	н286	7/15/77	1213 - 1305	104	0.938	19 Ledge, 5900 Level, 28-29F Stope, Pulled Chute, Prepared for Blasting.
1956*	16	H279	7/15/77	1305 - 1410	130	0.000	19 Ledge, 5900 Level, 28-29F Stope, Prepared for Blasting. Uneven particulate distribution.

Table D-8. Airboine sample results for fibers >5 µm in length for underground employees on the 21 Ledge of the Homestake Gold Mine.

Job code	Person number_	Sample number	Date	Sample time On Off	Volume (liters)	Concentration fibers/cc	Sample information (i.e. location, operation, activity, etc.)
2156	1K	н308	7/15/77	945 – 1304	398	0.079	21 Ledge, 6200 Level, 50-52B Stope, Operate Crane.
2156	1ĸ	нзоз	7/15/77	0757 - 0945	216	0.301	21 Ledge, 6200 Level, 50-52B Stope, Drilling.
2156	1K	H301	7/15/77	1305 - 1450	210	0.528	21 Ledge, 6200 Level, 50-52B Stope, Some Drilling, Set Charges for Blasting.
						TWA-0.252	
2176	lЈ	H297	7/15/77	0756 - 0935	198	0.085	21 Ledge, 6200 Lavel, 50-52B Stope, Hoisted Materials into Stope.
2176	1J	H298	7/15/77	0935 - 1304	418	0.089	21 Ledge, 6200 Levels, 50-528 Stope, Some
2176	1J	H296	7/15/77	1305 - 1450	208	0.191	Drilling, Ate Lunch. 21 Ledge, 6200 Level, 50-52B Stope, Set Charges for Blasting.

Table D-9. Statistical summary of airborne sample results for fibers >5 µm in length for all underground employees of the Homestake Gold Mine.

	M . S	Marca filhamata				Fibers/cc Standard	Chandard	
Job code	Number of samples	Range fibers/cc High - Low	Mean	Hedian	TWA	deviation	Standard error	Job_title
<u> </u>								
0100	1	0.03	0.03	0.03	0.03			Electrician
0101	4	0.17 - 0.04	0.08	0.05	0.08	0.06	0.03	Cager
0107	12	0.16 - 0.00	0.06	0.04	0.06	0,06	0.02	Hoist Operator- Underground
0108	3	0.32 - 0.17	0.26	0.30	0.29	0.08	0.05	Pipeman, Master
0110	8	1.74 - 0.12	0.73	0.70	0.74	0.56	0.20	Carpenter, 1st
0114	5	3.87 - 0.29	1.18	0.53	1.06	1.52	0.68	Carpenter, Master
0121	7	0.19 - 0.01	0.07	0.05	0.07	0.06	0.02	Shaftman
0124	4	3.58 - 0.08	1.15	0.48	0.91	1.64	0.82	Skipper Head
0125	8	0.69 - 0.12	0.33	0.32	0.38	0.17	0.06	Skipper
0128	13	0.77 - 0.04	0.27	0.18	0.27	0.21	0.06	Sandman, Underground
0131	. 6	1.94 - 0.03	0.42	0.14	0.48	0.75	0.31	Motorman-Surface
0132	8	1.56 - 0.03	0.42	0.17	0.44	0.53	0.19	Motorman, 1st
0133	4	4.59 - 0.14	1.38	0.39	0.92	2.15	1.08	Motorman, 2nd
0141	5	0.24 - 0.00	0.06	0.01 .	0.06	0.10	0.05	Diamond Drill Operator
0142	5	0.12 - 0.01	0.04	0.02	0.04	0.05	0.02	Diamond Drill Helper
0143	5	6.65 - 0,00	3.01	2.96	2.44	2.96	1.32	Boring Machine Operate
0144	5	3.58 - 1.27	2.48	2.21	2.57	1.00	0.45	Boring Machine Helper
0152	18	6.65 - 0.07	0.68	0.15	0.51	1.54	0.37	Miner, 1st
0153	14	2.72 - 0.02	0.58	0.28	0.57	0.73	0.19	Miner, 1st
0154	20	4.89 - 0.08	1.18	0.58	1.07	1.43	0.32	Miner, Ist
0155	13	2.84 - 0.12	0.76	0.51	0.81	0.72	0.20	Miner, 1st
0156	142	15.48 - 0.02	0.69	0.32	0.49	1.73	0.15	Miner, 1st
0157	13	1.11 - 0.06	0.32	0.22	0.34	0.31	0.09	Miner, 1st
0160	2	0.53 - 0.12	0.32	0.32	0.38	0.29	0.20	Miner, 2nd

Table D-9 (continued)

·						Fibers/cc		
ob code	Number of samples	Range fibers/cc High — Low	Mean	Median	TWA	Standard deviation	Standard error	Job title
0162	4	2.26 - 0.05	0.63	0.10	0.76	1.09	0.54	Miner, 2nd
0163	6	5.02 - 0.19	1.83	1.11	1.62	1.89	0.77	Miner, 2nd
0166	17	6.06 - 0.05	1.25	0.37	1.23	1.72	0.42	Miner, 2nd
0173	4	0.43 - 0.01	0.14	0.07	0.15	0.20	0.10	Miner, 3rd
0176	31	4.92 - 0.04	0.76	0.53	0.67	0.90	0.16	Miner, 3rd
0182	4	0.13 - 0.02	0.08	0.08	0.08	0,06	0.03	Miner, 4th
0186	22	9.81 - 0.03	1.22	0.40	1.15	2.34	0.50	Miner, 4th
0190	4	1.08 - 0.07	0.44	0.31	0.46	0.45	0.22	Mine Shift Boas
rea	Total			•				·
01	417	15.48 - 0.00	0.74	0.30	0.63	1.47	0.07	All Underground Employees

Table D-10. Statistical summary of airborne sample results for fibers >5 μm in length for surface employees in the crushing mills of the Homestake Gold Mine.

						Fibers/cc		
Job code	Number of samples	Range fibers/cc High - Low	Hean ·	Median	TWA	Standard deviation	Standard error	Job title
0201	7	2.76 - 0.21	1.47	1.55	1.45	1.01	0.38	Crusher-Feeder
0202	4	6.06 - 1.02	2.90	2,26	2,48	2.27	1.14	Mechanic, 3rd
0204	11	3.95 - 0.06	1.31	1.04	1.25	1.23	0.37	Belt/Chip Picker
0205	11	4.28 - 0.15	1.78	1.43	1.83	1.38	0.42	Laborer, 2nd
0206	7	16.20 - 0.72	7.59	8.18	5.34	6.80	2.57	Laborer, 1st
Area	Total				•			
02	40	16.20 - 0.06	2.73	1.43	1,96	3.73	0.59	All Surface Employees in Crushing Mills

Table D-11. Statistical summary of the airborne sample results for fibers >5 μm in length for underground employees on the 9, Main, 11, 13, 19, and 21 Ledges of the Homestake Gold Mine.

						Fibers/cc		
	Number of	Range fibers/cc				Standard	Standard	
Job code	samples	High - Low_	Hean	Median	TWA	deviation	error	Job title
0914	5	3.87 - 0.29	1.18	0.53	1.06	1.52	0.68	Carpenter, Master
0932	3	1.56 - 0.44	0.93	0.80	0.84	0.57	0.33	Motorman, 1st
0952	18	6.56 - 0.07	0.68	0.15	0.51	1.54	0.37	Miner, 1st
0953	14	2.72 - 0.02	0.58	0.28	0.57	0.73	0.19	Miner, 1st
0954	8	1.69 - 0.17	0.69	0.62	0.63	0.45	0.16	Miner, 1st
0955	8	1.42 - 0.12	0.54	0.41	.0.52	0.45	0.16	Miner, 1st
0956	59	2.11 - 0.03	0.48	0.33	0.46	0.48	0.06	Miner, 1st
0962	4	2.26 - 0.05	0.63	0.10	0.76	1.09	0.54	Miner, 2nd
0963	6	5.02 - 0.19	1.83	1.11	1.62	1.89	0.77	, Miner, 2nd
0966	13	6.06 - 0.06	1.47	0.45	1.48	1.90	0.53	Miner, 2nd
0973	4	0.43 - 0.01	0.14	0.07	0.15	0.20	0.10	Miner, 3rd
0976	17	4.92 - 0.04	0.80	0.53	0.73	1.11	0.27	Miner, 3rd
0982	4	0.13 - 0.02	0.08	0.08	0.08	0.06	0.03	Miner, 4th
0986	13	9.81 - 0.03	1.76	0.34	1.55	2.96	0.82	Miner, 4th
Area	Total							†
09	176	9.81 - 0.01	0.78	0.38	0.72	1.31	0.10	Employees on 9 Ledge
					•			•
1010	8	1.74 - 0.12	0.73	0.70	0.74	0.56	0.20	Carpenter, 1st
1033	4	4.59 - 0.14	1.38	0.39	0.92	2.15	1.08	Motorman, 2nd
1043	5	6.65 - 0.00	3.01	2.96	2.44	2.96	1.32	Boring Machine Operato
1044	5	3.68 - 1.27	2.48	. 2.21	2.57	1.00	0.45	Boring Machine Helper
1054	8	4.89 - 0.08	2.04	1.60	1.91	1.97	0.70	Miner, 1st
1055	4	2.84 - 0.49	1.27	0.89	1.34	1.06	0.53	Miner, 1st
1056	13	2.44 - 0.05	0.78	0.62	0.61	0.68	0.19	Miner, 1st
1057	13	1.11 - 0.06	0.32	0.22	0.34	0.31	0.09	Miner, lst
1060	2	0.53 - 0.12	0.32	0.32	0.38	0.29	0.21	Miner, 2nd
1076	3	0.80 - 0.42	0.58	0.51	0.58	0.20	0.12	Miner, 3rd
1086	6 .	0.60 - 0.27	0.46	0.51	0.44	0.15	0.06	Miner, 4th

D=/0

Table D-11 (continued)

