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Irrigating fresh produce with contaminated water contributes to the burden of foodborne 

illness. Identifying fecal contamination of irrigation waters and characterizing fecal sources 

and associated environmental factors can help inform fresh produce safety and health hazard 

management. Using two previously collected data sets, we developed and evaluated the 

performance of logistic regression and conditional random forest models for predicting general 

and human-specific fecal contamination of ponds in southwest Georgia used for fresh produce 

irrigation. Generic Escherichia coli served as a general fecal indicator, and human-associated 

Bacteroides (HF183), crAssphage, and F+ coliphage genogroup II were used as indicators of 

human fecal contamination. Increased rainfall in the previous 7 days and the presence of a building 

within 152 m (a proxy for proximity to septic systems) were associated with increased odds of 

human fecal contamination in the training data set. However, the models did not accurately predict 

the presence of human-associated fecal indicators in a second data set collected from nearby 

irrigation ponds in different years. Predictive statistical models should be used with caution to 

assess produce irrigation water quality as models may not reliably predict fecal contamination at 

other locations and times, even within the same growing region.
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INTRODUCTION

The United States Interagency Food Safety Analytics Collaboration (IFSAC) estimates 

that among the 1,322 foodborne outbreaks between 1998 and 2021, produce was the 

vehicle for 43% of foodborne illnesses from Salmonella, 52% of Listeria monocytogenes 
illnesses, and 67% of Escherichia coli O157 illnesses.1,2 Preharvest application of poor 

microbial-quality water is one way that fruits and vegetables can become contaminated 

with foodborne pathogens.3 Surface water is more likely than groundwater to be exposed to 

fecal contamination from humans and animals and may pose a greater risk to human health 
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when used for irrigation.3 As such, an important component of fresh produce safety hazard 

management is the ability to identify times when irrigation water may be contaminated and 

the sources and factors contributing to contamination. One of the most widely used methods 

for evaluating microbial water quality is measuring generic E. coli as a general indicator 

of fecal contamination.4 However, the utility of this fecal indicator in untreated irrigation 

water for fresh produce production is debated. The US Environmental Protection Agency 

(EPA) has recommended threshold values for generic E. coli levels, such as a geometric 

mean concentration ≥126 E. coli per 100 mL, to identify impaired microbial water quality 

in surface water used for recreation.5 E. coli concentrations exceeding these thresholds 

are associated with higher rates of illness among swimmers. It has also been suggested 

that these thresholds be applied to irrigation waters,6 but generic E. coli levels are not 

consistently associated with pathogen presence in irrigation water,7 and several pathogens 

that cause significant human foodborne illness, such as Salmonella and pathogenic E. coli, 
have been detected in irrigation water sources even when generic E. coli was not detected or 

levels were below the EPA recreational water quality thresholds.8,9

Generic E. coli can arise from many animals and other aquatic sources, which limits its 

use for characterizing of fecal sources.10 Many foodborne illnesses associated with produce, 

such as norovirus GI, GII, and GIV; hepatitis A types I, II, and III; hepatitis E types 

1–4 and 7; and the parasite Cyclospora cayetanensis, are solely associated with human 

contamination.11–14 These pathogens have been found in water impacted by human fecal 

contamination and subsequently in produce grown using these water sources.15,16 This 

highlights the importance of characterizing human-specific fecal contamination in irrigation 

water for remediation and the mitigation of health risks.

Testing produce irrigation water for microbial source tracking (MST) markers is a strategy 

for determining fecal contamination sources.17 Previous studies have highlighted the 

importance of considering multiple MST markers to account for differences in marker decay 

rates and abundance in the host feces, particularly when low levels of contamination are 

suspected.18–20 Molecular assays that target gene sequences from Bacteroides in human 

feces (e.g., HF183) have been developed and widely implemented as MST markers to infer 

the presence of human fecal contamination in environmental samples.21–25 CrAssphage, 

a recently identified virus of Bacteroides that is abundant in human feces, has also been 

used as a sensitive and human-specific MST marker.26,27 As a virus, crAssphage is more 

biologically similar to human-specific enteric viral pathogens than bacterial fecal indicators 

and has been associated with enteric viruses in environmental waters.28 The associations 

between E. coli levels and the presence of HF183 or crAssphage in surface waters reported 

previously have been inconsistent and limited, and the environmental factors associated 

with generic E. coli levels differ from those associated with HF183 occurrence.28–32 

