Prevalence of MRSA and distribution of MRSA sequence types in livestock in Italy are not known. However, surveys of foods of animal (pig) origin have shown an MRSA prevalence of 3.7% (1,10). In view of the low prevalence of MRSA ST398 in patients with no exposure to animals, food products currently seem to play a negligible role. However, this clone is likely spreading because of the large animal reservoir of ST398 and the global market for meat and livestock. The changing epidemiology of MRSA indicates that collaborative surveillance plans integrating human and animal information should be increased.

Caterina Mammina, Cinzia Calà, Maria R.A. Plano, Celestino Bonura, Antonietta Vella, Rachele Monastero, and Daniela M. Palma
Author affiliations: University of Palermo, Palermo, Italy (C. Mammina, C. Calà, M.R.A. Plano, C. Bonura, A. Vella); and ARNAS Ospedale Civico Di Cristina e Benfra-telli, Palermo (R. Monastero, D.M. Palma)
DOI: 10.3201/eid1604.091584

References

To the Editor: The development of methicillin resistance in community strains of Staphylococcus aureus is a notable step in the evolution of this pathogen. Unlike their equivalents in the hospital environment, community-associated methicillin-resistant S. aureus (CA-MRSA) strains tend to cause infections in children and young adults who have few known healthcare risks (1). CA-MRSA strains usually possess the Panton-Valentine leukocidin (PVL) genes and staphylococcal cassette chromosome (SCC) mec type IV or V (1,2).

We studied 72 S. aureus isolates (49 MRSA and 23 methicillin-susceptible [MSSA]) by pulsed-field gel electrophoresis and by SCCmec, staphylococcal protein A (spa), and multilocus sequence typing (1,3). These isolates were recovered from clinical specimens (52 respiratory specimens, 9 wound, 4 urine, 2 blood, and 5 other body fluids) from 72 pa-

Panton-Valentine Leukocidin–Positive MRSA, Shanghai, China

The isolates were identified as S. aureus by Gram stain, latex agglutination (Slide StaphPlus; bioMérieux, Marcy l’Etoile, France), and tube coagulase, mannitol, ornithine, and deoxyribonuclease reactions (1,4). Methicillin resistance in the isolates was
detected by cefoxitin disc screening and confirmed by *meccA* PCR (1,4). For patients with PVL-positive MRSA, the computerized discharge records in the hospitals were retrospectively reviewed to ascertain demographic and clinical information. A MRSA case was considered to be community-associated if it was isolated from an outpatient or within 2 days of a patient’s hospitalization. Exclusion criteria included a history of hospitalization for illness (except birth), surgery, or dialysis in the previous year or the presence of indwelling catheters or other medical devices (7). Conversely, healthcare-associated MRSA was defined by isolation >2 days after hospitalization or presence of any of the aforementioned healthcare risks.

PVL genes were detected in 9 (18.4%) of the 49 MRSA isolates (Table) and 4 (17.3%) of the 23 MSSA isolates. The 9 MRSA case-patients included 8 infants with pneumonia and 1 adult with prostatitis. Pulsed-field gel electrophoresis clustered 8 of the 9 PVL-positive MRSA isolates into 2 groups: 6 isolates as SH100 and 2 isolates as SH200. Strains of SH100 were spa type/MLST-SCC mec type t138/ST30-IV or t318/ST30-IV, and SH200 isolates had t1376/ST88-V. Similar to the PVL-positive MRSA isolates, a limited number of *spa* types were found among the 40 PVL-negative MRSA isolates. These were t037/ST239-III (n = 19), t002/ST5-II (n = 14), t030/ST239-III (n = 5), t459/ST239-III (n = 1), and t1764/ST88-IV (n = 1).

In contrast, *spa* and sequence types (STs) among the 23 MSSA isolates were highly diverse. There were 20 *spa* types and 14 STs, giving a total of 20 distinct patterns. Three patterns (t091/ST7, t3388/ST630, t3389/ST15) had 2 isolates, and 17 patterns (t002/ST5, t1077/ST121, t127/ST1, t1376/ST88, t189/ST188, t2024/ST30, t2092/ST121, t2207/ST1206, t2471/ST25, t258/ST25, t3383/ST20, t3386/ST630, t377/ST630, t437/ST1205, t548/ST5, t701/ST6, t796/ST7) had 1 isolate only. The 4 PVL-positive MSSA isolates were t1376/ST88, t2471/ST25, t258/ST25, and t3383/ST20.