	 					Fibers/cc		
Job_code	Number of samples	Range fibers/cc High - Low	Hean	Median	TWA	Standard deviation	Standard error	Job title
1090	4	1.08 - 0.07	0.44	0.31	0.46	0.45	0.22	Mine Shift Boss
Area	Total							
10	75	6.65 - 0.00	1.09	0.51	0,98	1.40	0.16	Employees on Main Ledg
	• • •	0.77 0.04	0.27	0.18	ρ.27	0.21	0.06	Sandman, Underground
1128	13 [°] 5	0.77 - 0.04 0.24 - 0.00	0.06	0.01	0.06	0.10	0.05	Diamond Drill Operator
1141	5 5	0.12 - 0.01	0.04	0.01	0.04	0.05	0.03	Diamond Drill Helper
1142	29	3.84 - 0.02	0.67	0.32	0.64	0.97	0.18	Miner, 1st
1156		1.96 - 0.15	0.96	0.92	0.90	0.62	0.22	Miner, 3rd
1176 1186	8 3	0.90 - 0.08	0.39	0.19	0.43	0.44	0.26	Miner, 4th
1100	J	0.70 - 0.00	0.57	0117	0.43	0.77	¥+	
Area	Total							•
11	63	.3.84 - 0.00	0.51	0.20	0.49	0.75	0.10	Employees on 11 Ledge
1356	12	15.48 - 0.08	2.66	0.48	0.68	5.39	1.50	Miner, lst
1366	4	1.59 - 0.05	0.56	0.30	0.48	.0.70	0.35	Hiner, 2nd
Area	Total			_				
13	16	15.48 - 0.05	2.14	0.38	0.63	4.72	1.18	Employees on 13 Ledge

Table D-11 (continued)

						Fibers/cc		
	Number of	Range fibers/cc				Standard	Standard	
Job code	samples	High - Low	Mean	Median	T₩A	deviation	error	Job title
1908	3	0.32 - 0.17	0.26	0.30	0.29	0.08	0.05	Pipeman, Master
	4	0.21 - 0.06	0.13	0.12	0.12	0.06	0.03	Motorman, 1st
1932	4	0.62 - 0.16	0.44	0.49	0.35	0,20	0.10	Miner, lst
1954 1956	27	1.45 - 0.03	0.28	0.11	0.29	0.34	0.07	Miner, 1st
Area	Total							
19	38	1.45 - 0.03	Ç.28	0.16	0.28	0.30	0.05	Employees on 19 Ledge
2156	. 2	0.53 - 0.08	0.30	0.30	0,25	0.23	0.13	Miner, 1st
2156 2176	3 3	0.19 - 0.09	0.12	0.09	0.11	0.06	0.04	Miner, 3rd
Area	Total				•	•		
21	6	. 0.53 - 0.08	0.21	0.14	0.18	0.18	0.07	Employees on 21 Ledge
					•			
Surface a						•	1	•
Undergrou	457	16.20 - 0.00	0.86	0.34	0.73	1.72	0.06	All Employees

Appendix E. Results of impinger dust counting at the Homestake Gold Mine in Lead, South Dakota.

Table E-1. Impinger dust sample results for all underground employees at the Homestake Gold Mine.

Job	Person	Sample	•	Sample time	Volyme	Concentration	Sample information
code	number	number	Date	On Off	(ft ³)	(mppcf)	(i.e. location, operation, activity, etc.)
0107	1 A	н185	7/20/77	0656 - 0729	3.265	0.303	4550 Level, Hoist Room, in Control Cubicle,
0107	1 A	н186	7/20/77	0818 - 0848	2.968	0.327	4550 Level, Hoist Room, in Control Cubicle, Ross.
0107	1 A	н184	7/20/77	0930 - 1002	3.166	1.313	4550 Level, Hoist Room, not in Cubicle but in Hoist Room, Ross.
0107	1 A	H188	7/20/77	1049 - 1120	3.067	0.801	4550 Level, Hoist Room, in Control Cubicle, Ross.
0107	1 A	H189	7/20/77	1215 - 1245	2.968	1.050	4550 Level, Hoist Room, in Control Cubicle, Ross,
0107	1 A	H190	7/20/77	1302 - 1332	2.968	1.358	4550 Level, Hoist Room, in Control Cubicle, Ross.
स ।)				•		TWA-0.854	
0107	1P	н74	7/14/77	0710 - 0730	1.979	0.679	4850 Level, Main Ledge, Hoist Room, Operating
0107	119	ніз	7/14/77	0850 - 0910	1.979	0.406	4850 Level, Main Ledge, Hoist Room, Operating Hoist.
0107	1P	H76	7/14/77	. 1055 - 1115	1.979	1.170	4850 Level, Main Ledge, Hoist Room, Eating Lunch.
0107	1P	H75	7/14/77	1205 - 1225	1.979	1.137	4850 Level, Main Ledge, Hoist Room, Operating Hoist.
0107 0107	1P 1P	н78 Н77	7/14/77 7/14/77	1255 - 1315 1325 - 1345	1.979 1.979	1.057 <u>1</u> 1.242	4850 Level, Main Ledge, Hoist Room, Took Break 4850 Level, Main Ledge, Hoist Room, Operating Hoist.

Table E-1 (continued)

	Job code	Person number	Sample number	Date	Sample time On Off	Volume (fr)	Concentration (mppcf).	Sample information (i.e. location, operation, activity, etc.)
	0110	1 G	н226	7/21/77	0738 - 0808	2.968	0.338	Main Ledge, 4250 Level, 71C Scope, Set Timber Using Chain Saw.
	0110	lG	H227	7/21/77	1000 - 1030	2.968	0.313	Main Ledge, 4250 Level, 71C Stope, Waiting for Timber.
	0110	1G	H228	7/21/77	1144 - 1216	3.166	0.256	Main Ledge, 4250 Level, 71C Stope, Working on Timberline.
	0110	1G	Н230	7/21/77	1308 - 1438	8.905	0.671	Main Ledge, 4250 Level, 71C Stope, Working on Timberline.
	0110	1 <i>G</i>	H231	7/21/77	1348 - 1418	1.979	1.369	Main Ledge, 4250 Level, 71C Stope, Working on Timberline.
							TWA-0.609	
	0114	1K	H139	7/18/77.	0715 - 0735	1.979	0.506	9 Ledge, 2150 Level, Carpenter.
	0114	1K	H141	7/18/77	0819 - 0849	2968	0.756	9 Ledge, 2150 Level, Carpenter.
Ħ	0114	1K	H143	7/18/77	0924 - 0954	2.968	1.463	9 Ledge, 2150 Level, Carpenter.
س	0114	lK	H144	7/18/77	1030 - 1100	2.968	0.426	9 Ledge, 2150 Level, Carpenter.
	0114	lK	H142	7/18/77	1218 - 1248	2.968	0.346	9 Ledge, 2150 Level, Carpenter.
							TWA-0.713	
(0124	14	н105	7/15/77	1002 - 1012	0.707	2.481	6800 Level, Main Ledge, Skipper Head, Slushed Ore.
(0124	14	н106	7/15/77	1041 - 1054	1.236	4.758	6800 Level, Main Ledge, Skipper Head, Slushed Ore.
(0124	14	н108	7/15/77	1115 - 1125	0.989	2.315	6800 Level, Main Ledge, Skipper Head, Slushed Ore.
	124	14	н104	7/15/77	1216 - 1226	0.989	2.134	6800 Level, Main Ledge, Skipper Head, Slushed Ore.
	124	14	н107	7/15/77	1306 - 1320	1.385	2.257	6800 Level, Main Ledge, Skipper Head, Fixed Chute Door.
C	124	14	н103	7/15/77	1354 - 1407	1.286	1.261	6800 Level, Main Ledge, Skipper Head, Some Slushing.
							TWA-2.559	

Table E-1 (continued)

Job <u>code</u>	Person number	Sample number	Date	Sample time On Off	Volume (ft ³)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0125	i 1A	н178	7/19/77	0640 - 0710	2.968	0.209	4850 Level, Skip Pocket, Some Loading of Ore, Yates.
0125	1 A	н176	7/19/77	0715 - 0745	2.968	0.161	4850 Level, Skip Pocket, Yates.
0125		н174	7/19/77	0815 - 0845	2.968	0.068	4850 Level, Skip Pocket, Yates.
0125		H175	7/19/77	0930 - 1000	2.968	0.277	4850 Level, Skip Pocket, Some Loading of Ore, Yates.
0125	1A	н173	7/19/77	1210 - 1240	2.968	0.076	4850 Level, Skip Pocket, Yates.
0125		H177	7/19/77	1245 - 1315	2.968	0.309	4850 Level, Skip Pocket, Yates.
						TWA-0.183	
0125	11	н191	7/20/77	0640 - 0710	2.968	1.345	4850 Level, Skip Pocket, Skipped Ore About Every 10 Minutes, Ross.
0125	11	н192	7/20/77	0825 - 0855	2.968	3.213	4850 Level, Skip Pocket, Ross.
r 0125		н193	7/20/77	0949 - 1019	2.968	3.269	4850 Level, Skip Pocket, Ross.
L 0125		н194	7/20/77	1232 - 1302	2.968	3.794	4850 Level, Skip Pocket, Ross.
0125		н195	7/20/77	1317 - 1342	2.473	1.604	4850 Level, Skip Pocket, Took Break, Ross.
				•	•	TWA-2.681	
0132	1 P	н97	7/15/77	0759 - 0814	1.484	1.174	19 Ledge, 6800 Level, Motorman, Hauling Ore.
0132	1P	н98	7/15/77	0952 - 1002	0.989	0.844	19 Ledge, 6800 Level, Motorman, Unloading Equipment.
0132	1P	н99	7/15/77	1025 - 1039	1.385	5.460	19 Ledge, 6800 Level, Pulling Raises.
0132	1P	н100	7/15/77	1226 - 1236	0.989	1.013	19 Ledge, 6800 Level, Motorman, Dumping Ore.
0132	1 P	н101	7/15/77	1320 - 1335	1.484	0.080	19 Ledge, 6800 Level, Motorman, Hauling Ore.
0132	1P	н102	7/15/77	1405 - 1420	1.484	0.096	19 Ledge, 6800 Level, Motorman, Dumping Ore.

TWA-1.459

Table E-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft ³)	Concentration (mppcf)	Sample information (i.e. location operation, activity, etc.)
0141	10	н63	7/14/77	0754 - 0807	1.286	0.928	ll Ledge, 5600 Level, 55 Pillar, Set Up Equipment, Some Drilling,
0141	10	н61	7/14/77	0852 - 0908	1.583	0.522	11 Ledge, 5600 Level, 55 Pillar, Some Drilling.
0141	10	н64	7/14/77	0955 - 1010	1.484	1,313	11 Ledge, 5600 Level, 55 Pillar, Drilled.
0141	ic	н62	7/14/77	1130 - 1145	1.484	0.643	li Ledge, 5600 Level, 55 Pillar, Pulled Core, Drilled.
0141	1C	н65	7/14/77	1250 - 1305	1.484	0.756	ll Ledge, 5600 Level, 55 Pillar, Pulled Core, Drilled.
0141	.10	H66	7/14/77	1358 - 1410	1.187	0.777	li Ledge, 5600 Level, 55 Pillar, Some Drilling.
						TWA-0.819	
0143	1R	н69	7/14/77	. 0735 - 0750	1.484	0.525	Main Ledge, 6050 Level, 90 Pillar, Set Up Bore Drill.
ى الم	1R	H72	7/14/77	0830 - 0845	1.484	4.067	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
0143	1R	H71	7/14/77	0932 - 0942	0.989	2.717	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
0143	1 R	н70	7/14/77	1047 - 1059	1.187	2.257	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
0143	1R	н67	7/14/77	1302 - 1317	1.484	1.945	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
0143	1 R	н68	7/14/77	1408 - 1418	0.989	4.212	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.