Male-specific (F+) coliphages, which infect coliform bacteria like E. coli, have also been 

widely used as fecal indicator viruses and can be detected in environmental samples by 

conventional culture methods.33 Although F+ coliphages in general are not host-specific, F+ 

RNA (FRNA) coliphage genogroup II (GII) has been associated primarily with human feces 

and used as a human MST marker.34–36
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Previous water quality modeling studies have found associations between microbial 

contamination measured by E. coli and HF183 and various environmental factors, including 

pH, conductivity, turbidity, season, temperature, precipitation, and land use.8,37–42 However, 

the specific factors associated with fecal contamination varied between studies, water source 

type, and location. Regression modeling has previously been used to determine significant 

factors for predicting human fecal contamination in ambient recreational water,40 while 

recent advances in machine learning modeling approaches have been applied to predicting 

pathogens in certain agricultural settings.43 The environmental factors identified as driving 

contamination often vary based on modeling approach. For example, regression and machine 

learning models previously identified different explanatory variables as important predictors 

of Salmonella and enterohemorrhagic E. coli markers in irrigation water.44

Tools to identify fecal contamination and characterize fecal sources and associated 

environmental factors in irrigation water could help growers manage hazards for fresh 

produce safety. The discrepancies in the apparent drivers of contamination identified in 

the literature suggest that conducting agricultural setting-specific water quality assessments 

that consider multiple microbial targets, environmental factors, and modeling approaches 

may be necessary to adequately characterize microbial hazards in irrigation water. Previous 

models of human fecal contamination in US irrigation waters have focused on predicting 

the presence of bacterial MST markers (e.g., HF183) in streams;45 to our knowledge, 

comparable models for viral markers like crAssphage and for nonflowing water sources 

like irrigation ponds have not previously been reported. In this study, we developed models 

to evaluate environmental factors associated with the detection of four fecal markers in 

irrigation ponds in the southeast United States: generic E. coli, HF183, crAssphage, and 

FRNA GII coliphage. We then tested the predictive performance of the models on a separate 

data set that had been collected previously from the same growing region.

MATERIALS AND METHODS

Study Area.

The data used in this study were collected from irrigation ponds on farms in southwest 

Georgia. Sites were located in a region with subtropical environmental conditions 

characterized by coarse-textured and well-drained soils used for agriculture, pasture, and 

mixed forests.46 The ponds used for produce irrigation were located in the Little River 

watershed in the headwaters of the Suwannee River basin.47 The irrigation ponds in the 

test data set were located within 0.5 to 10 miles (0.8–16 km) of the ponds sampled for 

the training data set. All ponds in the training data set and two of the three ponds in the 

test data set were reported to be surface water-fed, while one pond in the test data set was 

groundwater-fed.

Training Data Set.

The training data set was collected as part of a study monitoring the occurrence of 

C. cayetanensis in produce irrigation water.48 Large-volume pond water samples (50 L) 

were collected by dead-end ultrafiltration (DEUF) from eight ponds serving two growers 

(A and B) one or two times per month from September 2020 through December 2021. 
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Generic E. coli was enumerated from 100 mL grab samples collected alongside the DEUF 

samples within six hours of collection using the IDEXX Colilert-18 Quanti-Tray 2000 

method (IDEXX Laboratories, Westbrooke, ME). DEUF samples were shipped on ice to 

the US Centers for Disease Control and Prevention (CDC) to be backflushed and further 

concentrated by centrifugation (4000g for 15 min) within 48 h of collection, as previously 

described.48,49

DNA was extracted from 200 μL of DEUF concentrates using the Qiagen AllPrep 

PowerViral DNA/RNA Kit (Qiagen, Hilden, Germany). Isolated DNA was immediately 

subjected to molecular analysis. Detailed sample processing and molecular analysis methods 

have been described previously.48 Briefly, human-associated genetic markers were amplified 

by quantitative polymerase chain reaction (qPCR) in triplicate following EPA Method 

1696 to detect HF183 and the CPQ_056 assay to detect crAssphage.26,48,50 HF183 and 

crAssphage were considered to have been detected in a sample when two of the three qPCR 

replicates for a given assay with demonstrated amplification above a threshold of 0.03 ΔRn 

and a quantification cycle (Cq) value below 40.48

Test Data Set.