Mupirocin resistance rates among the PVL-positive and PVL-negative MRSA isolates were 33.3% (3/9) and 7.5% (3/40), respectively (p = 0.07). Nonetheless, our findings agree with previous reports that the genotypes of MSSA isolates are more diverse than those for PVL-positive and -nega-

Table. Epidemiologic and microbiologic characteristics for Panton-Valentine leukocidin–positive MRSA infections in 9 case-patients, Shanghai, People’s Republic of China, 2006

<table>
<thead>
<tr>
<th>Strain</th>
<th>Age/sex</th>
<th>Admission month</th>
<th>Onset</th>
<th>Diagnosis</th>
<th>Resistance pattern</th>
<th>Resistance determinants§</th>
<th>ST§</th>
<th>SCCmec</th>
<th>spa type</th>
<th>PFGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8</td>
<td>1 mo/F</td>
<td>Feb</td>
<td>HA</td>
<td>Pneumonia</td>
<td>Chl, Ery, Gen, Mup</td>
<td>aacA-aphD, ermC, ileS-2</td>
<td>ST30</td>
<td>IV</td>
<td>t318</td>
<td>SH100</td>
</tr>
<tr>
<td>D9</td>
<td>1 mo/F</td>
<td>Feb</td>
<td>CA</td>
<td>Pneumonia</td>
<td>Gen, Mup</td>
<td>aacA-aphD, ileS-2</td>
<td>–</td>
<td>IV</td>
<td>t318</td>
<td>SH100</td>
</tr>
<tr>
<td>D13</td>
<td>1 mo/M</td>
<td>Mar</td>
<td>HA</td>
<td>Pneumonia</td>
<td>Gen</td>
<td>aacA-aphD</td>
<td>–</td>
<td>IV</td>
<td>t318</td>
<td>SH100</td>
</tr>
<tr>
<td>D14</td>
<td>3 mo/M</td>
<td>Mar</td>
<td>CA</td>
<td>Pneumonia</td>
<td>Gen</td>
<td>aacA-aphD</td>
<td>–</td>
<td>IV</td>
<td>t318</td>
<td>SH100</td>
</tr>
<tr>
<td>D16</td>
<td>1 mo/M</td>
<td>Mar</td>
<td>CA</td>
<td>Pneumonia</td>
<td>Gen, Mup</td>
<td>aacA-aphD, ileS-2</td>
<td>–</td>
<td>IV</td>
<td>t318</td>
<td>SH100</td>
</tr>
<tr>
<td>D12</td>
<td>3 mo/F</td>
<td>Feb</td>
<td>HA</td>
<td>Pneumonia</td>
<td>Ery</td>
<td>–</td>
<td>ST1114-V</td>
<td>V</td>
<td>t318</td>
<td>SH100</td>
</tr>
<tr>
<td>A18</td>
<td>29 y/M</td>
<td>Mar</td>
<td>HA</td>
<td>Prostatitis</td>
<td>None</td>
<td>–</td>
<td>ST30</td>
<td>IV</td>
<td>t3384</td>
<td>Single</td>
</tr>
<tr>
<td>D7</td>
<td>1 mo/F</td>
<td>Jan</td>
<td>CA</td>
<td>Pneumonia</td>
<td>Ery, Gen</td>
<td>aacA-aphD, ermC</td>
<td>ST88</td>
<td>V</td>
<td>t1376</td>
<td>SH200</td>
</tr>
<tr>
<td>D18</td>
<td>4 mo/M</td>
<td>Apr</td>
<td>CA</td>
<td>Pneumonia</td>
<td>Ery, Gen</td>
<td>aacA-aphD, ermC</td>
<td>–</td>
<td>V</td>
<td>t1376</td>
<td>SH200</td>
</tr>
</tbody>
</table>