TWA-2.525

Table E-1 (continued)

Job code	Person pumber	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0152	1 F	H145	7/18/77	0743 - 0753	0.989	7.138	9 Ledge, 2000 Level, 45-51C/K Blast Hole, Slushing.
0152	15	н146	7/18/77	0913 - 0923	0.989	0.567	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Drilling.
0152	1 F	н147	7/18/77	1030 - 1040	0.989	8.139	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing.
0152	lF	н148	7/18/77	1210 - 1220	0.989	3.967	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing.
0152	1 F	н149	7/18/77	1253 - 1303	0.989	0.555	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
0152	18	H150	7/18/77	1400 - 1415	1.484	0.289	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Took Break.
					•	TWA-3.200	
다 0152	IJ	н127	7/18/77	0728 - 0743	1.484	4.051	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Building Wall.
0152	lЈ	н128	7/18/77	0845 - 0900	1.484	0.587	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Pulling Chute.
0152	IJ	н129	7/18/77	0952 - 1007	1.484	0.973	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Loading Ore.
0152	1J	н130	7/18/7 7	1035 - 1050	1.484	-1.415	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Loading Ore-
0152	1J	н131	7/18/77	1147 - 1202	1.484	1.479	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Loading Ore.
0152	17	н132	7/18/77	1330 - 1345	1.484	0.683	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Shoveling Ore.

TWA-1.531

Table E-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft ³)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0153	18	н133	7/18/77	0724 - 0754	2.968	2.617	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
0153	1н .	н134	7/18/77	0838 - 0908	2,968	1.326	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
0153	111	н135	7/18/77	1002 - 1032	2.968	1.017	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
0153	1H	н136	7/18/77	1143 - 1213	2.968	0.205	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
0153	1H	H137	7/18/77	1247 - 1317	2.968	0.261	9 Ledge, 2150 Level, 49 Crosscut, Drilling.
0153	14	н138	7/18/77	1350 - 1420	2.968	8.599	9 Ledge, 2150 Level, 49 Crosscut, Brilling.
						TWA-1.004	
0154	1A	н г 🕯 З	7/18/77	0731 - 0758	2.671	1.049	9 Ledge, 1700 Level, Drift South 22 Crosscut, High-Balling.
0154	-1A	H122	7/18/77	0900 - 0930	2.968	1.117	9 Ledge, 1700 Level, Drift South 22 Crosscut.
0154	IA	H126	7/18/77	1057 - 1128	3,067	0.249	9 Ledge, 1700 Level, Brift South 22 Crosscut.
0154	1 A	H121	7/18/77	1250 - 1321	3.067	1.797	9 Ledge, 1700 Level, Drift South 22 Grosscut, Blasting.
0154	1A	н125	7/18/77	1410 - 1430	1.979	0.953	9 Ledge, 1700 Level, Drift South 22 Crosscut, Mucking

1WA-1.UJ?

Table E-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0157		н94	7/15/77	0839 0906	2.671	0.058	10 Index (950 Inva) (6 0
0154	IG			•		0.049	19 Ledge, 4850 Level, 46 Crosscut, Took Break.
0154	1G	н95	7/15/77	1142 - 1226	4.353	0.049	19 Ledge, 4850 Level, 46 Crosscut, Installing Water Pipes.
0154	16	ห96	7/15/77	1414 - 1444	2.968	0.092	19 Ledge, 4850 Level, 46 Crosscut, Installing Water Pipes.
						TWA-0.064	
0154	1L	н236	7/21/77	0759 - 0829	2.968	0.257	Main Ledge, 4250 Level, 70 Crosscut, Drilling.
0154	lL	11233	7/21/77	1025 - 1055	2.96Ü	0.149	Main Ledge, 4250 Level, 70 Crosscut, Some
							Drilling.
0154	lL	H234	7/21/77	1216 - 1246	2.968	0.318	Main Ledge, 4250 Level, 70 Crosscut, Drilling.
0154	ļĿ	н232	7/21/77	1345 - 1415	2.968	1.342	Main Ledge, 4250 Level, 70 Crosscut, Prepare for Blasting.
1	•		•				^
)						TWA-0.517	
0155	1B	н45	7/13/77	0832 - 0843	1.088	1.834	9 Ledge, 5750 Level, 68C Stope, in Manway while Slushing.
0155	1B	H44	7/13/77	0922 - 0932	0.989	0.434	9 Ledge, 5750 Level, 68C Stope.
0155	1B	н43	7/13/77	0924 - 0941	1.682	0.979	9 Ledge, 5750 level, 68C Stope, Barring Down.
0155	1 B	H47	7/13/77	1245 - 1255	0.989	0.289	9 Ledge, 5750 Level, 68C Stope, Not Working
							at Time of Sample.
0155	1B	н46	7/13/77	1328 - 1345	1.682	0.402	9 Ledge, 5750 Level, 68C Stope, in Hain Drift
0155	1 B	н48	7/13/77	1426 - 1442	1.583	0.306	not Working. 9 Ledge, 5750 Level, 68C Stope, in Main Drift not Working.

TWA-0.689 -

Table E-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0155	l F	н11	7/12/77	0808 - 0828	1.979	16.599	Main Ledge, 6500 Level, Dumped Waste.
0155	1F	HO9	7/12/77	0942 - 0957	1.484	1.393	Main Ledge, 6500 Level, Fixed Slusher.
0155	17	H10	7/12/77	1152 - 1207	1.484	4.828	Main Ledge, 6500 Level, Some Mucking.
0155	l F	H07	7/12/77	1310 - 1325	1.484	3.594	Main Ledge, 6500 Level, Mucking.
0155	ir IF	H12	7/12/77	1414 - 1429	1.484	3.666	Main Ledge, 6500 Level, Unloaded Equipment.
0155	lF	H08	7/12/77	1458 - 1513	1.484	2.583	Main Ledge, 6500 Level, on Train.
						TWA-6.031	
0156	la	н20	7/12/77	0828 - 0848	1.979	0.366	13 Ledge, 6050 Level, 46-47C Stope, Some
0156	14	H22	7/12/77	0920 - 0940	1.979	1.025	Drilling. 13 Ledge, 6050 level, 46-47C Stope, Drilling, Mucking.
0156	I.A.	н21	7/12/77	1102 - 1122	1.979	3.730	13 Ledge, 6050 Level, 46-47G Scope, Lunch.
0156	l A	H19	7/12/77	1220 - 1235	1.484	1.570	13 Ledge, 6050 Level, 46-47C Stope, Drilling.
0156	l A	H23	7/12/77	1340 - 1355	1.484	1.061	13 Ledge, 6050 Level, 46-47C Stope, Pulling
0130	1A	nas	1/12/1/	1240 - 1222	1.404		Chute.
0156	1 A	н24	7/12/77	1412 - 1427	1.484	5.171	13 Ledge, 6050 Level, 46-47C Stope, Pulling Chute.
						TWA-2.090	
0156	1 B	н223	7/21/77	0710 - 0740	2.968	0.100	9 Ledge, 3950 Level, 24-25B Stope, Operated Hoist in Chure.
0156	18	H220	7/21/77	0846 - 0917	3.067	13.217	9 Ledge, 3950 Level, 24-25B Stope, Filling Ore Cars.
0156	18	н225	7/21/77	1007 - 1043	3.562	0.961	9 Ledge, 3950 Level, 24-25B Stope, Using Gamby to Fill Cars.
0156	18	H224	7/21/77	1200 - 1230	2.968	0.949	9 Ledge, 3950 Level, 24-25B Stope, Gamby Loading Area.
0156	18	H221	7/21/77	1335 - 1353	1.781	0.409	9 Ledge, 3950 Level, 24-25B Stope.
0156	18	H222	7/21/77	1415 - 1442	2.671	0.143	9 Ledge, 3950 Level, 24-25B Stope.
			.,, .			TWA-2.831	,,

Table E-1 (continued)

	Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft ³)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
	0156	1 C	н13	7/12/77	0931 - 0946	1.484	0.809	Main Ledge, 6800 Level, 93-94C Cutting Sill, Slushing.
	0156	10	н17	7/12/77	1152 - 1207	1.484	0.906	Main Ledge, 6800 Level, 93-94C Cutting Sill, Slushing.
	0156	10	H16	7/12/77	1400 - 1415	1.484	1.270	Main Ledge, 6800 Level, 93-94C Cutting Sill, Slushing.
							TWA-0.995	•
	0156	ID	н58	7/13/77	0930 - 0940	0.989	0.635	11 Ledge, 5450 Level, 49-51 Stope, Drilling.
	0156	lD	н59	7/13/77	1155 - 1205	0.989	0.410	ll Ledge, 5450 Level, 49-51 Stope, Ore Sample Drilling.
l73	0156	10	н60	7/13/77	1235 - 1245	0.989	0.434	11 Ledge, 5450 Level, 49-51 Stope, Ore Sample Drilling.
Ļ	0156	1D	H57	7/13/77	1335 - 1350	1.484	0.273	11 Ledge, 5450 Level, 49-51 Scope, Drilling.
0	0156	1D	н55	7/13/77	1434 - 1444	0.989	0.434	li Ledge, 5450 Level, 49-51 Stope, Took Break.
							TWA-0.422	
	0156	1G	н37	7/13/77	0910 - 0922	1.187	1.728	11 Ledge, 5300 Level, 49D Stope, Prying Off Loose Rock.
	0156	IG	H41	7/13/77	0927 - 0932	0.495	1.350	ll Ledge, 5300 Level, 49D Stope, Wetting Ore, Drilling.
	0156	lG	H40	7/13/77	1028 - 1038	0.989	3.537	ll Ledge, 5300 Level, 49D Stope, Drilling.
	0156	1G	н38	7/13/77	1142 - 1152	0.989	0.675	11 Ledge, 5300 Level, 49D Stope, Wetting Ore.
	0156 ~	1G	H42	7/13/77	1302 - 1317	1.484	1.093	11 Ledge, 5300 Level, 49D Stope, Some Drilling.
	0156	lG	ม39.	7/13/77	1340 - 1350	0.989	2.653	11 Ledge, 5300 Level, 49D Stope, Cleaning Up.