The test data set consisted of samples collected from three additional ponds between 

May 2015 and May 2016 as part of a study to evaluate large-volume sample collection 

for characterizing foodborne pathogens and indicators in irrigation water.51 During each 

sampling visit, 1 L grab samples and 50 L DEUF samples were collected at two pond-edge 

locations per pond. Generic E. coli concentrations were measured separately in each grab 

sample by the same Colilert-18 method and averaged for further analysis. The two DEUF 

samples collected per pond were separately backflushed using the same procedure as for 

the training set ultrafilters. Prior to secondary concentration, the backflush was analyzed for 

male-specific (F+) coliphage viruses using the EPA Single Agar Layer (SAL) method,52 

followed by F+ RNA coliphage (FRNA) genotyping as described elsewhere.51,53 Half 

the remaining backflush volume was further concentrated by poly(ethylene glycol) (PEG) 

precipitation and centrifugation at 10,000g for 30 min,54 and the other half was concentrated 

by centrifugation alone (4000g for 30 min), yielding four ultrafilter concentrates per pond 

per sampling visit. Nucleic acid was extracted from 750 μl of each concentrate by the 

Universal Nucleic Acid Extraction (UNEX) method.55 Each concentrate was analyzed for 

HF183 by qPCR as described previously.22,51 HF183 was determined to have been detected 

in a sample if two qPCR replicates from either DEUF sample showed amplification before 

the Cq value of 40.

Though produced using somewhat different workflows, the training and test data sets both 

ultimately consisted of single observations of the generic E. coli concentration, the presence 

of human-associated bacteria (HF183), and the presence of a human-associated virus in 

each pond for each sampling event. For both data sets, generic E. coli was measured in 

grab samples by culture, and HF183 was detected by qPCR in large-volume water samples 

processed by DEUF with secondary concentration by centrifugation. The human-associated 

virus assessed for the training data set, crAssphage, was detected by qPCR in centrifuge-

concentrated DEUF sample backflush. For the test data set, FRNA GII coliphage was 
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assessed as the human-associated virus in DEUF sample backflush (prior to any secondary 

concentration) using culture methods coupled with qPCR-based genotyping.

Environmental Explanatory Variables.

Water quality parameters, including dissolved oxygen (mg/L), turbidity (NTU), pH, 

conductivity (μS/cm), and temperature (°C), were measured using a ProDSS Multiparameter 

Digital Water Quality Meter (YSI, Yellow Springs, OH) at the time of sample collection 

for both the training and test data sets. Negative turbidity measurements were censored 

at 0 NTU for analysis. Each parameter was measured four times over approximately 30 

min during the training set collection, and the measurements were averaged, as described 

previously.48

For the training data set, daily rainfall accumulation (inches) was collected using Rain101A 

Rainfall Data Loggers (MadgeTech, Inc., Warner, NH) or WatchDog 1120 Data Logging 

Rain Gauges (Spectrum Technologies, Inc. Aurora, IL) placed at each pond. Rainfall data 

were intermittently unavailable at individual ponds due to equipment failures. However, 

rainfall data were successfully collected from at least one of the four Grower A pond gauges 

during the entire study period. Since all Grower A ponds were located within a three-mile 

radius, data from all working gauges were averaged each day to create a complete data 

set for the study period. Rain gauge malfunctions occurred at two of the four Grower B 

ponds, but as these ponds were located less than 1 mile apart, their rain data were merged or 

averaged if data from both were available. Test data set rainfall measurements were retrieved 

from a University of Georgia-managed publicly accessible weather logging system stationed 

within 10 miles (16 km) of all study ponds.56

Daily average wind speed (miles per hour [mph]) and daily solar radiation (MJ/m2) 

were obtained for both data sets from the US Department of Agriculture (USDA) Soil 

Climate Analysis Network monitoring station located within 15 miles (24 km) of all 

of the ponds.57 Rainfall, wind, and solar radiation data were each aggregated into two 

variables: accumulation within the previous 2 days (Rain 0–2, Wind 0–2, and Solar 0–2) 

and in the previous 2-to-7 days (Rain 2–7, Wind 2–7, and Solar 2–7). These categories 

were constructed to represent more recent events and events occurring further in the past, 

respectively, a distinction shown to be meaningful in previous predictive models of fecal 

contamination in surface water.58,59 The International Organization for Standardization 

(ISO) week of sample collection was also included as a continuous explanatory variable 

to account for recurring temporal patterns.