*Strains are designated by hospital code and strain number. MRSA, methicillin-resistant *Staphylococcus aureus*; ST, sequence type; SCC, staphylococcal cassette chromosome; spa, staphylococcal protein A; PFGE, pulsed-field gel electrophoresis; HA, healthcare-associated; Chl, chloramphenicol; Ery, erythromycin; Gen, gentamicin, Mup, mupirocin; aacA-aphD, aminoglycoside resistance gene encoding the bifunctional enzyme, 6’-aminoglycoside N-acetyltransferase/2’-aminoglycoside phosphotransferase; ermC, gene encoding macroline-lincosamide-streptogramin B resistance; ileS-2, gene encoding high-level mupirocin resistance mediated by isoleucyl tRNA-synthetase; CA, community-associated.

†According to the diagnosis given in the computerized record. In the 8 children, MRSA was isolated from sputum specimens. One child also had MRSA isolated from pleural fluid. Because limited information was provided in the computerized records, some of the isolations may represent respiratory colonization. The outcomes of the 8 children were unknown.

‡According to disk diffusion test (1.5).

§Determined by PCR as described (4,6). ST30 (allelic profile 2–2–2–2–6–3–2) and ST114 (139–2–2–2–6–139–2) belonged to clonal complex 30.
tive MRSA isolates and that genotypes for some CA-MRSA strains are shared by a few of the MSSA strains (1).

The experimental work was conducted in the Department of Microbiology, University of Hong Kong, and supported by grants from the University Development Fund Project—Research Centre of Emerging Infectious Diseases of the University of Hong Kong.

Li-Zhong Han, Pak-Leung Ho, Yu-Xing Ni, Hong Zhang, Yan-Qun Jiang, Hai-Qing Chu, Yang Sun, and Yi-Bo Zhang

Author affiliations: Ruijin Hospital, Shanghai, People’s Republic of China (L.-Z. Han, Y.-X. Ni, Y.-B. Zhang); University of Hong Kong, Hong Kong Special Administrative Region, PRC (P.-L. Ho); Shanghai Children’s Hospital, Shanghai (H. Zhang); Sixth People’s Hospital of Shanghai, Shanghai (Y.-Q. Jiang); Shanghai Pulmonary Hospital, Shanghai (H.-Q. Chu); and Minhang Central Hospital, Shanghai (Y. Sun)

DOI: 10.3201/eid1604.081324

References

Address for correspondence: Pak-Leung Ho, Division of Infectious Diseases, Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam Rd, Pokfulam, Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China; email: plho@hkucc.hku.hk

Clostridium difficile in Ground Meat, France

To the Editor: Clostridium difficile is a toxigenic enteropathogen responsible for 15%–20% of antimicrobial drug–associated diarrhea and for almost all cases of pseudomembranous colitis. Two protein toxins (TcdA and TcdB) play a major role in the pathogenesis of infections. C. difficile is also recognized as a cause of disease in several animal species, which could be potential reservoirs (1). In the past few years, the presence of C. difficile in raw diets for dogs and cats and in retail meat sold for human consumption has been reported in the United States and Canada at rates from 6% to 42% (2–5).

To determine C. difficile contamination of meat in France, we evaluated 105 packages of ground beef (vacuum packed or not), 59 pork sausages, and 12 packages of feline raw diet meat purchased from 20 urban and suburban Paris retail stores and supermarkets during September 2007–July 2008. C. difficile spores or vegetative forms in samples were found as described by Rodriguez-Palacios et al. (4). Briefly, 5 g of each sample was cultured in 10 mL of prereduced brain–heart infusion (BHI) broth supplemented with cefoxitin (10 μg/mL), cycloserine (250 μg/mL), and taurocholate (0.1%). After the samples were incubated under anaerobic conditions at 37°C for 72 h, subculturing with and without alcohol shock for spore selection was performed. The BHI broth culture was treated with 2 mL of absolute ethanol (1:1 vol/vol) for 30 min and centrifuged at 3,800 × g for 10 min, and the pellet was resuspended in 200 μL of prereduced BHI broth. Serial dilutions of the BHI broth and the pellet were injected onto Columbia cystine agar supplemented with cefoxitin–cycloserine, taurocholate, and 5% horse blood and incubated anaerobically for 48 h at 37°C.