TWA-1.815

Table E-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0156	1H	н26	7/12/77	0832 - 0851	1.880	1.400	13 Ledge, 6050 Level.
0156	1H	H25	7/12/77	0928 - 0947	1.880	1.214	l3 Ledge, 6050 Level, Not Working at Time of Sample.
0156	1H	H27	7/12/77	1057 - 1117	1.979	1.298	13 Ledge, 6050 Level, Ate Lunch, Some - Hucking.
0156	1 b	н29	7/12/77	1155 - 1214	1.880	1.202	13 Ledge, 6050 Level, Mucking.
0156	18	H28	7/12/77	1329 - 1348	1.880	1.540	13 Ledge, 6050 Level, Putting in Track.
0156	lH	н30	7/12/77	1425 - 1439	1.385	12.471	13 Ledge, 6050 Level, Putting in Track.
						TWA-2.748	
0156	lј	н51	7/13/77	0815 - 0830	1.484	0.434	9 Ledge, 5750 Level, 67-68D Stope, Prying Off Loose Rock.
0156 tri	IJ	н49	7/13/77	0934 - 0947	1.286	0.278	9 Ledge, 5750 Level, 67-68D Stope, Wet Drilling.
± 0156	lЈ	H54	7/13/77	1150 - 1206	1.583	0.638	9 Ledge, 5750 Level, 67-68D Stope, Drilling.
0156	IJ	Н53	7/13/77	1243 - 1258	1.484	0.402	9 Ledge, 5750 Level, 67-68D Stope, Wet Drilling.
0156	IJ	H50	7/13/77	1332 - 1347	1.484	0.536	9 Ledge, 5750 Level, 67-68D Stope.
0156	1J	н52	7/13/77	1412 - 1427	1.484	0.482	9 Ledge, 5750 Level, 67-68D Stope, Loading Explosives.

Table E-1 (continued)

Volume Concentration

(mppcf)

 (Et^3)

2.968

2,968

2,473

Sample information

(i.e. location, operation, activity, etc.)

9 Ledge, 4400 Level, 31-32C/D Stope, Slushing.

9 Ledge, 4400 Level, 31-32C/D Stope, Slushing.

9 Ledge, 4400 Level, 31-32C/D Stope, Slushing,

Sample time

1020 - 1050

1230 - 1300

1337 - 1402

On

Off

Person Sample

number number

H206

H207

H205

Date

7/20/77

7/20/77

7/20/77

Job

0156

0156

0156

ΙK

1 K

IΚ

code

	0156	1K	H1	7/12/77	0826 - 0841	1.484	0.954	Main Ledge, 6050 Level, 89E Scope, Not Working
				•				at Time of Sample.
	0156	1K	Н2	7/12/77	0955 - 1015	1.979	1.439	Main Ledge, 6050 Level, 89E Stope, Some
								Slushing.
	0156	1K	н3	7/12/77	1210 - 1225	1.484	3.928	Main Ledge, 6050 Level, 89E Scope, Wet Ore,
								Slushing.
	0156	1K	Н4	7/12/77	1305 - 1315	0.989	6.423	Main Ledge, 6050 Level, 89E Stope, Drilling.
	0156	ĮΚ	н5	7/12/77	1405 - 1415	0.989	1.021	Main Ledge, 6050 Level, 89E Stope, Drilling.
	0156	1 K	н6	7/12/77	1430 - 1440	0.989	1.214	Main Ledge, 6050 Level, 89E Stope, Drilling.
				•			TWA-2.174	
	0156	1K	H204	7/20/77	0748 - 0815	2.671	0.994	9 Ledge, 4400 Level, 31-32C/D Stope, Set Up for Slushing.
E-12	0156	1K	н202	7/20/77	0924 - 0953	2.869	2.240	9 Ledge, 4400 Level, 31-32C/D Stope, Set Up for Slushing.
. •								LUL ULUGUAUK

TWA-2.409

Drilling.

2.106

2.192

4.756

Table E-1 (continued)

Concentration

(mppcf)

Sample information

(i.e. location, operation, activity, etc.)

Volume (ft)