Proximity of the ponds to septic systems was considered a potential source of human fecal 

contamination in this region. Because public records of septic installations were incomplete, 

we used the proximity to a building as a proxy for the proximity to potential septic pollution 

sources. Due to the rural setting, it was likely that any buildings were served by septic 

systems. The Georgia Department of Public Health requires an absorption field area of 

500 feet2 for a two-bedroom house with a residential trench septic system and a 2190 

ft2 absorption field area for commercial buildings.60 Therefore, a pond was classified as 

“close” to a building if it was located within 2000 ft (610 m) of any commercial building or 

within 500 ft (152 m) of all other building types, regardless of septic record. We ascertained 
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building proximity from satellite imagery in Google Maps (maps.google.com). A detailed 

examination of building proximity and septic records near the ponds is provided in the 

Supporting Information (SI).

Descriptive Statistical Analysis.

Conductivity and the two cumulative solar radiation variables (Solar 0–2 and Solar 2–7) 

were log10-transformed prior to statistical analyses. Turbidity was also log10-transformed 

after adding one to each measurement to address zero values. Samples with E. coli most 

probable number (MPN) concentrations ≥126 MPN/100 mL were classified as having 

elevated generic E. coli levels based on the EPA recreational water guidance and previous 

irrigation water models that predicted pathogenic E. coli gene occurrence using a 126 

MPN/100 mL generic E. coli threshold.43 Associations between the frequency of elevated 

generic E. coli ≥126 MPN/100 mL and frequency of HF183 detection and between HF183 

and crAssphage detection frequencies were assessed using a Cochran–Mantel–Haenszel 

(CMH) test stratified by pond. Pearson correlation analysis was conducted to assess 

pairwise correlations between all environmental explanatory variables. All analyses were 

conducted using R version 4.4.0.61 Analysis code and study data are available at https://

cdcgov.github.io/WDPB_EMEL/manuscripts/irrigation_models/.

Model Development.

Logistic regression and conditional random forest (CRF) models were developed to predict 

the detection of HF183, detection of any human fecal indicator (HFI), and elevated generic 

E. coli ≥126 MPN/100 mL. HFI detection was defined as detecting either or both HF183 

and a human-associated virus. For the training data set, the HFI variable used crAssphage 

detection as the second indicator of human fecal contamination. Detection of FRNA GII 

coliphage was used as the human-associated viral indicator to define the HFI variable in the 

test data set.34–36

The same set of explanatory variables was considered for both the logistic regression and 

CRF models; the final variable sets were selected separately for each modeling approach 

and outcome (HF183, HFI, and generic E. coli ≥ 126 MPN/100 mL). The full explanatory 

variable set evaluated included: ISO week of sample collection; water sample temperature, 

dissolved oxygen, pH, log10 conductivity, and log10 turbidity; cumulative rain, wind, and 

log10 solar radiation in the previous 0–2 days (Rain 0–2, Wind 0–2, and Solar 0–2) and 

previous 2–7 days (Rain 2–7, Wind 2–7, and Solar 2–7); and a binary variable indicating 

building proximity. To limit colinearity, explanatory variables with pairwise correlation 

absolute value ≥0.5 were not included in the same model.

Model training and tuning, including variable selection, were conducted using the training 

data set. The final trained models were then applied to the test data set to evaluate out-of-

sample predictive performance. Models for the detection of HF183 and HFI were also 

retrained including a binary variable indicating E. coli ≥ 126 MPN/100 mL as an additional 

explanatory variable to evaluate whether elevated generic E. coli levels were predictive of 

human fecal contamination.
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Training Regression Models.—Mixed-effects logistic regression models were 

implemented with the lme4 package in R and included the pond of sample collection as 

a random effect to account for repeated measures.62 Variable selection for the logistic 

regression models proceeded in two stages. First, univariable associations were evaluated 

in separate models for each binary outcome variable (detection of HF183, HFI detection, 

and generic E. coli ≥ 126 MPN/100 mL) and each explanatory variable. Explanatory 

variables with p-value <0.1 in the univariable models were considered for inclusion in 

multivariable models. Second, backward stepwise selection was performed to select the 

explanatory variables to retain in the multivariable mixed-effects logistic regression models. 

After specifying the full model with all variables retained from the univariable models, the 

explanatory variable with the highest p-value was removed and the full and reduced models 

were compared using a chi-squared test with one degree of freedom.62 A nonsignificant chi-

squared test at the 10% significance level indicated that the full model did not meaningfully 

reduce the deviance and was used as the decision criterion in favor of the simpler model. 

The procedure was repeated until a significant chi-square test was obtained. Due to 

convergence issues for models predicting generic E. coli ≥ 126 MPN/100 mL, a forward 

stepwise selection procedure was used instead, beginning with an intercept-only model 

(including the pond random effect) and adding variables until a nonsignificant chi-squared 

test was obtained.