Sample time

On

Date

off

Person Sample

code number number

Job

t Ald	edge, 3650 Level, 18B Stope, i	0.784	2.968	0717 - 0747	7/19/77	H161	11.	0156
	tion, Set Up Equipment in Sto							• • • •
	edge, 3650 Level, 18B Stope,	0.040	2,968	0848 - 0918	7/19/77	H160	1L	0156
				•				0.00
led		0.088	2.968	0935 - 1005	7/19/77	н159	17.	0156
					,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• ••	
Drilling.	•	0.217	2.968	1255 - 1325	7/19/77	H156	11.	0156
~~~~~								
≥d	•	0.028	2.968	1348 - 1418	7/19/77	н158	IL	0156
-								• • • • • • • • • • • • • • • • • • • •
	· ·	•						
		TWA-0.231						
lled.	edge, 5750 Level, 57C Stope,	0.820	0.989	0825 - 0835	7/13/77	н33	1N	70156
		0.563	0.989	0910 - 0920	7/13/77	H32	IN	. 0156
		4.116	0.989	1007 - 1017	7/13/77	н31	lN	0156
	ks.	•		•				
sitioned	edge, 5750 Level, 57C Stope.	0.000	1.484 ·	1300 - 1315	7/13/77	H36	1 N	0156
Break.		1.200	1.484	1417 - 1432	7/13/77	н35	18	0156
. 210111		•			,			
	·	TWA-1.217						
	·					•		
		•						
Dri ed Lled Lled Up	lling, Repaired Equipment. edge, 3650 Level, 18B Stope, 10re Sample. edge, 3650 Level, 18B Stope, 10re Stope, 10re Sample. edge, 3650 Level, 18B Stope, 10re Struct Manway and Chute.  edge, 5750 Level, 57C Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope, 10re Stope	TWA-0.231 0.820 0.563 4.116 0.000 1.200	0.989 0.989 0.989	0825 - 0835 0910 - 0920 1007 - 1017	7/13/77 7/13/77 7/13/77	H32 H31	IN IN	

### Table E-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft ³ )	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0156 0156	IN IN	H198 H199	7/20/77 7/20/77	0734 - 0804 0813 - 0843	2.968 2.968	0.667 0.581	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling. 9 Ledge, 4250 Level, 36-37B/C Stope, Some Drilling.
0156 0156 0156 0156	1n 1n 1n 1n	H197 H201 H200 H187	7/20/77 7/20/77 7/20/77 7/20/77	0904 - 0935 1001 - 1031 1223 - 1253 1336 - 1406	3.067 2.968 2.968 2.968	0.493 0.940 0.833 0.571	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling. 9 Ledge, 4250 Level, 36-37B/C Stope, Drilling. 9 Ledge, 4250 Level, 36-37B/C Stope, Drilling. 9 Ledge, 4250 Level, 36-37B/C Stope.
			. •			TWA-0.680	
0156	1Q	H124	7/19/77	0727 - 0756	2.869	0,661	9 Ledge, 3950 Level, 18G Stope, Highball Drilling.
0156	1Q	H151	7/19/77	0940 - 1007	2.671	0.152	9 Ledge, 3950 Level, 18G Stope, Not Drilling at Time of Sample.
0156	1Q	H152	7/19/77	1155 - 1227	3.166	0.452	9 Ledge, 3950 Level, 18G Stope, Some Drilling.
0156	IQ	H153	7/19/77	1240 - 1310	2.968	0.084	9 Ledge, 3950 Level, 18G Stope, Repaired Drill.
0156	1Q	H154	7/19/77	1321 - 1351	2.968	0.060	9 Ledge, 3950 Level, 18G Stope, Some Drilling.
0156	IQ	ዝ155	7/19/77	1400 - 1420	1.979	0.295	9 Ledge, 3950 Level, 18G Stope, this sample was taken as a general area sample within the stope.

TUA-0.285

Table E-1 (continued)

	Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
	0156	15	н113	7/15/77	0831 - 0847	1.583	0.151	19 Ledge, 6200 Level, 41-42C Stope, Moving
	0156	18	H114	7/15/77	0945 - 1000	1.484	0.153	19 Ledge, 6200 Level, 41-42C Stope, Splicing Cable.
	0156	18	H112	7/15/77	1040 - 1055	1.484	0.370	19 Ledge, 6200 Level, 41-42C Stope, Wetting Ore.
	0156	18	H111	7/15/77	1159 - 1213	1.385	0:086	19 Ledge, 6200 Level, 41-42C Stope, Some Drilling.
	0156	18	H110	7/15/77	1310 - 1327	1.682	0.043	19 Ledge, 6200 Level, 41-42C Stope, Took Break.
	0156	15	н109	7/15/77	1356 - 1410	1.385	0.396	19 Ledge, 6200 Level, 41-42C Stope, Drilling.
							TWA-0.195	
<del>:</del>	0156	14	н79	7/14/77	0801 - 0816	1.484	1.109	9 Ledge, 5450 Level, 66-67C Stope, Set Up Equipment.
<u>,</u>	0156	1Y	н80	7/14/77	0919 - 0929	0.989	1.013	9 Ledge, 5450 Level, 66-67C Stope, Some Drilling.
	0156	14	н81	7/14/77	1021 - 1031	0.989	10.667	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
	0156	14	H82	7/14/77	1202 - 1212	0.989	8.770	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
	0156	14	н83	7/14/77	1250 - 1300	0.989	2.219	9 Ledge, 5450 level, 66-67C Stope, Some Drilling.
	0156	lY	н84	7/14/77	1348 - 1358	0.989	2,074	9 Ledge, 5450 Level, 66-67C Stope, Some Drilling.
							TWA-4.063	
	0157	1D	H214	7/21/77	0730 - 0832	6.134	0.035	Main ledge, 4100 Level, 58E Stope.
	0157	10	H215	7/21/77	0803 - 0832	2.869	0.058	Main Ledge, 4100 Level, 58E Stope.
	0157	10	H216	7/21/77	0833 - 0903	2.968	0.237	Main Ledge, 4100 Level, 58E Stope.
	0157	1 D	H217	7/21/77	1007 - 1037	2.968	0.338	Main Ledge, 4100 Level, 58E Stope.
	0157	1D	H218	7/21/77	1150 - 1226	2.968	0.414	Main Ledge, 4100 Level, 58E Stope, Bracing.
	0157	10	H219	7/21/77	1220 - 1250	2.968.	0.908	Main Ledge, 4100 Level, 58E Stope.

TWA-Q.288

Table E-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0160	1E	н18	7/12/77	0820 - 0840	1.979	0.293	Main Ledge, 6800 Level, Near Loading Shaft.
						TWA-0.293	
0176	1J	н119	7/15/77	0805 - 0816	1.088	0.132	21 Ledge, 6200 Level, 50-52B Stope, Loading Equipment.
0176	lJ	H120	7/15/77	0919 - 0929	0.989	0.760	21 Ledge, 6200 Level, 50-52B Stope, Took Break.
0176	lJ	н118	7/15/77	1015 - 1030	1.484	0.394	21 Ledge, 6200 Level, 50-52B Stope, Some Drilling.
0176	IJ	H117	7/15/77	1150 - 1200	0.989	0,350	21 Ledge, 6200 Level, 50-52B Stope.
0176	1J	н115	7/15/77	. 1315 - 1330	1.484	1.632	21 Ledge, 6200 Level, 50-52B Stope, Drilling.
0176	IJ	Н116	7/15/77	1415 - 1430	1.484	0.932	21 Ledge, 6200 Level, 50-52B Stope, Prepared for Blasting.
ਸ 						TWA-0.749	
0176	12	н90	7/14/77	0831 - 0846	1.484	1.211	9 Ledge, 5450 Level, 64-65D Stope, Set Up Equipment.
0176	12	н89	7/14/77	0939 - 0954	1.484	0.788	9 Ledge, 5450 Level, 64-65D Scope, Took Break.
0176	12	н88	7/14/77	1015 - 1030	1.484	2.213	9 Ledge, 5450 Level, 64-65D Stope, Slushing.
0176	1Z	н87	7/14/77	1154 - 1210	1.583	1.397	9 Ledge, 5450 Level, 64-65D Stope, Slushing.
0176	1 Z	н85	7/14/77	1304 - 1319	1.484	4.293	9 Ledge, 5450 Level, 64-65D Stope, Drilling.
0176	12	н86	7/14/77	1412 - 1427	1.484	2.765	9 Ledge, 5450 Level, 64-65D Stope, Brilling.
-170			., , . ,	· · · · · · · · · · · · · · · · ·		= - · · · ·	0,

TWA-2.103

Table E-1 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft ³ )	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0186	1X	н162	7/19/77	0714 - 0744	2.968	0.084	9 Ledge, 3650 Level, 27D Stope, Set Up Equipment.
0186	1X	н163	7/19/77	0850 - 0920	2,968	0.032	9 Ledge, 3650 Level, 27D Stope, Some Wet Drilling.
0186	1 X	H164	7/19/7 <b>7</b>	1155 - 1225	2.968	0.084	9 Ledge, 3650 Level, 27D Stope, Wet Drilling.
0186	1X	н165	7/19/77	1303 - 1333	2,968	0.104	9 Ledge, 3650 Level, 27D Stope, Wet Drilling.
0186	lX	H166	7/19/77	1400 - 1430	2.968	0.277	9 Ledge, 3650 Level, 27D Stope, Wet Drilling.

Table E-2. Impinger dust sample results for surface workers at the Homestake Gold Mine.

Job cođe	Person number	Sample number	Date	Sample time On Off	Volume (ft ³ )	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
•				-639 0000	0.060	0.616	
0204	1G	H167	7/19/77	0639 - 0709	2.968	0.615	Crushing-Surface, Chip Picking Ore, Yates.
0204	1G	н168	7/19/77	0808 - 0838	2.968	0.297	Crushing-Surface, Chip Picking Occasionally,
						-	Yates.
0204	1 <b>G</b>	н169	7/19/77	1046 - 1106	1.979	0.223	Crushing-Surface, Chip Picking Waste Ore, Ate
0204	10	11107	1,2,7,13	•			Lunch, Yates.
0204	1G	11170	7/19/77	1232 - 1302	2.968	0.109	Crushing-Surface, Chip Picking Occasionally.
0204	10	11170	1112711	1232 - 1302	21,700	5.103	Waste Ore, Yates,
	•		7/10/77	1326 - 1354	2.770	0.073	•
0204	IG	H171	7/19/77	1320 - 1334	2.170	,0.073	Crushing-Surface, Chip Picking Waste, Yates.
						TWA-0.269	
0206	1 H	н182	7/20/77	0748 - 0822	3.364	4.017	Crushing-Surface, Cleanup, Swept Floor, Ross.
0206	111	н183	7/20/77	0918 - 0950	3.166	2.005	Crushing-Surface, Cleanup, Some Sweeping, Ate
1 0200		*					Lunch, Ross.
0206	1 H	н180	7/20/77	1035 - 1105	2.968	. 5.956	Crushing-Surface, Cleanup, Ross.
0206	1H	H179	7/20/77	1300 - 1238	2.770	3.655	Crushing-Surface, Cleanup, Ross.
0206	111	H181	7/20/77	1332 - 1350	1.781	3.363	Crushing-Surface, Cleanup, Ross.

TWA-3.819

Table E-3. Impinger dust sample results for underground employees on the 9 Ledge at the Homestake Gold Mine.

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
-0.			7/10/77	0715 0725	1.979	0.506	O Lodge 2150 Lovel Comment
0914	1K	H139	7/18/77	0715 - 0735		0.506	9 Ledge, 2150 Level, Carpenter.
0914	lΚ	н141	7/18/77	0819 - 0849	2.968	0.756	9 Ledge, 2150 Level, Carpenter.
0914	1 K	H143	7/18/77	0924 - 0954	2,968	1.463	9 Ledge, 2150 Level, Carpenter.
0914	1K	H144	7/18/77	1030 - 1100	2.968	0.426	9 Ledge, 2150 Level, Carpenter.
0914	1K	H142	7/18/77	1218 - 1248	2.968	0.346	9 Ledge, 2150 Level, Carpenter.
						TWA-0.713	
0952	1 F	H145	7/18/77	0743 - 0753	0.989	7.138	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing.
0952	15	H146	7/18/77	0913 - 0923	0.989	0.567	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Drilling.
, 0952	1F	H147	7/18/77	1030 - 1040	0.989	8.139	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing.
0952	1F	н148	7/18/77	1210 - 1220	0.989	3.967	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Slushing.
0952	1F -	н149	7/18/77	1253 - 1303	0.989	0.555	9 Ledge, 2000 Level, 45-51G/H Blast Hole, Ate Lunch.
0952	1 F	н150	7/18/77	1400 - 1415	1.484	0,289	9 Ledge, 2000 level, 45-51G/H Blast Hole, Took Break.

TWA-3.200

#### Table E-3 (continued) Volume Concentration

(mppcf)

4.051

Sample information

(i.e. location, operation, activity, etc.)

9 Ledge, 2000 Level, 45-51G/H Blast Hole, .

9 Ledge, 2150 Level, 49 Crosscut, Drilling. 9 Ledge, 2150 Level, 49 Crosscut, Drilling.

Sample time

0728 - 0743

1247 - 1317

1350 - 1420.

0n

Off

(ft³)

1,484

2,968

2.968

Person Sample

number

Date

7/18/77

7/18/77

H127 ; 7/18/77

number

1J

1H

1H

0953

0953

H137

H138

Job

code

0952

							Building Wall.
0952	1J	H120	7/18/77	0845 - 0900	1.484	0.587	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
							Pulling Chute.
0952	1J	H129	7/18/77	0952 - 1007	1.484 .	0.973	9 Ledge, 20CÓ Level, 45-51G/H Blast Hole,
					-		Loading Ore.
0952	1J	н130	7/18/77	1035 - 1050	1.484	1.415	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
				•			Loading Ore.
0952	· 1J	H131	7/18/77	1147 - 1202	1.484	1.479	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
				4			Loading Ore.
0952	1J	H132	7/18/77	1330 - 1345	1.484	0.683	9 Ledge, 2000 Level, 45-51G/H Blast Hole,
-				<b>;</b>			Shoveling Ore.
						MAIN 3 E21	
四			-			TWA-1.531	
2 ₀₉₅₃	1H	н133	7/18/77	0724 - 0754	2.968	2.617	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
0953	IH.	H134	7/18/77	0838 - 0908	2.968	1.326	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
							5 heage, 2150 hever, 45 drosheat, King Drilling.
0953	1 H	H135	7/18/77	1002 - 1032	2.968	1.017	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.
0953	lH	н136	7/18/77	1143 - 1213	2.968	0.205	9 Ledge, 2150 Level, 49 Crosscut, Ring Drilling.

TWA-1.004

0.261.

0.599

Table E-3 (continued)

	Job	Person	Sample		Sample time	Volume	Concentration	Sample information
	code		•	Date	On Off	(ft ³ )	(mppcf)	(i.e. location, operation, activity, etc.)
	0954	1 A	H123	7/18/77	0731 - 0758	2.671	1.049	9 Ledge, 1700 Level, Drift South 22 Crosscut, Highballing.
	0954	1.6	H122	7/18/77	0900 - 0930	2,968	1,117	9 Ledge, 1700 Level, Drift South 22 Crosscut.
	0954	1.4	H126	7/18/77	1057 - 1128	3.067	0.249	9 Ledge, 1700 Level, Drift South 22 Crosscut.
-	0954	1.A	H121	7/18/77	1250 - 1321	3.067	1.797	9 Ledge, 1700 Level, Drift South 22 Crosscut, Blasting.
	0954	1A	11125	7/18/77	1410 - 1430	1.979	0.953	9 Ledge, 1700 Level, Drift South 22 Crosscut, Mucking.
							TWA-1.038	
	0955	18	H45	7/13/77	0832 - 0843	1.088	1.834	9 Ledge, 5750 Level, 68C Stope, in Manway While Slushing.
ij	0955	18	H44	7/13/77	0922 - 0932	0.989	0.434	9 Ledge, 5750 Level, 68C Stope, Spilled Sample.
۷,	0955	1 B	H43	7/13/77	0924 - 0941	1,682	0.979	9 Ledge, 5750 Level, 68C Stope, Barring Down.
_	0955	1 B	H47	7/13/77	1245 - 1255	0.989	0,289	9 Ledge, 5750 Level, 68C Stope, Not Working at Time of Sample.
	0955	18	H46	7/13/77	1328 - 1345	1.682	0.402	9 Ledge, 5750 Level, 68C Stope, in Main Drift Not Working.
	0955	I B	н48	7/13/77	1426 - 1442	1.583	0.306	9 Ledge, 5750 Level, 68C Stope, in Main Drift Not Working.

# Table E-3 (continued)

Concentration

(mppcf)

0.100

Sample information

Hoist in Chute.

Loose Rock.

Explosives.

(i.e. location, operation, activity, etc.)

9 Ledge, 3950 Level, 24-25B Stope, Operated

9 Ledge, 3950 Level, 67-68D Stope, Prying Off

9 Ledge, 3950 Level, 67-68D Stope, Drilling.

9 Ledge, 3950 Level, 67-68D Stope, Loading

9 Ledge, 3950 Level, 67-68D Stope.

9 Ledge, 3950 Level, 67-68D Stope, Wet Drilling.

9 Ledge, 3950 Level, 67-68D Stope, Wet Drilling.

Volume

(Et³)

2.968

1.484

1.236

1.583

1.484

1.484

1.484

Sample time

0710 - 0740

0815 - 0830

0934 - 0947

1150 - 1206

1243 - 1258

1332 - 1347

1412 - 1427

On

Off

Job

code

0956

0956

0956

0956

0956

0956

0956

Person Sample

number

H223

H51

H49

H54

н53

H50

H52

Date

7/21/77

7/13/77

7/13/77

7/13/77

7/13/77

7/13/77

7/13/77

number

18

1J

IJ

IJ

IJ

1J

IJ

			_				
0956	1B	H220	7/21/77	0846 - 0917	3.067	13.217	9 Ledge, 3950 Level, 24-25B Stope, Filling Ore
							Cars.
0956	18	H225	7/21/77	1007 - 1043	3.562	0.961	9 Ledge, 3950 Level, 24-25B Stope, Using Gamby
						•	to Fill Cars.
0956	1B	H224	7/21/77	1200 - 1230	2.968	0.949	9 ledge, 3950 Level, 24-25B Stope, Gamby Loading
6750			., ==,				Area.
-0		******	7/01/77	1225 1252	1 701	0.409	9 Ledge, 3950 Level, 24-25B Stope.
0956	1 B	H221	7/21/77	1335 - 1353	1.781	0.409	9 teage, 3930 tevet, 24-23B Stope.
0956	18	H222	7/21/77	1415 - 1442	2.671	0.143	9 Ledge, 3950 Level, 24-25B Stope.
				<u>!</u>			
		•		•		TWA-2.831	
						147-21031	
							•

TWA-0.468

0.434

0.278

0.638

0.402

0.536

0.482

### Table E-3 (continued)

Job code		Sample number	Date	Sample time On Off	Volume (ft ³ )	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
0956	1K	н204 .	7/20/77	0748 - 0810	2.671	0.994	9 Ledge, 4400 Level, 31-32C/D Stope, Set Up for Slushing.
0956	1K	H202	7/20/77	0924 - 0953	2.869	2.240	9 Ledge, 4400 Level, 31-32C/D Stope, Set Up for Slushing.
0956	1K	H206	7/20/77	1020 - 1050	2.968	2.106	9 Ledge, 4400 Level, 31-32C/D Stope, Slushing.
0956	IK	H207	7/20/77	1230 - 1300	2.968	2.192	9 Ledge, 4400 Level, 31-32D Stope, Slushing.
0956	1K	н205	7/20/77	1337 - 1402	2.473	4.756	9 Ledge, 4400 Level, 31-32D Stope, Slushing, Drilling.
•						TWA-2.409	•
0956	11.	н161	7/19/77	0717 - 0747	2.968	0.784	9 Ledge, 3650 Level, 18B Stope, First Aid Station, and Set Up Equipment in Stope.
0956	. 1L.	· н160	7/19/77	0848 - 0918	2.968	0.040	9 Ledge, 3650 Level, 18B Stope, Some Drilling, Repaired Equipment.
0956	IL	H159	7/19/77	0935 - 1005	2.968	0.088	9 Ledge, 3650 Level, 18B Stope, Drilled Ore Sample.
0956	lL	Н156	7/19/77	1255 - 1325	2.968	0.217	9 Ledge, 3650 Level, 18B Stope, Some Drilling, Set Up Slusher.
0956	IL	H158	7/19/77	1348 - 1418	2.968	0.028	9 Ledge, 3650 Level, 18B Stope, Helped Construc

TWA-0.231

Manway and Chute.

## Table E-3 (continued)

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
÷			:		0.060		0 - 1 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1
0956	IN	н198	7/20/77	0734 - 0804	2.968	0.667	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.
0956	_N	н199	7/20/77	0813 - 0843	2.968	0.581	9 Ledge, 4250 Level, 36-37B/C Stope, Some
					•		Drilling.
0956	IN	н197	7/20/77	0904 - 0935	3.067	0.493	9 Ledge, 4250 level, 36-37B/C Stope, Drilling.
0956	IN	H201	7/20/77	1001 - 1031	2.968 '	0.940	9 Ledge, 4250 Level, 36-37B/C Scope, Drilling.
0956	IN	H200	7/20/77	1223 - 1253	2.968	0.833	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.
0956	1N	H187	7/20/77	1336 - 1406	2.968	0.571	9 Ledge, 4250 Level, 36-37B/C Stope, Drilling.
0930	111	1110,	1/20/11	1330 1400	2.700	0.37.1	> neade, 4230 never, 30-3,5/4 ocope, Brilling.
• •	•			•		TWA-0.680	
				**			•
0956	10	H124	7/19/77	0727 - 0756	2.869	0.661	9 Ledge, 3950 Level, 18G Stope, Highball
	•			•			Drilling.
0956	10	H151	7/19/77	0940 - 1007	2.671	0.152	9 Ledge, 3950 Level, 18G Stope, Not Drilling
			.,				at Time of Sample.
0956	IQ	H152	7/19/77	1155 - 1227	3.166	0.452	9 Ledge, 3950 Level, 18G Stope, Some Drilling.
0956	-		7/19/77	1240 - 1310	2.968	0.084	9 Ledge, 3950 Level, 18G Stope, Repaired Drill.
	1Q	H153			•		7 Ledge, 3930 Level, 100 Scope, Repaired Drill.
0956	1Q	H154	7/19/77	1321 - 1351	2.968	0.060	9 Ledge, 3950 Level, 18G Stope, Some Drilling.
0956	. 1Q	H155	7/19/77	1400 - 1420	1.979	0.295	9 Ledge, 3950 Level, 18G Stope, This Sample
•							Was Taken as a General Area Sample Within the

TWA-0.285

Stope.

## Table E-3 (continued) Volume (ft³) Concentration

(mppcf)

Sample time

1400 - 1430

2.968

On

Date

7/19/77

н166

Off

Person Sample

number number

code

0986

1X

Sample information

(i.e. location, operation, activity, etc.)

9 Ledge, 3650 Level, 27D Stope, Wet Drilling.

COGG	110111041				•		
0956	1Y	н79 .	7/14/77	0801 - 0816	1.484	. 1.109	9 Ledge, 5450 Level, 66-67C Stope, Set Up Equipment.
			9/11/197	0919 - 0929	0.989	1,013	9 Ledge, 5450 Level, 66-67C Stope, Some Drilling,
0956	1Y	H80	7/14/77	1021 - 1031	0.989	10.667	9 Ledge, 5450 Level, 66-67C Stope, Drilling.
0956	1Y	н81	7/14/77	1021 - 1031	0.989	8.770	g Ledge, 5450 Level, 66-67C Stope, Drilling.
0956	1Y	н82	7/14/77	1202 - 1212		2.219	9 Ledge, 5450 Level, 66~67C Stope, Some Drilling.
0956	ĺΥ	н83	7/14/77	1250 - 1300	0.989		9 Ledge, 5450 Level, 66-67C Stope, Some Drilling.