Training Conditional Random Forest Models.—CRF models build on the advantages 

of random forest analysis, including the ability to explore complex and nonlinear 

interactions between numerous explanatory variables without needing to prespecify 

the model structure, by incorporating conditional inference approaches to mitigate the 

overfitting and bias toward correlated variables exhibited by conventional random forest.63–

65 CRF models from the party package were developed using the mlr package framework 

in R.63,66 Models were trained using 10,001 conditional inference trees and the default 

hyperparameter values suggested for unbiased variable selection.64 As a sensitivity analysis, 

we also constructed CRF models with hyperparameter values for the number of explanatory 

variables randomly considered for splitting each node (“mtry”) and the minimum number 

of observations to construct a terminal node (“minbucket”) tuned by maximizing the mean 

area under the receiver operating characteristic curve (AUC) using repeated 3-fold cross-

validation (five iterations).44,65 Synthetic minority oversampling technique (SMOTE) was 

implemented during hyperparameter tuning for an additional set of models to address class 

imbalance of the three binary outcome variables as an additional sensitivity analysis.67,68 

While resampling-based imbalance corrections have been reported to improve the predictive 

accuracy of previous CRF models of foodborne pathogen presence in water,69 the 

practice has been criticized for producing poorly calibrated probabilistic predictions with 

inconsistent impacts on classification performance.70–72 We assessed variable importance 

as the independent impact of each variable on the AUC using a conditional permutation 

approach to address potential bias from correlated explanatory variables and outcome 

variable class imbalance.73,74
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Predictive Performance.

The trained logistic regression and CRF models were applied to the test data set to generate 

predicted probabilities for the detection of HF183, detection of HFI, and generic E. coli ≥ 

126 MPN/100 mL in different ponds from the same growing region. Predictive performance 

was assessed by receiver operating characteristic (ROC) curve analysis using the pROC 
package in R.75 For consistency with the CRF variable importance procedure, which utilized 

AUC as a less-biased alternative to the traditional accuracy metric for determining variable 

importance,74 we estimated the area under the ROC curve as a dimensionless metric of 

the overall ability of each model to discriminate between the presence and absence of the 

outcome.76 An AUC of 1 denotes perfect concordance between predicted and observed 

outcome values, indicating ideal model performance, and an AUC of 0.5 corresponds to 

model classification performance equivalent to random chance.77,78 We also calculated 

predictive sensitivity (the proportion of test samples positive for the outcome correctly 

predicted to be positive by the model) and specificity (the proportion of test samples 

negative for the outcome correctly predicted to be negative) at model-specific classification 

thresholds identified by maximizing Youden’s J statistic.79 The classification threshold is 

the minimum predicted probability of the outcome required to classify a sample as positive; 

increasing the threshold generally increases specificity (i.e., reduces the false positive rate) 

at the expense of decreasing the sensitivity (the true positive rate). The threshold that 

maximizes J balances sensitivity and specificity by minimizing the overall proportion of 

misclassified samples, weighting false positives and false negatives equally.

RESULTS

Training Data Set.

Of the 217 training data set samples, HF183 was detected in 71 (33%) water samples, 

crAssphage was detected in 14 (7%) samples, and these two human-associated markers were 

codetected in 10 (5%) samples (Table 1). HF183 was detected in ≥25% of the samples from 

ponds A1, A2, A3, A4, and B4, all of which were considered near buildings (<610 m from 

a commercial or <152 m from any other building). Likewise, all ponds in which crAssphage 

was detected were near buildings. CrAssphage detections were significantly associated with 

HF183 detections (CMH χdf = 1
2 = 5.11, p = 0.02). Generic E. coli exceeded 126 MPN/100 mL 

at least once during the sampling period in every pond (4–22% of samples per pond, Table 

1). Elevated E. coli ≥126 MPN/100 mL were not associated with HF183 detection (CMH 

χdf = 1
2 = 1.82, p = 0.18). Descriptive statistics of explanatory variables are summarized for 

each pond in Table S1, and pairwise Pearson correlation coefficients are presented in Figure 

S1.

Test Data Set.

All ponds in the test data set were located within 500 ft (152 m) of a building or 2000 ft 

(610 m) of a commercial building. HF183 was detected in about a third of the samples from 

each pond (Table 1). Human-associated FRNA GII coliphage was detected less frequently 

than HF183 but at a similar frequency to crAssphage in the training data set. HF183 and 

FRNA GII coliphage were codetected in 5 (8%) samples. Similarly, generic E. coli levels 
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were ≥126 MPN/100 mL at comparable frequencies in both the training (10%) and test (9%) 

data sets.

Models.

Human Fecal Indicators.—Results of univariable logistic regression models used to 

inform explanatory variable selection are presented in Figure S2. Following backward 

stepwise variable selection, building presence, cumulative rainfall in the previous 0–2 days, 

and cumulative rainfall in the previous 2–7 days were retained in the final multivariable 

logistic regression models for both HF183 detection and HFI detection. The presence 

of a building was associated with elevated odds of HF183 and HFI (HF183 odds ratio 

[OR]: 24.8, 95% confidence interval [CI]: 3.6–172.5; HFI OR: 28.6, 95%CI: 4.4–187.1; 

Figure 1). Rainfall was also positively associated with HFI presence. The odds of detection 

approximately doubled for each additional inch (2.5 cm) of rain 0–2 days before sample 

collection for both HF183 (OR: 2.0, 95%CI: 0.99–4.2) and HFI (OR: 2.1, 95%CI: 1.0–4.5). 

An additional inch of rain 2–7 days before sample collection was associated with a 70% 

increase in the odds of detecting both HF183 (OR: 1.7, 95%CI: 1.2–2.5) and HFI (OR: 1.7, 

95%CI: 1.2–2.5). Although the magnitude of the estimated associations was lower for rain 

2–7 days prior, the relationships were more precise than the larger associations estimated for 

rain in the previous 0–2 days, which also included the null. Similarly, the top two ranked 

explanatory variables by variable importance in the CRF models for the HF183 and HFI 

were the presence of a building and rainfall in the previous 2–7 days (Figure 2). All other 

variables had negligible importance values. Generic E. coli ≥ 126 MPN/100 mL was not 

significant when included as an additional explanatory variable in logistic regression models 

(HF183 OR: 1.1, 95%CI: 0.26–5.0; HFI OR: 0.77, 95%CI: 0.18–3.4) and was of negligible 

variable importance in CRF models.

Generic E. coli.—Rainfall and solar radiation in the previous 0–2 days were the only 

variables retained in the multivariable logistic regression model for elevated generic E. coli. 
Rainfall in the previous 0–2 days was associated with increased odds of generic E. coli ≥126 

MPN/100 mL (OR: 6.7, 95%CI: 2.6–17.6; Figure 1). Conversely, a log10-increase in solar 

radiation 0–2 days prior was associated with lower odds of generic E. coli ≥ 126 MPN/100 

mL (OR: 0.12, 95%CI: 0.01–1.1), although the association was not significant. CRF analysis 

also ranked rainfall and solar radiation in the previous 0–2 days as the most important 

variables for predicting generic E. coli ≥126 MPN/100 mL (Figure 2).

Model Prediction Performance.—Model predictions for the test data set outcomes 

(2015–2016) were analyzed with ROC curves (Figure 3), using the AUC to evaluate 

overall predictive performance. Logistic regression models and CRF models demonstrated 

comparable discriminatory ability. Logistic regression model AUCs were slightly higher 

than the CRF AUC for the human-associated outcomes but lower for elevated levels of E. 
coli. Performance was lowest for predicting HF183 detection (AUC: 0.56–0.60). Despite the 

substitution of human-associated FRNA GII coliphage for crAssphage in the HFI variable 

definition, logistic regression predictions of HFI detection were more accurate (AUC: 0.64) 

but did not achieve the AUC > 0.7 target conventionally viewed as acceptable predictive 

performance.78 Models built for predicting generic E. coli ≥ 126 MPN/100 mL had higher 
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predictive performance (AUC: 0.77–0.79) than models for either human-associated outcome, 

attributable to the high sensitivity (100%) attained at moderate specificities (54–64%). 

However, sensitivity declined rapidly with any further increase in specificity, reflected 

in the low classification thresholds identified by Youden’s J statistic at probabilities of 

0.08–0.11. Such low thresholds indicate that the application of more stringent criteria to 

discriminate between detects and non-detects sharply reduced identification of true positives 

(of which there were only 6 in the test data set) without providing a corresponding 

reduction in the false positive rate. Including E. coli ≥ 126 MPN/100 mL as an additional 

explanatory variable in the logistic regression and CRF models did not improve predictions 

of either human-associated outcome (Figure S3). Similarly, CRF hyperparameter tuning and 

imbalance correction did not improve AUC for test data set predictions (Figure S4).