0956	14	н84	7/14/77	1348 - 1358	0.989	2.074	, acaga, 5,00 accor, its training
						TWA-4.063	
0976	12	н90	7/14/77	0831 - 0846	1,484	1.211	9 Ledge, 5450 Level, 64-65D Stope, Set Up Equipment.
	1	****	7 (14 /77	0939 - 0954	1.484	0.788	9 Ledge, 5450 Level, 64-65D Stope, Took Break.
0976	12	н89	7/14/77	1015 - 1030	1.484	2,213	9 Ledge, 5450 Level, 64-65D Stope, Slushing.
æ 0976	12	н88	7/14/77	1154 - 1210	1.583	1.397	9 Ledge, 5450 Level, 64-65D Stope, Slushing.
0976 5 0976	1 Z	H87	7/14/77	1304 - 1319	1.484	4.293	9 Ledge, 5450 Level, 64-65D Stope, Drilling.
	12	н85	7/14/77		1.484	2.765	9 Ledge, 5450 Level, 64-65D Stope, Drilling.
0976	12	н86	7/14/77	1412 - 1427	1:404	21103	
	•					TWA-2.103	
0986	1X	H162	7/19/77	0714 - 0744	2.968	0.084	9 Ledge, 3650 Level, 27D Stope, Set Up Equipment.
0986	1X	н163	7/19/77	0850 - 0920	2.968	0.032	9 Ledge, 3650 Level, 27D Stope, Some Wet
0006	14	н164	7/19/77	1155 - 1225	2.968	0.084	9 Ledge, 3650 Level, 27D Stope, Wet Drilling.
0986	1X		7/19/77	1303 - 1333	2.968	0.104	9 Ledge, 3650 Level, 27D Stope, Wet Drilling.
0986	1X	H165	11 13/11	1,00	2.060	0.277	9 Ledge, 3650 Level, 27D Stope, Wet Drilling.

0.277 TWA-0.116 Table E-4. Impinger dust sample results for underground employees on the Main Ledge at the Homestake Gold Mine.

Sample information

(i.e. location, operation, activity, etc.)

Main Ledge, 6050 Level, 90 Pillar, Bore Machine

Main Ledge, 6050 Level, 90 Pillar, Bore Machine

Main Ledge, 6050 Level, 90 Pillar, Bore Machine

Concentration

(mppcf)

1010	1G	н226	7/21/77	0738 - 0808	2.968	0.338	Main Ledge, 4250 Level, 71C Stope, Set Up Timber Using Chain Saw.
1010	1G	H227	7/21/77	1000 - 1030	2.968	0.313	Main Ledge, 4250 Level, 71C Stope, Waiting for Timber.
1010	IG.	H228	7/21/77	1144 - 1216	3.166	0.256	Main Ledge, 4250 Level, 71C Stope, Working on Timberline.
1010	1 <b>G</b>	н230	7/21/77	1308 - 1438	8.905	0.671	Main Ledge, 4250 Level, 71C Stope, Working on Timberline.
1010	1G	н231	7/21/77	1348 -, 1418	1.979	1.369	Main Ledge, 4250 Level, 71C Stope, Working on Timberline.
		. •				TWA-0.609	
1043	1 R	н69	7/14/77	0735 - 0750	1.484	0.525	Main Ledge, 6050 Level, 90 Pillar, Set Up Bore Drill.
1043	IR	H72	7/14/77	0830 - 0845	1.484	4.067	Main Ledge, 6050 Level, 90 Pillar, Bore Machine Drilling.
1043	1R	H71	7/14/77	0932 - 0942	0.989	2.717	Main Ledge, 6050 Level, 90 Pillar, Bore Machine

Sample time

1047 - 1059

1302 - 1317

1408 - 1418

On

Off

Person Sample

number number

Date

7/14/77

7/14/77

7/14/77

Job

code

1043

1043

1043

1R

1R

1R

H70

H67

H68

Volume

(ft³)

1.187

1.484

0.989

TWA-2.525

2.257

1.945

4.212

Drilling.

Drilling.

Drilling.

Drilling.

# · Table E-4 (continued)

Concentration

(mppcf)

Sample information

(i.e. location, operation, activity, etc.)

Main Ledge, 6800 Level, 93-94C Cutting Sill,

Volume (ft)

1.484

·Sample time

1400 - 1415

OfE

On

Job

1056

10

H16

7/12/77

Person Sample

Date

code number number

	1054	1L	н236	7/21/77	0759 - 0829	2.968	0.257	Main Ledge, 4250 level, 70 Crosscut, Drilling.
	1054	1L	H233	7/21/77	1025 - 1055	2.968	0.149	Main Ledge, 4250 Level, 70 Crosscut, Some
		•						Drilling
	1054	1L	H234	7/21/77	1216 - 1246	2.968	0.318	Main Ledge, 4250 Level, 70 Crosscut, Drilling.
	1054	IL	H232	7/21/77	1345 - 1415	2.968	1.342	Main Ledge, 4250 Level, 70 Crosscut, Prepare
				•	•			for Blasting.
							TWA-0.517	
	1055	17	н11	7/12/77	0808 - 0828	1.979	16,599	Main Ledge, 6500 Level, Dumped Waste.
	1055	1F	но9	7/12/77	0942 - 0957	1.484	1.393	Main Ledge, 6500 Level, Fixed Slusher.
	1055	lF	Н10	7/12/77	1152 - 1207	1.484	4.828	Main Ledge, 6500 Level, Some Mucking.
	1055	IF	Н07	7/12/77	1310 - 1325	1.484	3.596	Main Ledge, 6500 Level, Mucking.
	1055	lF	H12	7/12/77	1414 - 1429	1.484	3.666	Main Ledge, 6500 Level, Unloaded Equipment.
,	1055	15	нов	7/12/77	1458 - 1513	1 484	2.583	Main Ledge, 6500 Level, on Train.
							TWA-6.031	·
	1056	10	н13	7/12/77	0931 - 0946	1.484	0.809	Main Ledge, 6800 Level, 93-94C Cutting Sill,
		_						Slushing.
	1056	1¢	Н17	7/12/77	1152 - 1207	1.484	0.906	Main Ledge, 6800 Level, 93-940 Cutting Sill, Slushing.
								•

TWA-0.995

Slushing.

1.270

## Table E-4 (continued)

Concentration (mppcf)

Sample information (i.e. location, operation, activity, etc.)

Volume (ft)

Sample time <u>On</u>

Date

Off

Job Person Sample code number number

1056	1K	H1	7/12/77	0826 - 0841	1.484	. 0.954	Main ledge, 6050 Level, 89E Stope, Not Working at Time of Sample.
1056	1K	н2	7/12/77	0955 - 1015	1.979	1.439	
1056							Main ledge, 6050 Level, 89E Stope, Some Slushing.
1056	1K	н3	7/12/77	1210 - 1225	1.484	3.928	Main Ledge, 6050 Level, 89E Stope, Wet Ore,
							Slushing.
1056	1K	Н4	7/12/77	1305 ~ 1315	0.989	6.423	Main Ledge, 6050 Level, 89E Stope, Drilling.
1056	1K	н5	7/12/77	1405 - 1415	0.989	1.021	Main Ledge, 6050 Level, 89E Stope, Drilling.
1056	1K	Н6	7/12/77	1430 - 1440	0.989	1.214	Main Ledge, 6050 Level, 89E Stope, Drilling.
1000	***	11.5	,,,	2130	.,,,,	1.21,	math reage, octa rates, and deepe, brilling,
				,		TWA-2.174	* .
			•	· į			·
1057	10	H214	7/21/77	0730 ૐ 0832	6.134	0.035	Main Ledge, 4100 Level, 58E Stope.
1057	1D	н215	7/21/77	0803 - 0832	2.869	0.058	Main Ledge, 4100 Level, 58E Stope.
1057	1D	н216	7/21/77	0833 - 0903	. 2.968	0.237	Main Ledge, 4100 Level, 58E Scope.
1057	1D	H217	7/21/77	1007 - 1037	2.968	0.338	Main Ledge, 4100 Level, 58E Scope.
1057	ID	H218	7/21/77	1150 - 1220	2,968	0.414	Main Ledge, 4100 Level, 58E Stope, Bracing.
1057	ID	H219	7/21/77	12201250	2.968	0.908	
1637	Įυ	11219	1/21/1/	12201230	2.900	0.705	Main Ledge, 4100 Level, 58E Stope.
			-			TWA-0,288	
					•	2.7.2. 54200	
1060	1E	н18	7/12/77	0820 - 0840	1.979.	0.293	Main Ledge, 6800 Level, Near Loading Shaft.
	•		- •				

#### Table E-5. Impinger dust sample results for underground employees on the 11 Ledge at the Homestake Gold Mine.

Concentration

0.777

(moncf)

Drilled.

Drilling.

Drilling.

Sample information

(i.e. location, operation, activity, etc.)

11 Ledge, 5600 Level, 55 Pillar, Some Drilling.

11 Ledge, 5450 Level, 49-51 Stope, Drilling.

11 Ledge, 5450 Level, 49-51 Stope, Ore Sample

11 Ledge, 5450 Level, 49-51 Stope, Ore Sample

11 Ledge, 5450 Level, 49-51 Stope, Drilling.

11 Ledge, 5450 Level, 49-51 Stope, Took Break.

1141	1C	н63	7/14/77	0754 - 0807	1.286	0.928	ll Ledge, 5600 Level, 55 Pillar, Set Up
							Equipment, Some Drilling.
1141	10	H61	7/14/77	0852 - 0908	1.583	0.522	11 Ledge, 5600 Level, 55 Pillar, Some Drilling.
1141	1C	H64	7/14/77	0955 - 1010	1.484	1.313	11 Ledge, 5600 Level, 55 Pillar, Drilled.
1141	10	H62	7/14/77	1130 - 1145	1.484	0.643	ll Ledge, 5600 Level, 55 Pillar, Pulled Core,
							Drilled.
1141	1C	н65	7/14/77	1250 - 1305	1.484	0.756	11 Ledge, 5600 Level, 55 Pillar, Pulled Core,

TWA-0.819 0.635

1.187

Volume

(ft)

Sample time

1358 - 1410

1335 - 1350

1434 - 1444

On

Date

7/14/77

7/13/77

7/13/77

7/13/77

7/13/77

7/13/77

Off

Person Sample

number number

**H66** 

**H58** 

H59

**H60** 

**H57** 

H55

10

ID

1D

1D

10

10

Job

1141

1156

1156

1156

1156

1156

code

0930 - 09400.989 0.989 1155 - 12051235 - 12450.989

1.484

0.989

0.410 0.434

> 0.273 0.434

#### Table E-5 (continued)

Concentration (mppcf)

Sample information

(i.e. location, operation, activity, etc.)

Volume (ft)

Sample time On Off

•

On

Date

Job Person Sample code number number

•							***
1156	IG	н37	7/13/77	0910 - 0922	1.187	1.728	ll Ledge, 5300 Level, 49D Stope, Prying Off
					.*		Loose Rock.
1156	1G	H41	7/13/77	0927 - 0932	0.495	1.350	11 Ledge, 5300 Level, 49D Stope, Wetting Ore,
							Drilling.
1156	1G	н40	7/13/77	1028 - 1038	0.989	3.537	ll Ledge, 5300 Level, 49D Stope, Drilling,
1156	1G	н38	7/13/77	1142 - 1152	0.989	0.675	11 Ledge, 5300 Level, 49D Stope, Wetting Ore.
1156	. 1G	н42	7/13/77	1302 - 1317	1.484	1.093	11 Ledge, 5300 Level, 49D Stope, Some Drilling.
1156	IG	н39	7/13/77	1340 - 1350	0.989	2.653	11 Ledge, 5300 Level, 49D Stope, Cleaning Up.
1130	10	. 1127	1) [3] 11	1540 - 1550	. 0.707	2.000	it bedge, 5500 bever, 450 brobe, creating ob.
						TWA-1.815	
						2.013	
1156	1N	н33	7/13/77	0825 - 0835	0.989	0.820	11 Ledge, 5750 Level, 57C Stope, Drilled.
1156	1 N	H32	7/13/77	0910 - 0920	0.989	0.563	11 Ledge, 5750 Level, 57C Stope, Drilled.
1156	IN	H31	7/13/77	1007 - 1017	0.989	4.116	ll Ledge, 5750 Level, 57C Stope, Putting in
							Slusher Blocks.
1156	1N	н36	7/13/77	1300 - 1315	1.484	0.000	11 Ledge, 5750 Level, 57C Stope, Repositioned
			.,,	2010 2020			Slusher.
1156	1N	н35	7/13/77	1417 - 1432	1.484	1.200	11 Ledge, 5750 Level, 57C Stope, Took Break.
7170	TW	117	1113111	141; - 1432	1.404	1.200	it beoge, bibe bever, bio broke, rook break.