DISCUSSION

Our results can be used to identify factors associated with human fecal contamination in 

southeastern US produce irrigation water. However, predictive statistical models should 

be used with caution in irrigation water quality assessments, as predictions for locations 

and times beyond those on which the models were trained may be unreliable. In the 

current study, no model produced accurate out-of-sample predictions of the presence 

of human fecal indicators in additional ponds from the same growing area sampled in 

different years. Although the negligible influence of nearly all explanatory variables and 

the dominance of a single, static site characteristic (building proximity) suggest limited 

opportunity to improve predictions through increased data collection, expanding the training 

data set with observations at additional locations and times could potentially provide greater 

generalizability to inform out-of-sample predictions.

The most influential factor in detecting molecular human fecal indicators in irrigation water 

was being located near a building, which, in this rural area, indicates a high likelihood 

of proximity to a septic system. The soil in this area is rated “very limited” for septic 

tank absorption fields, meaning septic systems are expected to perform poorly and may 

introduce human fecal contamination to adjacent environments.80 Recent rainfall was also 

associated with an increased risk of detecting human fecal indicators and generic E. coli 
≥126 MPN/100 mL. Increased rainfall in the previous 48 h was the strongest predictor of 

elevated E. coli and was associated with larger, but more variable, increases in odds of 

HF183 and HFI detection than less recent rainfall. The impact of increased rainfall in the 

previous 2–7 days was smaller in magnitude but more consistently associated with increased 

odds of HF183 and HFI detection. Although the ponds sampled for the training data set were 

all reported to be fed by surface water, this suggests that contamination of the subsurface 

water through septic pollution could be a contributor to human fecal contamination in this 

growing region.

While human MST markers have been reported in produce irrigation water,45,81,82 predictors 

of these markers in irrigation ponds have not previously been characterized. Studies 

in beach waters have consistently found that precipitation is an important predictor of 

HF183.40,83,84 Rainfall was also significantly associated with HF183 in private well water 

in Pennsylvania85 and in rural waterways where onsite wastewater treatment was suspected 
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as the source of contamination.86 While other studies have found significant associations 

between solar radiation and HF183,40 we did not observe human marker associations with 

solar radiation in this study. Rainfall variables and solar radiation have also been determined 

as critical factors in modeling unsafe ambient recreational water conditions due to elevated 

E. coli.87,88 A systematic review of predictive models of E. coli in beach water found 

that rainfall was the most frequently included variable in final models.89 The second most 

commonly included variable was turbidity, which corresponds to more suspended particles 

in the water column that can provide protection against solar inactivation for particle-

associated microorganisms.90 However, turbidity was not associated with any of the fecal 

indicator outcomes in this study. The frequent presence of algae during sample collection 

may partially account for the lack of association with turbidity. Algae can interfere with 

probe-based turbidity measurements and have the potential to both inhibit and stimulate 

bacterial growth.91 Future studies may consider using more robust laboratory-based turbidity 

measurements and quantifying algae in surface water samples to address inconsistencies 

potentially introduced by heavy algal loads.

Elevated generic E. coli and the presence of HF183 were not correlated in this study. 

This finding is consistent with previous research, showing that the drivers of human fecal 

contamination vary from those for generic fecal indicator bacteria.28,32,40 Multiple lines of 

evidence suggest the likely presence of nonhuman fecal contamination, including previous 

research that identified wildlife- and livestock-shed foodborne pathogens Campylobacter 
jejuni, Salmonella enterica, and pathogenic E. coli in surface waters used for irrigation in 

this growing region.8,92–95

This study allowed us not only to assess predictors of general and human-specific fecal 

contamination but also to compare different predictive modeling approaches. Previous 

studies have suggested that machine learning-based predictive models could be used 

to determine when pathogens are most likely to be present in irrigation water.43,96 In 

particular, conditional random forest models were previously found to more accurately 

capture relationships with environmental factors to predict Salmonella and pathogenic E. 
coli presence in produce irrigation water in northeastern and southwestern US growing 

regions.43,44 A comparison of predictive modeling approaches also identified random forest 

models as the most accurate approach for predicting fecal indicator bacteria in ambient 

recreational water.97 However, our study observed out-of-sample predictive performance by 