TWA-1.217

Table E-6. Impinger dust sample results for underground employees on the 13 Ledge at the Homestake Gold Mine.

	Job	Person	Sample		Sample time	9 pulo V	Concentration	Sample information
	code	number	number	Dace	On Off	(ft ² )	(mppcf)	(i.e. location, operation, activity, etc.)
	1356	1.4	н20	7/12/77	0828 - 0848	1.979	0.366	13 Ledge, 6050 Level, 46-47C Stope, Some Drilling.
	1356	1A	H22	7/12/77	0920 - 0940	1.979	1.025	13 Ledge, 6050 Level, 46-47C Stope, Drilling, Mucking.
	1356	1.4	Н21	7/12/77	1102 - 1122	1.979	3.730	13 Ledge, 6050 Level, 46-47C Stope, Ate Lunch.
	1356	1.6	н19	7/12/77	1220 - 1235	1.484	1.570	13 Ledge, 6050 Level, 46-47C Stope, Drilling.
	1356	lA	1123	7/12/77	1340 - 1355	1.484	1.061	13 Ledge, 6050 Level, 46-47C Stope, Pulling Chute.
	1356	1A	н24	7/12/77	1412 - 1427	1.484	5.171	13 Ledge, 6050 Level, 46-47C Stope, Pulling Chute.
							TWA-2.090	
1	1356	IH	н26	7/12/77	0832 - 0851	1.880	1.400	13 Ledge, 6050 Level.
2	1356	111	H25	7/12/77	0928 - 0947	1.880	1.214	13 Ledge, 6050 Level, Not Working at Time of
				.,,	-			Sample.
	1356	1H	H27	7/12/77	1057 - 1117	1.979	1.298	13 Ledge, 6050 Level, Ate Lunch, Some Mucking.
	1356	1H	н29	7/12/77	1155 - 1214	1.880	1.202	13 Ledge, 6050 Level, Mucking.
	1356	1H	H28	7/12/77	1329 - 1348	1.880	1.540	13 Ledge, 6050 Level, Putting in Track.
	1356	ΉÍ	н30	7/12/77	1425 - 1439	1.385	12.471	13 Ledge, 6050 Level, Putting in Track.

TWA-2.748

Table E-7. Impinger dust sample results for underground employees on the 19 Ledge at the Homestake Gold Mine.

Job	Person	Sample		Sample time	Volume	Concentration	Sample information
code	number	number	Date	On Off	(ft ³ )	(mppcf)	(i.e. location, operation, activity, etc.)
1932	12	н97	7/15/77	0759 - 0814	1.484	1.174	19 Ledge, 6800 Level, Motorman, Hauling Ore.
			7/15/77	0952 - 1002	0.989	0.844	19 Ledge, 6800 Level, Motorman, Unloading
1932	1 P	н98	//13///	0932 - 1002	0.707	0.044	Equipment.
	•		7/15/77	1025 1020	1 205	5 460	• •
1932	1 P	н99	7/15/77	1025 - 1039	1.385	5,460	19 Ledge, 6800 Level, Pulling Raises.
1932	1P	H100	7/15/77	1226 - 1236	0.989	1.013	19 Ledge, 6800 Level, Motorman, Dumping Ore.
1932	1 P	H101	7/15/77	1320 - 1335	1.484	0.080	19 Ledge, 6800 Level, Motorman, Hauling Ore.
1932	12	H102	7/15/77	1405 - 1420	1.484	0.096	19 Ledge, 6800 Level, Motorman, Dumping Ore.
				•		TWA-1.459	
1954	1G	н94	7/15/77	0839 - 0906	2.671	0.058	19 Ledge, 4850 Level, 46 Crosscut, Took Break.
1954	1G	H95	7/15/77	1142 - 1226	4.353	0.049	19 Ledge, 4850 Level, 46 Crosscut, Installing
1934	10	nyJ	1/13/71	1142 - 1220	4.333	0.047	Water Pipes.
1954	1G	н96	7/15/77	1414 - 1444	2.968	0.092	19 Ledge, 4850 Level, 46 Crosscut, Installing
1734	10	1120	1,12,11	1414 - 1444	21,00	C • C • C • C • C • C • C • C • C • C •	Water Pipes.
				4			
			•			TWA-0.064	
1956	15	н113	7/15/77	0831 - 0847	1.583	0.151	19 Ledge, 6200 Level, 41-42C Stope, Moving
							Some Hose.
1956	is	H114	7/15/77	0945 - 1000	1.484	0.153	19 Ledge, 6200 Level, 41-42C Stope, Splicing
				i			Cable.
1956	18	H112	7/15/77	1040 - 1055	1.484	0.370	19 Ledge, 6200 Level, 41-42C Stope, Wetting
				•	-	. •	Ore.
1956	18	н111	7/15/77	1159 - 1213	1.385	0.086	19 Ledge, 6200 Level, 41-42C Stope, Some
		_	• •				Drilling.
1956	15	H110	7/15/77	1310 - 1327	1.682	0.043	19 Ledge, 6200 Level, 41-42C Stope, Took Break.
1956	ls	H109	7/15/77	1356 - 1410	1.385	0.396	19 Ledge, 6200 Level, 41-42C Stope, Drilling.
							in mode, show before, it is beope, brilling.

Table E-8. Impinger dust sample results for underground employees on the 21 Ledge at the Homestake Gold Mine.

Job code	Person number	Sample number	Date	Sample time On Off	Volume (ft)	Concentration (mppcf)	Sample information (i.e. location, operation, activity, etc.)
2176	IJ	н119	7/15/77	0805 - 0816	1.088	0.132	21 Ledge, 6200 Level, 50-52B Stope, Loading
2176	lJ	H120	7/15/77	0919 - 0929	0.989	0.760	21 Ledge, 6200 Level, 50-52B Stope, Took Break, 21 Ledge, 6200 Level, 50-52B Stope, Some
2176	lJ	H118	7/15/77	1015 - 1030	1.484	0.394	
2176	]J	H117	7/15/77	1150 - 1200	0.989	0.350	Drilling. 21 ledge, 6200 Level, 50-52B Stope. 21 Ledge, 6200 Level, 50-52B Stope, Drilling. 21 Ledge, 6200 Level, 50-52B Stope, Prepared for Blasting.
2176	]J	H115	7/15/77	1315 - 1330	1.484	1.632	
2176	]J	H116	7/15/77	1415 - 1430	1.484	.0.932	

Table E-9. Statistical summary of impinger dust sample results for all underground employees at the Homestake Gold Mine.

						MPPCF		
	Number of	Range mppcf				Standard	Standard	
Job code	samples	High - Low	Mean	Median	TWA	deviation	error	Job title
0107	12	1.358 - 0.303	0.904	1.054	0.891	0.389	0.112	Hoist Operator-Undergroun
0110	5	1.369 - 0.256	0.589	0.338	0.609	0.465	0.208	Carpenter, 1st
0114	5	1.463 - 0.346	0.699	0.506	0,713	0.454	0.203	Carpenter, Master
0124	6	4.758 - 1.261	2.534	2.286	2.559	1.171	0.478	Skipper Head
0125	11	3.794 - 0.068	1.302	0.309	1.298	1.462	0.441	Skipper
0132	6	5.460 - 0.080	1.445	0.929	1.459	2.021	0.825	Metorman, 1st
0141	6	1.313 - 0.522	0.823	0.767	0.819	0.276	0.113	Diamond Drill Operator
0143	6	4.212 - 0.525	2.621	2.487	2.525	1.387	0.566	Bore Machine Operator
0152	12	8.139 - 0.289	2.487	1.194	2.231	2.272	0.787	Miner, 1st
0153	6	2.617 - 0.205	1.004	0.808	1.004	0.901	0.368	Miner, 1st
0154	12	1.797 - 0.049	0.619	0.288	0.591	0.599	0.173	Miner, 1st
0155	11	16.599 - 0.289	3.316	1.834	3.761	4.664	1.406	Miner, 1st
0156	84	. 13.217 - 0.000	1.622	0.870	1.473	2.516	0.275	Miner, 1st
0157	6	0.908 - 0.035	0.332	0.288	0:288	0.320	0.130	Miner, lst
0160	1	0.293 - 0.293	0.293	0.293	0.293	0.000	0.000	Miner, 1st
0176	12	4.293 - 0.132	1.423	1,211	1.499	1.146	0.318	Miner, 3rd
0186	5	0.277 - 0.032	0.116	0.084	0.116	0.094	0.042	Miner, 4th
rea Ol	Total 206	16.599 - 0.000	1.514	0.906	1.287	2.224	0.155	All Underground Employees

Table E-10. Statistical summary of impinger dust sample results for surface employees in the crushing mills at the Homestake Gold Mine.

	_ <del></del>					MPPCF		
Job code	Number of samples	.Range mppcf High - Low	Mean	Median	TWA	Standard deviation	Standard error	Job title
0204	5	0.615 - 0.073	0.263	0.223	0.269	0.216	0.097	Belt/Chip Picker
0206	5	5.956 - 2.005	3.799	3.655	3.819	1.426	0.638	Laborer, lst
Area 02	Total 10	5.956 - 0.073	2.031	1.310	2.069	2.097	0.663	Surface Employees in the Crushing Mills

Table E-11. Statistical summary of impinger dust sample results for underground employees on the 9, Main, 11, 19, and 21 Ledges at the Homestake Gold Mine.

		<del></del>				MPPCF		
	Number of	Range mppcf				Standard	Standard	
Job code	. samples	High - Low	Mean	Median	TWA	deviation	error	Job title
0914	5	1.463 - 0.346	0.699	0,506	0.713	0.454	0.203	Carpenter, Master
0952	12	8.139 - 0.289	2.487	1.194	2.231	2.272	0.787	Miner, 1st
0953	6	2.617 - 0.205	1.004	0.808	1.004	0.901	0.368	Miner, 1st
0954	5	1.797 - 0.249	1.003	1.049	1.038	0.550	0.246	Miner, 1st
0955	6	1.834 - 0.289	0.707	0.418	0.689	0.608	0.248	Miner, 1st
0956	40	13.217 - 0.028	1.591	0.610	1.385	2.870	0.454	Miner, 1st
0976	6	4.293 - 0.788	2.111	1.805	2.103	1.286	0.525	Miner, 3rd
0986	5	0.277 - 0.032	0.116	0.084	0.116	0.094	0.042	Miner, 4th
Area 09	Total 85	13.217 - 0.028	1.478	0.667	1.248	2.321	0.252	All Employees on 9 Ledge
			-					
1010	5	0.912 - 0.256	0.498	0.338	0.545	0.283	0.126	Carpenter, 1st
1043	6	4.212 - 0.525	2.621	2.487	2.525	1.387	0.566	Boring Machine Operator
1054	4	1.342 - 0.149	0.517	0.288	0.517	0.555	0.277	Miner, 1st
1055	6	16.599 - 1.393	5.444	3.631	6.031	5.585	2.280	Miner, 1st
1056	9	6.423 - 0.809	1.940	1.242	1.808	1.816	0.574	Miner, 1st
1057	6	0.908 - 0.035	0.332	0.288	0.288	0.320	0.130	Miner, 1st
1060	1	0.293 - 0.293	0.293	0.293	0.293	0.000	0.000	Miner, 2nd
Area 10	Total 37	. 16.599 - 0.035	1.990	1.214		2.930	0.482	All Employees on Main Ledge
		•						
1141	6	1.313 - 0.225	0.735	0.710	0.726	0.371	0.151	Diamond Drill Operator
1156	16	4.116 - 0.000	1.245	0.748	1.179	1.200	0.300	Miner, 1st
Area ll	Total 22	4.116 - 0.000	1.130	0.798		1.340	0.286	All Employees on 11 Ledge

Table E-11 (continued)

Job code	Number of samples	Range mppcf High - Low	MPPCF					
			Mean	Median	TVA	Standard deviation	Standard error	Job title
1356	12	12.471 - 0.366	2.671	1.349	2.427	3.362	0.970	Miner, 1st
Area 13	Total 12	12.471 - 0.366	2.671	1.349	2.427	3.362	0.970	All Employees on 13 Ledge
1932	6	5.460 - 0.080	1.445	0.929	1.459	2.021	0.825	Motorman, Ist
1954	3	0.092 - 0.049	0.066	0.058	0.064	0.023	0.013	Miner, 1st
1956	6	0.396 - 0.043	0.200	0.152	0.195	0.148	0.060	Miner, lst
Area 19	Total 15	5.460 - 0.043	0.671	0.151	0.515	1.377	0.356	All Employees on 19 Ledge
2176	6	1.632 - 0.132	0.700	0.577	0.749	0.541	0.225	Miner, 3rd
Area 21	Total 6	1.632 - 0.132	0.700	0.577	0.749	0.541	0.225	All Employees on 21 Ledge