CRF models for human fecal indicator presence that was only marginally better than chance 

and slightly inferior to the predictive performance of logistic regression models. A recent 

systematic review of clinical prediction models for a range of binary outcomes likewise 

found no consistent advantage of random forest and other machine learning approaches 

over logistic regression.98 Alternative performance metrics to AUC could have yielded 

different relative performance rankings of the two approaches, but the absolute performance 

was sufficiently poor that any reasonable metric should have captured the predictive 

inadequacy of both approaches. Previous comparisons of random forest- and regression-

based approaches found that the different methods identified different explanatory variables 

as important for predicting pathogen presence in irrigation water.44 By contrast, in this 

study, both regression and CRF approaches identified the same influential explanatory 

variables for each fecal indicator outcome.
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A strength of our study was the inclusion of multiple markers of human fecal contamination 

to address the limitations of the individual markers. HF183 has been shown to cross-react 

with poultry and dog feces in many settings,24,99–101 while crAssphage, though less 

extensively validated, has previously demonstrated superior host specificity.99 Domestic 

dogs were observed during sample collection at residences near the irrigation ponds, which 

could have served as a potential source of the HF183 assay cross-reaction. Therefore, we 

used a conservative detection criterion of two or more positive qPCR replicates. CrAssphage 

may be a less-sensitive human fecal indicator than HF183, though it is often correlated with 

HF183, as was observed in the present study.18,28 The human MST markers were codetected 

too infrequently to develop predictive models of HF183 and crAssphage codetection, but 

all samples in which human markers were codetected occurred in irrigation ponds near 

buildings, further suggesting the influence of buildings (with presumed septic systems) on 

human fecal contamination of irrigation waters.

Because crAssphage was not measured in the test data set, we substituted FRNA GII 

coliphage as the human-associated fecal indicator virus. Though less human-specific than 

crAssphage,35,36 coliphage was detected with similar frequency in the test ponds (all 

close to buildings) as the frequency of crAssphage detection in the training ponds with 

nearby buildings. Furthermore, the models developed to predict HF183 and/or crAssphage 

produced more accurate predictions for HF183 and/or FRNA GII coliphage than the HF183-

trained model predictions of HF183 alone, supporting FRNA GII coliphage as a reasonable 

substitute for crAssphage as a human fecal indicator virus in this setting. Future studies 

should consider the addition of a viral concentration step, such as PEG precipitation or 

cellulose ester membrane filtration, to increase the recovery of human-associated viral 

markers and improve the sensitivity of human fecal contamination detection.18,27

CONCLUSIONS

This research demonstrated significantly more human fecal marker intrusion into irrigation 

ponds in an agricultural region of southwest Georgia when a building was present and 

with greater rainfall in the previous week. This should be considered when a preharvest 

water assessment is completed for the introduction of hazards onto produce. Human fecal 

contamination from nearby buildings should be assessed prior to using an irrigation pond 

for produce production. Predictive models have previously been suggested for preharvest 

assessment; however, this study demonstrated that while our modeling approaches were able 

to determine risk factors, they could not reliably predict water contamination over multiple 

years. Our findings highlight the continued role for water quality testing, including MST 

approaches, in protecting the safety of fresh produce.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Odds ratio (95% confidence interval) estimates for exposure variables in the final mixed-

effects logistic regression models for the three fecal indicators, HF183 (A), human fecal 

indicator (HFI; HF183 and crAssphage) (B), and E. coli ≥ 126 MPN/100 mL (C).
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Figure 2. 
Conditional variable importance for each conditional random forest model (CRF): HF183 

(A), human fecal indicator (HFI; HF183 and/or crAssphage) (B), and E. coli ≥ 126 

MPN/100 mL (C). The y-axis shows the explanatory variables ranked from most important 

to least important. The x-axis shows the variable importance on the basis of reduction in the 

area under the curve (AUC) by conditional permutation; higher relative variable importance 

indicates stronger association between the variable and the outcome. Variable importance ≤0 

indicates negligible association.
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Figure 3. 
Receiver operating characteristic (ROC) curves (black lines) for logistic regression (top row) 

and conditional random forest (CRF, bottom row) model predictions of HF183 (A), human 

fecal indicator (HFI; HF183 and/or FRNA GII coliphage) (B), and E. coli ≥ 126 MPN/100 

mL (C) in the test data set (2015–2016). The area under the curve (AUC) summarizes 

overall predictive performance, and the classification threshold is the predicted probability 

that minimizes misclassification, corresponding to the blue point on the ROC curve. The 

red-dashed line represents the performance of an unskilled classifier (no discriminatory 

ability) with an AUC of 0.5.
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